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Abstract: Asymmetric tubular ceramic–ceramic (cercer) membranes based on
La27W3.5Mo1.5O55.5−δ-La0.87Sr0.13CrO3−δ were fabricated by a two-step firing method making use
of water-based extrusion and dip-coating. The performance of the membranes was characterized
by measuring the hydrogen permeation flux and water splitting with dry and wet sweep gases,
respectively. To explore the limiting factors for hydrogen and oxygen transport in the asymmetric
membrane architecture, the effect of different gas flows and switching the feed and sweep sides
of the membrane on the apparent hydrogen permeability was investigated. A dusty gas model
was used to simulate the gas gradient inside the porous support, which was combined with
Wagner diffusion calculations of the dense membrane layer to assess the overall transport across
the asymmetric membrane. In addition, the stability of the membrane was investigated by means of
flux measurements over a period of 400 h.

Keywords: hydrogen permeation; water splitting; surface kinetics; asymmetric tubular membrane;
lanthanum tungstate; lanthanum chromite

1. Introduction

Technology that can efficiently separate hydrogen from a mixed gas stream may be integrated
in processes that either consume or liberate hydrogen (e.g., in hydrocarbon upgrading such
as non-oxidative methane aromatization) or employed in stand-alone hydrogen production [1–3]. Dense
metallic membranes based on Pd and its alloys show high solubility and diffusivity of hydrogen and are
promising for hydrogen separation at intermediate temperatures (>~300–500 ◦C) [4,5]. On the other
hand, dense ceramic membranes based on mixed proton and electron conducting materials demonstrate
thermal and chemical stability for application in high temperature processes (>700 ◦C) [6,7], although
their hydrogen fluxes are much lower than their metallic counterparts.

Mixed proton and electron conducting membranes based on perovskite-type materials, such
as acceptor-doped SrCeO3 and BaCeO3, suffer either poor stability, e.g., in CO2-containing atmospheres,
or low hydrogen flux as a consequence of low electronic conductivity under relevant operational
conditions [6,8–11]. Rare earth tungstates have attracted much attention due to their high
chemical stability in CO2 and H2S containing environments [12–14]. Molybdenum substituted
rare-earth tungstates, La27W3.5Mo1.5O55.5−δ (LWM), show relatively high hydrogen permeability [15,16]
and chemical stability in the presence of CO2 [17]. To further increase the electronic conductivity of LWM,
composite ceramic–ceramic (cercer) membranes including acceptor-doped La0.87Sr0.13CrO3−δ (LSC)
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have been extensively studied [18–20]. Proton transport in these membranes mainly proceeds through
the LW(M) phase, while the LSC phase contributes with high electronic conductivity. The improved
performance of the cercer membranes as compared to the single-phase LW(M) becomes more significant
at lower temperatures, i.e., 500–750 ◦C, where the apparent H2 permeability of LW(M) is limited by
the electronic conductivity [21]. Furthermore, water splitting at the sweep side and subsequent oxide
ion transport through the membrane was found to predominate the apparent hydrogen permeability
(defined as the rate of hydrogen transported across the membrane plus hydrogen produced by
water splitting on the sweep side) at higher temperatures with H2O-containing sweep gas [22].
Apparent H2 permeabilities of 1–5 × 10−3 mL min−1 cm−1 have been obtained at 700 ◦C with around
50% H2 (humidified) feed and humidified Ar sweep at ambient total pressure [18,19]. This apparent
permeability was, however, significantly enhanced by coating the 1-mm thick disc shaped cercer
membranes with a porous Pt-layer, indicating that surface kinetics can significantly impact the apparent
flux. Flux degradation has been observed at temperatures above 900 ◦C and was related to equilibration
of the La/W ratio in the LWM phase under reducing conditions, resulting in lower ionic conductivity
of the LW(M) phase and consequently reduced flux [23].

An asymmetric tubular membrane design has been considered promising for increasing flux when
the membrane layer is thicker than the characteristic thickness or catalyzed on the surfaces [13,24,25].
Moreover, a tubular membrane geometry may offer better flow profiles with less risk of dead zones,
better thermal cycling stability, and easiness to seal in comparison with a planar design [26,27].

In this investigation, we evaluate the performance of asymmetric tubular membranes consisting
of a dense LWM-LSC cercer layer supported by a porous LWM support in terms of hydrogen flux
as a function of temperature using both wet and dry sweep gases. To explore the limiting factors for
transport through the membrane and the support, various experiments were conducted including
variation of the sweep flow rate and switching the feed and sweep side of the membrane. Furthermore,
numerical simulations of mass transport across the asymmetric membranes were carried out by means
of a dusty gas model in the porous support and Wagner ambipolar transport in the membrane layer.

2. Materials and Methods

2.1. Fabrication of Asymmetric LWM–LSC Tubular Membranes

La27W3.5Mo1.5O55.5−δ (LWM) and La0.87Sr0.13CrO3−δ (LSC) powders were purchased from Marion
Technology (Verniolle, France) and Praxair (Indianapolis, IN, USA), respectively. Batches of LWM
feedstock were prepared for extrusion of the porous tubular supports by mixing LWM powder with
pore formers and a proprietary water soluble binder system. Extrusion was carried out in a Loomis
40-ton ram extruder with a ram speed of 1 cm/s to obtain straight tubes of 40–50 cm length, which were
further cut into pieces of 20–30 cm length and bisque-fired in air at 1300 ◦C for 5 h. A suspension
of LWM-LSC (70/30 wt.%) was used for dip-coating the bisque-fired tubes using a semi-automatic
dip-coater. After dipping, the membranes were sintered in air for 10 h. Further details regarding
the fabrication procedure can be found elsewhere [27]. The membrane used for flux measurements
was 5.4 cm long with an outer diameter of 1 cm and 50 µm thickness for the dense layer. In order to
catalyze the surface kinetics, a porous layer of Pt was applied by painting a Pt ink (Englehart) layer on
the outer side of the membrane.

2.2. Hydrogen Permeation Measurements

The tubular membranes were bubble tested at room temperature in isopropanol up to 3 bar to
ensure leak-free membranes prior to flux measurements. The asymmetric tubular membrane was closed
in one end using a dense ZrO2 cap, and the other end was sealed to a ZrO2 support tube (outer diameter
13 mm) using an alumina paste (671 Ceramabond, Aremco, Valley Cottage, NY, USA). A proprietary
glass–ceramic seal was subsequently applied on all joints. The setup was mounted into a ProboStat
measurement cell (Norecs AS, Oslo, Norway) enclosed with an outer quartz tube, and heated to 1100 ◦C
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with a heating rate of 10 ◦C/h to obtain a sufficient seal. The temperature was monitored with an S-type
thermocouple positioned close to the center of the tubular membrane. The feed side of the membrane
(outer) was fed with a mixture of 25 mL/min He and 25 mL/min H2, and the permeate side (inner)
was swept with Ar (25 mL/min). The gas mixtures were humidified with about 2.5% H2O by passing
the gas through a saturated KBr solution. The sealing process was monitored by measuring the He
and H2 concentrations in the permeate side during heating using a Varian CP-4900 gas chromatograph
(GC) (Palo Alto, CA, USA). For the investigated membranes, the helium leakage was ~0.0005% of
the total H2 concentration in the sweep throughout the experimental window and leakage correction
was therefore not required for calculating the apparent fluxes.

Apparent hydrogen fluxes were measured from 1100 to 700 ◦C with feed gas mixtures of 48.75% H2,
2.5% H2O, and 48.75% He using both dry and wet Ar as sweep gas with heating and cooling rates
of 10 ◦C/h. The effect of sweep flow on the apparent hydrogen flux was studied by varying the Ar
sweep flow rate from 25 to 200 mL/min. The total pressure was atmospheric for both the feed
and sweep side during all measurements. To study the potential effects of mass transport resistance in
the porous support and surface kinetics at the feed side, the feed and sweep sides of the membranes
were exchanged and various sweep flow rates were applied. In addition, the stability of the tubular
membrane was verified by measuring the flux at 750 ◦C for 400 h.

2.3. Numerical Modeling for Gas Transport in Porous Support

To understand the effects of a porous support on the hydrogen flux of an asymmetric membrane,
it is necessary to know the hydrogen and steam partial pressure gradients inside the support, which in
turn determine the driving force for hydrogen and oxygen permeation through the dense membrane
layer. Since the thickness of the support is far smaller than its length, the gradient is mainly in
the radial direction. Therefore, the transport through the porous media is considered one-dimensional.
The species and overall mass-conservation equations are expressed as:

∂
(
φgρgYk

)
∂t

+∇· jk = 0 (1)

∂
(
φgρg

)
∂t

+

Kg∑
k=1

∇· jk = 0 (2)

where ρg is the gas-phase density, Yk is the mass fraction, and φg is the porosity of the support.
The gas-phase density is determined from the equation of state as:

ρg =
p

RTg
∑Kg

k=1
Yk
Wk

(3)

where Wk is the molar mass. The mass fluxes jk of species k are related to molar fluxes Jk through
the Dusty-gas model (DGM) [28,29] according to

∑
l,k

[Xl]Jk − [Xk]Jl

[XT]De
kl

+
Jk

De
k,Kn

= −∇[Xk] −
[Xk]

De
k,Kn

Bg

µ
∇p (4)

where [Xk] is the molar concentration, [XT] = p/RT the total molar concentration, Bg the permeability,
and µ the mixture viscosity. De

kl and De
k,Kn are the effective ordinary and Knudsen diffusion coefficients

respectively, can be evaluated as

De
kl =

φg

τ
Dkl,De

k,Kn =
4
3

rpφg

τ

√
8RT
πWk

(5)
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The binary diffusion coefficients Dkl are calculated from kinetic theory. Knudsen diffusion
represents mass transport assisted by gas–wall collisions, and depends on the average pore radius rp

and the tortuosity τ.
The system of equations forms an initial-boundary-value problem in differential-algebraic form,

and boundary conditions are required for both sides of the support. At the membrane/support interface,
the hydrogen and steam flux are specified according to the measured flux, and the measured gas
compositions of the sweep gas are used as gas composition at the support-gas interface at the inner tube
side. The model was implemented to solve the transient problem using one-dimensional finite-volume
spatial discretization along the radial direction of the support by means of the ode15i function in
the MATLAB software package (R2016a).

3. Results and Discussion

3.1. Characterization of Tubular Membranes

The SEM images of the tubular membranes after sintering at 1500 ◦C show a dense LWM-LSC
membrane layer and a porous support of LWM exhibiting a ‘worm-like’ porous network (c.f.
Figure 1). The LSC phase is embedded in the LWM phase and uniformly distributed in the dense
membrane layer. A closer inspection of the membrane cross-section highlights another critical feature:
the interface between the membrane layer and porous support consists of a quite dense region of 1–2
microns which appears to contain no LSC grains. This microstructure results from the processing of
the membranes and the large difference between the sinterability of the LSC and LWM phases (c.f. [27]).
We will discuss further how this microstructure impacts on the performance of the membranes.
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3.2. Hydrogen Permeation 

Figure 1. La27W3.5Mo1.5O55.5−δ–La0.87Sr0.13CrO3−δ (LWM-LSC) membrane sintered at 1500 ◦C for 10 h
observed in cross-section view (fractured surface). The light grey grains are LWM, the dark grains are
LSC, and the black areas are pores. Reprint from [27].

The porous LWM support sintered with the same annealing program showed a permeability
above 1 × 10−14 m2 and the support should thereby not be resistant for overall gas diffusion [27].
The porosity of the tubular supports was determined from mercury intrusion porosimetry (Autopore IV
9500, Norcross, USA) and tortuosity was assumed to be 3. Table 1 lists various parameters of the porous
support used for modeling.
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Table 1. Parameters of porous support.

Name Value

Length of the support (mm) 1.1
Porosity 0.46

Tortuosity 3
Pore size (µm) 2

3.2. Hydrogen Permeation

Figure 2 presents the measured apparent hydrogen flux as a function of the inverse absolute
temperature during cooling for various feed and sweep gases: wet feed + wet sweep (denoted WF+WS),
wet feed + dry sweep (WF + DS), and dry feed + dry sweep (DF + DS). It is obvious from Figure 2 that
the highest hydrogen flux was obtained for WF + WS, while the lowest was obtained for DF + DS.

For a bulk-controlled hydrogen transport, the hydrogen flux across a membrane in a hydrogen
potential gradient can be related to the ambipolar transport of protons and electrons [6]

jH2 = −
RT

4F2L

∫ pHII
2

pHI
2

σH+ te−d(ln pH2) (6)

where σH+ and te− are the proton conductivity and electronic transport number respectively,
pHII

2 and pHI
2 are the hydrogen partial pressures at the sweep and feed side, respectively, L the membrane

thickness, and the remaining symbols have their usual meanings.
Protons may dissolve into the membrane material by hydration of oxygen vacancies via

H2O(g) + V••O + O×O = 2OH•O (7)

The above reaction is exothermic, and as temperature increases the proton concentration decreases
while mobility increases, which in total leads to a maximum and subsequently an overall reduction in
proton conductivity. According to Equation (6), the hydrogen flux will also become less dependent on
temperature with dry sweep. In the case of WF + DS in Figure 2, the hydrogen flux shows a lower
temperature dependence at high temperatures, indicating a proton-limited transport, while a higher
dependence at low temperatures corresponds to electron-limited transport. Under both dry feed
and sweep, hydrogen permeation is still observed. In this case, protons may dissolve in oxides with
simultaneous formation of electrons according to the following defect reaction:

H2(g) + 2O×O = 2OH•O + 2e/ (8)

Under dry conditions, it seems that the kinetics for the above reaction are very slow as indicated
by the increase in hydrogen flux with dwell time at 850 and 750 ◦C. In this case, it is hard to determine
the limiting factors for hydrogen permeation in the whole temperature range.

With wet sweep gas, the apparent hydrogen flux was higher than for dry sweep in the measured
experimental window, and this difference became more significant with increasing temperature.

3.3. Effect of Pt-Coating and Comparison with Disc-Shaped Membranes

As shown in Figure 3, the hydrogen flux was similar under dry sweep with and without Pt-coating,
which indicates that Pt coating on the outer surface has little effect on the hydrogen dissociation
kinetics on the feed side. However, under wet sweep, the Pt-coating enhanced the apparent hydrogen
flux, and the effect becomes more significant as temperature increases, as evidenced from the ratio
of hydrogen flux for these two measurements—1.38 at 850 ◦C vs. 2.23 at 1000 ◦C. This means that Pt
promotes 1) the oxygen exchange kinetics and 2) the charge transfer of the surface reaction due to high
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electronic conduction of Pt on the outer membrane surface, yielding a larger oxygen gradient between
the sweep and the feed sides, and consequently a higher apparent hydrogen flux due to water splitting.
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Figure 3. Comparison of hydrogen flux as a function of temperature for Pt-coated and uncoated
tubular membranes. The half open labels correspond to the asymmetric tubular membrane without
any coating [27]. The sweep Ar flow rate is 25 mL/min.

In order to evaluate the hydrogen permeation of LWM-LSC membranes with different thicknesses,
architectures, and catalytic coating, the permeability, i.e., flux times membrane thickness for dense
ceramic membranes, can be evaluated. In comparison to the disc-shaped membranes reported in [18],
the asymmetric membrane in the present work exhibits a lower hydrogen permeability, especially
under wet sweep conditions (approximately one order of magnitude lower), as shown in Figure 4.
For the Pt-coated disc-shaped membrane, surface kinetics are not expected to limit the hydrogen
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permeation. Due to the challenge of introducing Pt coating to the inner surface of the asymmetric
membranes, i.e., in the region adjacent the membrane/support interface, the feed and sweep sides of
the membrane were switched in order to elucidate gas diffusion and/or surface kinetics limitations for
the hydrogen permeation and water-splitting process, as described in the following sections.
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3.4. Effects of Water Splitting

Higher apparent hydrogen permeability in wet as compared to dry sweep gas was observed
for all three cercer membranes (symmetric disc shaped, asymmetric tubular, Pt coated asymmetric
tubular), and the difference was more significant at higher temperature (c.f. Figures 3 and 4). This has
been attributed to water splitting due to transport of oxygen from the sweep to the feed side of
the membranes [18,22]. Assuming that the surface kinetics are sufficiently fast, the apparent hydrogen
flux due to water splitting caused by ambipolar transport of oxide ions and electrons can be expressed
as [25].

jH2O
H2

=
1
2

jO2 = −
RT

8F2L

∫ pOI
2

pOII
2

σO2− te−d(ln pO2) (9)

where σO2− is the oxide ion conductivity, and pOI
2 and pOII

2 are the oxygen partial pressure at the feed
and permeate side, respectively. For a disc-shaped membrane, a constant pH2O at both the feed
and sweep sides can be assumed, and given equilibrium between water, hydrogen, and oxygen,
Equation (9) can be transformed into

jH2O
H2

= −
RT

4F2L

∫ pHII
2

pHI
2

σO2− te−d(ln pH2) (10)
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Thus, the measured total hydrogen flux under wet conditions can be expressed as the sum of
Equations (9) and (10):

jtotal
H2

= −
RT

4F2L

∫ pHII
2

pHI
2

(σO2− + σH+)te−d(ln pH2) (11)

LSC shows relatively higher ambipolar conductivity of oxide ions and electron holes than that
of LWM, potentially yielding high hydrogen production rate by means of water splitting [16,20,21].
Assuming that the LSC phase in the cercer membrane mainly contributes to the oxide ion conduction
and is unvaried across the membrane, the apparent hydrogen flux can be obtained based on Equation (9)
using the derived ambipolar conductivity σO2−e− of LSC [20]. As shown in Figure 5, the calculated
hydrogen permeability according to the gradients in the two experiments are similar, and much higher
than those measured for both the disc and tubular membranes. However, for asymmetric tubular
membranes in this work, the measured apparent hydrogen permeability were approximately 2 orders
of magnitude lower than the calculated ones. Compared to planar symmetric membranes, asymmetric
tubular membranes have an additional porous support and an interface between the support and the thin
membrane layer. Therefore, gas diffusion in the porous support and/or surface kinetics at the inner
surface could hinder the apparent hydrogen transport. This will be further explored by means of
the effect of flow and modeling approaches.
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3.5. Effects of Flow and Porous Support

Figure 6 presents the effect of sweep flow on the measured hydrogen flux. A higher sweep flow
leads to a lower pH2 and causes a larger potential gradient for both hydrogen and oxygen transport
across the membrane according to Equation (6). This is consistent with the results, i.e., the higher
the sweep flow, the higher the hydrogen flux, especially at high temperatures. This effect becomes
insignificant above a certain flow, e.g., 100 mL/min at 950 ◦C, indicating that other limiting factors start
to limit the overall transport. Meanwhile, the flow effect becomes weaker as temperature decreases
due to the lowered ambipolar transport for both oxygen and hydrogen permeation.



Membranes 2019, 9, 126 9 of 16

In order to investigate potential gas diffusion limitations through the porous support, the feed
and the sweep sides of the asymmetric membrane were switched, and the apparent hydrogen flux was
measured as a function of sweep flow (c.f. Figure 7).Membranes 2019, 8, x 9 of 16 
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Figure 7. Configuration with inner sweep.

Under both dry and wet sweep, switching the feed and sweep sides (Figure 8) showed minor
differences in the apparent hydrogen fluxes at high temperatures, while a significant increase
was observed with outer sweep at low temperatures, especially when using wet sweep gases.
Since the outer surface is coated, the catalytic activity for incorporation of oxygen from water splitting
into the membrane can be expected to be improved. The increased flux can therefore reasonably
be ascribed to the increased kinetics of the Pt-coated membrane surface, while the surface kinetics
at the inner membrane/support interface seem to be limiting for oxygen exchange and incorporation.
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3.6. Numerical Simulation of Gas Transport Across the Membrane

For an asymmetric tubular membrane, gas diffusion in the support causes partial pressure gradients
in the porous media, yielding a different potential gradient for gas permeation across the membrane.
In this case, Equation (11) is not appropriate for calculating the hydrogen flux since the partial pressure
at the membrane/support interface is not defined. Figure 9 shows transport of gas and charged species
across the asymmetric membrane under various simplified feed and sweep configurations.
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Figure 9. Schematic illustrations of gas transport along asymmetric membranes under various feeds
and sweeps. Partial pressure changes along the membrane surface, bulk, and porous support are also
visually plotted.

For a steady state gas permeation, we assume in our one-dimensional model that the hydrogen flux
is equal across the membrane and support in the radial direction. We can then numerically calculate
the partial pressure gradient across the dense membrane layer (region I to II) and the porous support
(region II to III) using the DGM explained in Section 2.3. In the case of dry sweep, the ambipolar
conductivity of protons and electrons was derived from the flux of the disc-shaped membrane [18]
and used to calculate the hydrogen partial pressure at the inner membrane/support interface since
the pH2 is known at the feed side. Figure 10 shows the pH2 distribution along the membrane
and the porous support. According to these simulations, there is a significant hydrogen potential
gradient across the dense membrane layer, while the pH2 inside the support does not vary very much.
This indicates that both surface kinetics at the inner membrane/support interface and gas diffusion
through the porous support do not limit the overall flux.
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Figure 10. pH2 distribution across the membrane layer and the porous support. The sweep is dry Ar,
and the temperature is 900 ◦C.

In the case of wet sweep, the situation becomes more complex as shown from the schematic
illustration in Figure 9b. The steady state flux is again used as an implicit condition. The ambipolar
conductivity of oxide ions and electrons was used to derive the oxygen partial pressure at the inner
surface of the membrane. The water, oxygen, and hydrogen equilibrium constant was used to derive
the partial pressure of oxygen at the feed and the membrane/support interfaces. Figure 11 shows
that pH2 and pH2O are almost uniformly distributed along the porous support, indicating a high
performance of the porous support, as also confirmed by previous permeability measurements of
the porous support [27]. However, the simulations show a significant drop of approximately 3 orders
of magnitude for the pO2 at the membrane/support interface (Figure 11b). This implies slow surface
kinetics for oxygen incorporation into the cercer composite. Slow kinetics for oxygen incorporation was
also evidenced by the change in apparent hydrogen permeation upon switching the feed and sweep
side (Figure 8).

As reported earlier, it can be seen from the SEM cross section images in Figure 1 that
the membrane/support interface consists mainly of LWM grains and that there are very few LSC
grains in the open pores of the support, i.e., in contact with a gas phase. The large difference between
the apparent hydrogen flux expected from the simulation results and the measured values may be
explained by a barrier to oxygen incorporation into the dense LWM layer at the membrane/support
interface. By changing the sweep side, the oxygen incorporation is facilitated to some extent, as more
LSC grains are in contact with the gas phase on membrane surface. Thus, an enhanced apparent
hydrogen flux (by a factor of about 2) is observed albeit the much slower sweep flow rate. Nevertheless,
the apparent flux remains far lower than the theoretically value from Equation 11. Again, the dense
LWM layer at membrane/support interface (c.f. Figure 1) seems to be a huge obstacle for oxygen
incorporation from steam.
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3.7. Long-Term Stability

In our previous studies, we have shown that LWM-LSC cercer symmetric membranes degrade
under reducing conditions above 900 ◦C [23]. We also showed that segregation of W may occur on
the membrane surface exposed to dry reducing conditions. In the present investigation, the asymmetric
membrane was always exposed to hydrogen/oxygen potential gradients, and also dry reducing
gradients. Figure 12 shows the reproducible hydrogen fluxes during the first several heating and cooling
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cycles, and only a small degradation is observed during the last two cooling stages, i.e., from 850–750 ◦C.
This stable performance is quite different from the symmetric membranes [23]. The reason for this
difference could be that the interface between the support and the membrane layer prevents cations
such as W from diffusing outwards from the surface as observed in [23]. Alternatively, the bulk
degradation phenomenon can be expected to be less prominent for the current asymmetric membranes
since the apparent flux is limited by surfaces and interfaces rather than ionic conductivity in the bulk.
After flux measurements under various conditions, the membrane was kept at 750 ◦C until the sealing
broke. Figure 13 shows stable flux values during the whole period of about 404 h.
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4. Conclusions

Asymmetric tubular membranes were fabricated by extrusion of an LWM porous support
and dip-coating of LWM-LSC. Due to the different sintering characteristics of LWM and LSC,
the resulting membranes exhibited a dense LWM layer at the membrane/support interface in addition
to the dense LWM-LSC top layer. The permeabilities of the asymmetric membranes were lower than
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previous measurements of disc-shaped membranes with the same composition, especially under wet
sweep conditions. The asymmetric LWM-LSC membrane coated with a porous Pt layer on the outside
surface showed comparable hydrogen flux with the uncoated membrane under dry sweep, and higher
apparent hydrogen flux with wet sweep on the inside of the tube. By switching the feed and the sweep
side, similar hydrogen fluxes were measured under dry sweep, while higher apparent hydrogen fluxes
were observed with wet outer sweep, i.e., without significant gas diffusion limitations. Simulations
based on a Dusty-gas model and ambipolar transport showed a large drop in pH2 and pO2 across
the membrane/support interface, especially for pO2 under wet sweep conditions. The simulations
support the experimental findings suggesting that oxygen incorporation at the membrane/support
interface limits the apparent hydrogen fluxes especially with wet sweep gas. The membrane showed
good stability during various cooling and heating cycles under different feed and sweep conditions,
and long-term annealing at 750 ◦C. The present work highlights critical factors in the fabrication of
asymmetric tubular membranes, especially based on composite materials.
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