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Abstract 

The location of potassium (K) on Cobalt (Co) and its effect on adsorption and adsorption-

induced surface restructuring is important for understanding the deactivation of Co Fischer-

Tropsch catalysts and the nature of the active surface. Co(11-20) restructures by anisotropic 

migration of Co atoms upon CO exposure. Deposition of sub-monolayer amounts of K on 

Co(11-20) and the effect on the CO-induced restructuring were therefore investigated using 

scanning tunneling microscopy (STM), high resolution photoemission spectroscopy (HR-

PES), and density functional theory calculations (DFT). The combined STM and DFT results 

suggest that the preferred adsorption site for K at low coverage is in the vicinity of step 

edges. DFT also found that diffusion of K along the [0001] direction, in between the zigzag 

rows of the topmost Co layer is facile. The restructuring under CO exposure with K pre-

adsorbed proceeded on the terraces rather than from the step edges, in a slower and more 

disordered manner. HR-PES showed that the amount of CO adsorbed at saturation 

significantly decreased with predeposited K. The obstructed migration of Co atoms across the 

surface may be important in understanding why very low amounts of K on supported Co 

catalysts significantly reduces the activity towards hydrogenation of CO.  

 

Keywords: Co single crystal, scanning tunneling microscopy, potassium, carbon monoxide, 

density functional theory, high resolution photoemission spectroscopy 
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Highlights 

- CO adsorption on Co(11-20) with K predeposited studied by STM, HR-PES and DFT. 

- Model system for the effect of K on Co based Fischer Tropsch catalysts. 

- STM/DFT indicate that potassium is located near the step edges for low coverages. 

- CO induced migration of Co is obstructed when potassium is present on the surface. 

- The K-inhibited restructuring yielded less CO adsorbed. 
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1. Introduction 

 

The presence of alkali or alkaline earth metals on the surface of a catalytically active metal 1 

may affect the catalyst activity, selectivity or stability in various ways, from enhancing the 2 

activity, suppressing deactivation or by-product formation, to acting as poisons. In the case 3 

that small amounts of alkali lead to extensive deactivation, it may be inferred that they affect 4 

the most active sites, such as is often the case for sulphur [1–3]. Understanding the effect 5 

hence becomes critical to eventual countering measures, but will also give information on the 6 

catalyst characteristics critical to its performance. Investigations of single crystal catalyst 7 

model systems have been important in this respect. 8 

In the Fischer–Tropsch synthesis (FTS) [4], synthesis gas (CO, CO2 and H2) derived from 9 

natural gas, coal or biomass feedstocks is converted to hydrocarbon products, with cobalt 10 

(Co) or iron (Fe) based catalysts being the industrially relevant systems for this process. 11 

Alkali and alkaline earth species can be introduced to these catalysts through impurities in the 12 

synthesis gas, in particular when derived from biomass [5], in addition to being possible 13 

contaminants in the catalyst precursors. Co based catalysts are usually preferred in modern, 14 

natural gas based FTS technology [6], for which Li, Na, K, and Ca have been found to act as 15 

poisons [7,8]. For iron-based FTS, on the other hand, potassium (K) is utilized as a promotor, 16 

signifying the different states of the two catalysts under reaction conditions; i.e., metallic for 17 

Co and carbidic for Fe [9]. Impregnation of 20wt%Co/0.5wt%Re/γ-Al2O3-supported catalysts 18 

with alkali impurity loadings from 25 to 200 ppmw resulted in a significant decrease in 19 

catalyst activity during FTS [7,10]. It was therefore suggested that the adsorbed alkali metals 20 

were located in catalytically important sites. The H2 chemisorption properties [7,10] and the 21 

H2 and CO differential heats of adsorption [11], however, remained unaffected. Noting also 22 
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that the C5+ selectivity was maintained or slightly increased, reactant activation appears more 23 

affected than the subsequent chain growth steps.  24 

Besides site blockage, the presence of impurities on the surface under reaction can induce 25 

changes to the surface morphology, as well as the inhibition of the dynamic restructuring of 26 

the surfaces/particles in response to the reaction conditions, resulting in changes in activity. 27 

In 2002, dynamic restructuring of supported Cu nanocrystals upon change of gaseous 28 

atmosphere was demonstrated by researchers at Haldor Topsøe A/S using in-situ transmission 29 

electron microscopy (TEM) [12]. More recently, dynamic morphological changes of the 30 

surface of Pt nanoparticles were shown to coincide with periodic variations in the reaction 31 

conditions for CO oxidation (1.0 bar of CO:O2:He at 3:42:55 and 659K) [13]. Restructuring 32 

of the surface of the Co particles during the FTS reaction has also been discussed as a 33 

possible influence on catalyst behavior [14–20]. Evidence of Co particle restructuring was 34 

obtained by small-angle X-ray scattering (SAXS) investigations of Re-promoted Co-35 

nanoparticles supported on γ-alumina under FTS conditions [18]. The change in surface 36 

structure upon introduction of synthesis gas was suggested to be caused by the migration of 37 

Co surface atoms. De Groot and Wilson [14] performed an early ex situ STM study of the 38 

Co(0001) surface after exposure to CO hydrogenation conditions (total pressure 4 bar, 39 

H2:CO=2, 523 K). They reported a restructuring of the surface into triangular shaped Co 40 

islands, formed through a proposed migration of mobile cobalt carbonyl species. Recent in 41 

situ STM investigations of the Co(0001) surface under realistic FTS conditions (3 bar, 42 

H2:CO=2, 483 K) also found a restructuring  of the surface, with the formation of triangular 43 

Co nanoislands [19]. However, under the methanation limit condition of the FTS (14 mbar, 44 

H2:CO=40, 493 K) an in situ high temperature high pressure STM investigation of a 45 

Co(0001) single crystal showed no morphological changes to the surface during the reaction 46 

[17]. Addition of <0.5 ppm sulphur to this synthesis gas, nevertheless, led to significant 47 
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changes in the surface morphology, through a combination of roughening and ordered 48 

superstructures [21].  49 

Restructuring of Co(11-20) [22] and Co(10-12) [23] upon exposure to CO has previously 50 

been reported by our group during STM investigations under UHV conditions and room 51 

temperature. CO exposure gives a (3x1) reconstruction of these surfaces, as long known from 52 

LEED [24]. The STM observations revealed a restructuring process that could only be 53 

explained by extensive migration of Co across the surface. The nature of the migrating 54 

species could, however, not be determined and was suggested as single atoms, clusters or 55 

carbonyl-species. The migration was highly anisotropic, with troughs developing from the 56 

step edges along the row structure of the surfaces. The migrating material therefore resulted 57 

in the formation of ridges from the step edge, developing along the [0001] or [1010] direction 58 

for Co(11-20) and Co(10-12), respectively, to eventually meet a trough advancing from the 59 

adjacent (lower) step edge. The diffusion of Co species yielded the (3x1) structure in the case 60 

of (11-20) [22]. For (10-12), the migration was associated with the onset of a (1x2) structure 61 

that was neither observable nor previously reported from LEED, co-existing with an 62 

overlayer type (3x1) structure at saturation [23].  63 

The deposition of alkali on Co single model systems and its effect on FTS-relevant 64 

adsorbates has so far only been investigated on Co(0001) [25–28] and Co(10-10) [29–31]. No 65 

surfaces where migration of Co atoms occurs during CO exposure have, to our knowledge, 66 

been investigated with respect to the influence of alkali adsorbates. Co(11-20) is therefore an 67 

appropriate model system to link the effect of adsorbed alkali metal to the possible 68 

restructuring occurring under FTS conditions. In this work, we report on the deposition of 69 

sub-monolayer amounts of potassium on the surface of Co(11-20) and the effect on CO 70 

adsorption, combining scanning tunneling microscopy (STM), high resolution photoemission 71 

spectroscopy (HR-PES), and density functional theory (DFT) calculations. 72 
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 73 

 74 

2. Materials and Methods 75 

 76 

The Co(11-20) single crystal was cleaned by argon (purity 6.0) sputtering at 0.5-1 keV at 77 

room temperature (RT), and subsequent annealing at 600-630 K. The temperature was kept 78 

well below 700 K in order to avoid the phase transition from hcp to fcc structure in Co. A 79 

high number of cleaning cycles was necessary to obtain a clean surface, with annealing 80 

periods of several hours required to achieve a low degree of surface roughness. The cleaning 81 

process also involved a few exposures of the surface to oxygen (purity 6.0), followed by 82 

cycles of sputtering and annealing.  83 

STM experiments were performed in an ultra-high vacuum (UHV) chamber, with a base 84 

pressure < 5x10-10 mbar. The UHV chamber contained an RT STM1 and low energy electron 85 

diffraction (LEED) optics from Omicron. All measurements were performed under UHV 86 

conditions and at RT. The long range order of the surface was checked with LEED prior to 87 

the STM experiments. Submomolayer amounts of K were deposited from a thoroughly 88 

degassed K-dispenser (SAES Getters). STM images were recorded during exposure to CO 89 

(purity 4.7) at pressures in the range 1-3·10-9 mbar for the clean surface and with 90 

predeposited K. CO exposures are reported in Langmuir (1L = 1.33∙10-6mbar∙s). The 91 

tunneling currents and sample bias voltages used to acquire the STM images are specified in 92 

the figure captions. Background corrections of the STM images have been applied using the 93 

open source SPM program Gwyddion [32]. Distortion corrections have been applied to 94 

selected images, as stated in the figure captions.  95 
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HR-PES was performed at the MATLINE beamline of the ASTRID2 synchrotron facility in 96 

Aarhus, Denmark. The clean surface and the surface after submonolayer amounts of 97 

deposited K were exposed to CO beyond saturation levels (4-6 L). The Co 3p and O 1s core 98 

level spectra were recorded at photon energies 130 eV and 610 eV, respectively, while the C 99 

1s and K 2p core level spectra were both recorded at 370 eV photon energy. All spectra were 100 

measured at normal emission. The binding energy was calibrated by recording the Fermi edge 101 

immediately after measuring a core level spectrum. Shirley background subtraction [33] and 102 

Voigt line shape were applied for fitting the C 1s core levels. Linear background subtraction 103 

and Doniach-Sunjic line shapes [34] were utilized in the fitting procedures for the K 2p core 104 

levels. The amount of K present on the surface was estimated from the cross section corrected 105 

area of the K 2p3/2 peak and the Co 3p peak of the clean surface after Shirley background 106 

subtraction.  107 

DFT calculations were performed with the Vienna Ab Initio Simulation Package (VASP), 108 

with plane wave basis sets and pseudo-potentials [35]. The general gradient approximation 109 

(GGA) with the Perdew-Burke-Ernzerhof (PBE) functional [36] was applied for the 110 

exchange-correlation effect. The kinetic energy cut-off for the plane wave basis sets was 500 111 

eV. The PAW pseudopotential [37,38] K_sv was utilized for potassium. The calculated 112 

lattice constants of hcp Co were a = 2.48 Å, and c = 4.04 Å, as compared to the experimental 113 

values  a = 2.51 Å and c = 4.07 Å [39]. The clean Co(11-20) surface is illlustrated in Figure 114 

1, and is made up by zigzag rows along the [0001] direction in alternating layers represented 115 

by layer A and B Co atoms. The surface was modelled by a periodically repeated slab 116 

consisting of six layers in total, separated by a vacuum region of about 17 Å. The bottom two 117 

layers were kept fixed and consistent with their bulk configurations, and the remaining layers 118 

were allowed to relax. Structural optimizations were performed with the shape and volume of 119 

the cell kept constant, but without constraints for the ionic positions and stress tensors. 120 
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Calculations were considered converged if all forces between the atoms were smaller than 121 

0.01 eV/Å. Adsorption of K on Co(11-20) was investigated using (3x2) and (3x4) surface 122 

unit cells. Reciprocal space integration over the Brillouin zone was performed applying a 123 

finite sampling of a Γ-centered grid applying the Monkhorst-Pack scheme [40,41] of 3x5x1 124 

and 3x3x1 k-points for the (3x2) and (3x4) surface unit cell, respectively. Adsorption was 125 

investigated by initially placing the adsorbate above high symmetry sites. As specified in 126 

Figure 1a there are six high symmetry sites: tA, tB, bA, bB, bAB(1) and bAB(2). The coverage in 127 

monolayers (ML) was defined as the number of adsorbates per surface atom in the topmost 128 

layers (layer A and B). Adsorption of K in association with a step edge was calculated by 129 

placing the K adatom above high symmetry sites on a (3x4) model surface cell with 130 

additional Co atoms placed above layer B. Adsorption energies for K on Co(11-20) were 131 

calculated as Eads,K = (1/n)[Esurface,K – (Eclean + nEK)], with the terms being: Esurface,K the total 132 

energy of the surface with K, Eclean the total energy of the clean Co surface, EK the total 133 

energy of K, and n the number of K-atoms. In the case of CO adsorption, the adsorption 134 

energy without and with predeposited K was calculated by Eads,CO = Esurface,CO – (Esurface 135 

+ECO), where Esurface,CO is the total energy of the system, Esurface is the total energy of the 136 

surface without or with pre-adsorbed K, and ECO the total energy of an isolated CO molecule. 137 

Negative adsorption energies indicate that adsorption is favorable. The reported adsorption 138 

energies are corrected for the zero point energy. The normal mode harmonic frequencies were 139 

calculated with the Co atoms kept fixed, and CO and K allowed to displace by 0.015 Å. The 140 

effective radius for K (Reff) was calculated by the difference between the nearest neighbor K-141 

Co distance and the effective radius of Co, Reff = (dK-Co – a/2), where a is the calculated 142 

shorter lattice constant of hcp Co. Diffusion barriers were calculated using the Nudged 143 

Elastic Band (NEB) method [42]. Normal mode harmonic frequencies were calculated for the 144 
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transition states isolated with NEB, as well as the adsorption geometries. The transition state 145 

was verified by calculating the normal mode harmonic frequencies.  146 

 147 

All illustrations of the optimized geometries were produced by the program Visualization for 148 

Electronic and Structural Analysis (VESTA) [43].   149 

3. Results and Discussion 150 

 151 

Atomically resolved STM images of the Co(11-20) surface are displayed in Figure 2. The 152 

surface is composed of zigzag rows of atoms along the [0001] direction, indicated in the 153 

figure along with the (1x1) unit cell (Fig. 2b). The presence of point defects and/or 154 

contaminants is observed as small depressions and protrusions together with the regular 155 

pattern from the Co atom zigzag rows. The HR-PES measurements showed that minor 156 

amounts of carbon species could be present after the cleaning procedure, reflecting the highly 157 

reactive nature of Co which makes it difficult to remove all traces of residual contaminants 158 

from the surface. Residual carbon on the clean Co surface has previously been encountered in 159 

HR-PES investigations of CO dissociation on Co(0001) [44], from which relevant and 160 

interesting conclusions could be reached despite the trace contamination.  161 

Figure 3a displays an STM image of step edge(s) on clean Co(11-20). The zigzag rows are 162 

well resolved on the terraces and at the monoatomic step. The height of the monoatomic step 163 

is ~1.25 Å. The white features marked by circles in the lower right corner of the image are 164 

due to contaminants. Upon adsorption of K, the appearance of the Co(11-20) surface as 165 

recorded by STM changes. This is shown in the image of Figure 3b, recorded after deposition 166 

of a submonolayer coverage of K, for which no ordered overlayer structure could be observed 167 

by LEED. In this case, the zigzag rows characteristic of the Co(11-20) surface are resolved 168 
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on the terraces, whereas the step edges are no longer well resolved. The step edges have 169 

become blurred and displays a number of  irregular dark features below the edge with 170 

characteristic dimensions larger than the distance between the zigzag rows for the clean 171 

surface; up to 10 Å. Norris et al. [45,46] previously found that individual K atoms imaged by 172 

STM on the surface of Ni(100)(2×2)p4g-N displayed a larger radius than the reported atomic 173 

(2.35 Å) and ionic radius (1.33 Å). This, together with the observed blurriness and irregular 174 

features, are possible indications that K is located near or at the step edges. However, the 175 

actual site of K, below or on top of the step edges, is difficult to determine from the STM 176 

images. K adsorbed on Cu(100) and Cu(110) was observed as depressions when imaged by 177 

STM [47], and explained as a result of charge redistribution between K and Cu. Similar 178 

charge redistribution from adsorbed K to Co may occur in the present case. The effective 179 

radius of K (Reff) for the most favorable adsorption site (tB, see below) is calculated as 1.96 Å 180 

(Table 1), which is considerably smaller than the diameter of the observed irregular features 181 

at the step edges. However, difference electron density plots for K adsorbed on Co(10-10) 182 

[48] and Co(10-11) and Co(10-12) [49] show that the charge redistribution includes the 183 

neighboring Co atoms in the topmost layer. Hence adsorbed K atoms would possibly image 184 

as features larger than the effective K radius in STM.  185 

DFT investigations were performed to predict the possible adsorption sites of K on Co(11-186 

20). The energetically favoured geometry on Co(11-20) with one K adsorbed per (3x2) unit 187 

cell is illustrated in Figure 4. The stable high symmetry site, corresponding adsorption energy 188 

and structural values are listed in Table 1. K favors adsorption in the top site in layer B, 189 

labeled tB in Figure 1, in between the zigzag rows of the outermost surface layer A, with an 190 

adsorption energy of -2.02 eV. The same site and similar adsorption energy was calculated by 191 

Chen et al [49]. They estimated the highest adsorption energy for (10-12), at -2.40 eV, 192 

between all the possible terminations present for the Wulff construction of the equilibrium 193 
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shape of hcp cobalt [49]. Table 1 also includes calculations for adsorption of 2 K atoms per 194 

(3x2) unit cell  to investigate the effect of increased coverage. The separation by one zigzag 195 

row is more favorable (Eads = -1.92 eV) than two K atoms being located in the same row (Eads 196 

= -1.73 eV), suggesting that agglomeration of K on the surface is unlikely. The decrease in 197 

adsorption energies for higher K coverage indicates a repulsive interaction between the K 198 

atoms, in agreement with previous experimental [25,28] and modeling [49] investigations of 199 

Co, as well as other transition metal surfaces [50,51].  200 

The appearance of the step edges as recorded by STM upon K deposition (Fig. 3b), combined 201 

with favoured adsorption of K atop the Co atoms in layer B, as well as the repulsive 202 

interaction between the K atoms, indicate that migration of K along the layer B rows and to 203 

the step edges is possible. Assessment of diffusions barriers are required to complete this 204 

picture. Calculations were therefore performed applying the NEB method for selected 205 

diffusion paths. This yielded a barrier of ~0.02 eV for diffusion along the [0001] direction 206 

between the zigzag rows of the outermost surface layer (between atop sites in layer B). The 207 

diffusion path across a row, perpendicular to the [0001] direction, resulted in a significantly 208 

higher barrier of ~0.2 eV. This supports anisotropic diffusion of K on Co(11-20). A similar 209 

result has also been obtained on Co(10-12), while the more close-packed and symmetric 210 

terminations generally yield low diffusion barriers [49]. Directionally dependent diffusion of 211 

K has also previously been observed experimentally on W(112), with the K-atoms diffusing 212 

along [-1-11] channels in the surface [52].  213 

The absence of stable adsorption sites in the topmost layer A shows that it is favourable for K 214 

to be highly coordinated with Co, further indicating that K is likely to be located at e.g step 215 

edges or point defects on the terrace. It was inferred from the STM images in Figure 3 that K 216 

may be situated near the step edges. To further address this issue, the adsorption at sites 217 

above or below a step edge was simulated by creating a pseudo step within a (3x4) surface 218 
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unit cell,  as illustrated in Figure 5. The adsorption of K below the pseudo-step resulted in a 219 

larger adsorption energy (see Table 2) compared to adsorption further away from the edge. 220 

The latter adsorption energy is slightly higher than the tB value obtained for the (3x2) surface 221 

(Table 1) due to coverage effects. The preferred adsorption site beneath the pseudo step is 222 

slightly off the tB site (denoted as offset tB), with a bond length of 3.35 Å between the 223 

adsorbed K atom and the Co atom at the edge. No stable adsorption sites above the pseudo-224 

step edge were obtained. This, together with the low barriers of diffusion for K along the 225 

[0001] direction further strenghtens the notion that K migrates relatively easily until 226 

encountering an obstacle such as a step edge, where it stabilizes. Point defects, such as those 227 

observable on the clean Co(11-20) surface in Figure 2a may also stabilize K. Calculations 228 

where a single Co atom has been removed were found to yield a K-stabilizing effect. 229 

The effect of K on the CO induced (3x1)-reconstruction is important to the discussion of the 230 

deactivation of Co-based catalysts in FTS, as well as to the nature of the active surface. The 231 

CO induced reconstruction of clean Co(11-20) monitored by STM during CO exposure is 232 

displayed in Figure 6. At low exposures (1.7 L), troughs start to develop at the step edges. 233 

The troughs expand along the [0001] direction with increasing CO exposure. The 234 

restructuring proceeds in a highly anisotropic manner; which is particularly apparent for step 235 

edges perpendicular to the [0001] direction. These findings are in line with the previously 236 

reported surface reconstruction [22,24], involving anisotropic, CO induced transport of Co 237 

along the the zigzag rows of the Co(11-20) surface and resulting in (3x1) periodicity in well 238 

ordered areas [22]. The latter is also confirmed by LEED at saturation coverage (~4-6 L, not 239 

shown). Ridges and troughs developing on the terraces from neighboring step edges 240 

eventually meet after which the propagation stops. There is a small amount of contamination 241 

at the step edges marked with yellow circles. The presence of these contaminants obstructs 242 

formation of troughs or ridges from these locations. 243 
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The CO induced restructuring process observed for the Co(11-20) surface with predeposited 244 

K differs from the reconstruction upon CO exposure of the clean surface. The images in 245 

Figure 7 contains screw dislocations as opposed to the clean surface in Figure 6, but were 246 

chosen because of imaging quality. However, the differences observed extend to the entire 247 

step edge as well as the terraces and similar development under CO exposure with K 248 

preadsorbed has been observed with STM for step edges without screw dislocations. As 249 

shown in Figure 7, the formation of troughs on the surface with K mainly initiates on the 250 

terraces and not from the step edges. Moreover, restructuring is first observed after about 3.9 251 

L CO, an exposure where the (3x1) reconstruction is close to fully developed on clean Co(11-252 

20). With adsorbed K, the step edges remain to a large degree intact, and ridges growing from 253 

the step are not observed as in the case of CO adsorption in absence of K. The results thus 254 

infer that the migration of Co from and to the step edges is obstructed by K. The slower 255 

initiation and progress of the restructuring also indicates a higher activation barrier. This 256 

could be associated with a higher energy associated with removing Co atoms from the terrace 257 

or a higher density of diffusing Co species; as a result of the sites near the step edges being 258 

unavailable due to the presence of K. Disturbances in STM images, which is increasing 259 

through Fig. 7b-e, is often related to interaction between the STM tip and mobile species on 260 

the surface [53,54].  261 

Extending the CO exposure to 8.9 L does not result in a fully reconstructed surface, and (3x1) 262 

periodicity could not be observed locally by STM (Fig. 7f). The LEED image (not shown) 263 

displays a diffuse (3x1)-pattern, hence confirming a lower degree of order for the 264 

reconstructed surface. A high amount of small protrusions can be seen, presumably Co that 265 

has agglomerated into immobilized islands. This can be attributed to a high density of 266 

diffusing species as a result of the sites near the step edge being unavailable. It cannot be 267 
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completely excluded that also the presence of some K on the terraces, e.g. adsorbed at point 268 

defects, have inhibited the migration of Co and thereby immobilized the agglomerates.  269 

The effect of pre-deposited K on CO adsorption at RT was further investigated with HR-PES. 270 

K 2p and C 1s core level spectra for high CO exposure of Co(11-20) have been compared to 271 

their unexposed counterparts for two levels of K submonolayer dosing as well as without in 272 

Figure 8. The measurement with the smallest amount of K deposited on Co(11-20) is denoted 273 

as level 1, and the largest deposition as level 2. The respective amounts of deposited K were 274 

estimated to be 0.6% and 2% of the Co surface area. The C 1s spectrum obtained for clean 275 

Co(11-20) shows a small peak located at 282.9 eV, which can be attributed to carbidic carbon 276 

[55,56]. This peak is present also after K deposition (no CO), with a minor increase with 277 

coverage. In addition, a peak at binding energy 284.6 eV can be attributed to graphitic carbon 278 

[55,56] for the surface with the highest amount of K. This shows that the deposition of K 279 

carries some C, either from the K source or the evaporator. It is important to note that there is 280 

no significant increase in these carbon peaks after CO adsorption.  281 

The spectra displayed in Fig. 8 are for very high CO exposures, but similar results were 282 

obtained for measurements applying exposures near saturation as indicated from the STM 283 

results, i.e. in the order of 5-10 L. Molecular adsorption has previously been found for 284 

adsorption of CO on clean Co(11-20) at RT [24]. Our results are in agreement with this 285 

observation, and the CO peak is located at binding energy 285.4 eV on the clean surface. 286 

Upon considering the relative peak intensities of K 2p and C 1s it is important to note that the 287 

cross section for K 2p (2.128 for hv=370 eV) is larger than for C 1s (0.561) [57,58]. The 288 

cross section corrected ratio between the CO C 1s and the K 2p3/2 peak is 2.88 for level 1 and 289 

0.83 for level 2.  A smaller amount of CO is nevertheless present on the surfaces with 290 

submonolayer amounts of predeposited K as compared to CO adsorption on clean Co(11-20). 291 

The  ratio between the amount of adsorbed CO on the clean surface and the surfaces with 292 
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predeposited K is 0.6±0.1 for both level 1 and 2.  There is also a slight shift towards lower 293 

binding energy for the CO C 1s core level with K co-adsorbed; ~0.1 eV  and ~0.2 eV for 294 

lowest and highest K coverage, respectively. Such small shifts indicate that there is no 295 

significant change in the CO adsorption site due to the presence of K, and the values are close 296 

to previous reports for low coverages of K on polycrystalline Co with adsorbed CO [59]. The 297 

K 2p peaks (K 2p1/2 located at 296.4 eV, and K 2p3/2 and located at 293.6 eV) did not shift in 298 

binding energy upon CO adsorption. The lack of correlation between the amount of CO 299 

adsorbed and the level of K predeposited indicates that the reduced CO coverage can not be 300 

ascribed to K simply covering the surface. This is in line with the aforementioned significant 301 

decrease in activity found for Co-based FTS catalysts with small alkali metal loadings (<1000 302 

ppm) [7,10,11].   303 

The PES results imply that the presence of K does not promote CO dissociation at RT, and 304 

that the total amount of CO adsorbed on the surface is reduced, albeit with no significant 305 

correlation in the amount adsorbed relative to the amount of predeposited K for the coverages 306 

applied. This may be partially in contrast to Vaari et al. [60], who reported that a monolayer 307 

of predeposited K on a polycrystalline Co foil resulted in a threefold increase in the CO 308 

saturation exposure in comparison to a clean foil. However, our K coverages are significantly 309 

lower. Furthermore, the saturation exposure for CO at RT on Co(0001) results in a 310 

(√3x√3)R30° CO overlayer structure, corresponding to a coverage of θ=1/3 ML [61,62] and 311 

no observable Co migration [61]. Whereas a significant restructuring of the Co takes place on 312 

Co(11-20) [22] and Co(10-12) [23], the resulting coverage is not known.  313 

The final investigation within the scope of this work has been the modelling of co-adsorption 314 

of potassium and CO by DFT, applying a (3x2) unreconstructed Co(11-20) surface slab 315 

(without the pseudo-step). The most favourable sites obtained, with corresponding parameters 316 

are shown in Table 3, where the adsorption of CO only is included for comparison. The 317 
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preferred adsorption site for CO is bA, with an adsorption energy of -1.60 eV. For the co-318 

adsorbed system, the most stable configuration is found when CO is located in the vicinity of 319 

K, as shown in Figure 9. Furthermore, CO still favours adsorption in the same site (bA) as for 320 

the surface without K present, in agreement with the HR-PES C 1s results discussed above. 321 

The adsorption of CO on Co(11-20) with K preadsorbed  results in an adsorption energy of -322 

1.93 eV (Table 3). This is higher than without K, and suggests that CO is stabilized by the 323 

presence of K. The C-O bond is correspondingly weakened by the interaction with K, with an 324 

increase in bond length by 0.03 Å relative to the CO/Co(11-20) system. This can be 325 

understood through the increased backdonation from the Co substrate into the CO 2π* anti 326 

bonding states caused by the charge redistribution from K to Co [63]. The stabilization of CO 327 

by K is in line with XPS and TDS measurements on polycrystalline Co [59,60], Co(0001) 328 

[27] and Co(10-10) [29], where preadsorbed K resulted in an increased CO desorption 329 

temperature. Moreover, increased CO heat of adsorption was obtained on K/Ni(100) by 330 

single crystal adsorption microcalorimetry [64]. This stabilization effect of alkali on CO, as 331 

well as the bond elongation, has also been obtained by DFT modelling of CO+K 332 

coadsorption on Fe(100) [65] and Pd(111) [66]. With respect to FTS, this appears to signify 333 

the importance of CO stabilization in dissociating CO and sustain the active carbide phase for 334 

Fe [9], while this picture is different for Co. 335 

It may be advocated that the CO+K stabilizing effect impedes the CO-induced restructuring 336 

as observed by the slow and disordered development of troughs on the terraces in Figure 7. 337 

The predeposited K also appears to be stabilized on sites on the terraces and at the step edges, 338 

from which the migration of Co is initiated in the absence of K. However, the blocking of 339 

active sites alone is not considered likely to be the cause of the lower amount of CO adsorbed 340 

on the surface. The influence of K on the migration process of Co could result in alterations 341 

to the amount of CO adsorbed, through the surface configuration being less energetically 342 
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favourable for CO adsorption. The obstructed migration process may be due to a combination 343 

of several factors; stabilization of CO by K, the removal of Co from as well as its addition to 344 

the step edges being hindered by the presence of K, and consequently a higher energy barrier 345 

for the removal of Co from terrace sites.     346 

Claiming relevance of these results for Fischer-Tropsch synthesis over supported Co particles 347 

should be handled with care, not only given the gap in conditions (P,T), but also considering 348 

the relevance of the Co(11-20) termination and the structure sensitivity of the FTS. Previous 349 

ex-situ Electron Energy Loss Spectroscopy (EELS) and Auger Electron Spectroscopy (AES) 350 

investigations of Co(0001), Co(10-12) and Co(11-20) single crystals exposed to Fischer 351 

Tropsch reaction conditions (1 bar, H2:CO=2, T=493-543 K) showed significant differences 352 

in the chain growth probabilities of the three surfaces [67]. It has also been debated to which 353 

extent the particles undergo an hcp-to-fcc transition under reaction conditions, and in any 354 

case the (11-20) facet is not predicted to dominate the hcp particle Wullf construction [49]. 355 

But as mentioned initially, several investigations point to the possibility of the Co particles 356 

restructuring [14,18,19]. Our results therefore suggest that predeposited, submonolayer 357 

amounts of K leads to overall higher energy barriers for any restructuring associated with 358 

mobility of Co atoms along the surface of the particles, and that such restructuring is 359 

important to the high activity during synthesis.  360 

4. Conclusions 361 

 362 

The depositon of submonolayer amounts of K on the surface of Co(11-20) and the subsequent 363 

effect on the adsorption of CO was investigated with STM, HR-PES and DFT. The 364 

calculations predicted that adsorption of K was favoured in sites between the zigzag-rows of 365 

the topmost layer, with associated low barriers of diffusion along the [0001] direction. The 366 
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appearance of the step edges as imaged by STM after deposition of K,, together with the DFT 367 

calculations, suggested that K was situated near the step edges for low coverages. The 368 

restructuring of the surface as monitored with STM, involving the migration of Co atoms, 369 

proceeded at the terraces rather than the step edges with K pre-deposited. The migration of 370 

Co appeared obstructed, resulting in a slower and more disordered restructuring, which may 371 

indicate a higher activation energy for the process. In agreement with previous studies of co-372 

adsorption of alkali and CO on transition metal surfaces, the calculations indicate a 373 

stabilizing effect on CO from predeposited K. On the other hand, HR-PES showed that the 374 

amount of CO adsorbed on the surface decreased significantly with predeposited K, . but no 375 

further change in the amount of CO adsorbed was found upon increasing amount of 376 

predeposited K. We thus attribute the reduced amount of CO adsorbed on the surface to the 377 

small amounts of K obstructing the restructuring of the Co(11-20) surface. 378 

 379 
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Figure 1: (a) Top and (b) tilted side view illustrations of the Co(11-20) surface model. The 

(1x1) surface unit cell and the [0001] direction are indicated. The Co atoms are dark blue for 

the A layer and light blue for the B layer of the hcp stacking. High symmetry sites have been 

marked as follows: tA - top position layer A, tB - top position layer B, bA - bridge position 

layer A, bB bridge position layer B, bAB(1)/bAB(2) - bridge position between layer A and B with 

(1) and (2) denoting two different coordinations.  

 

a) 

b) 
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Figure 2: (a) Atomically resolved STM image of the clean Co(11-20) surface showing the [0001]-

directed zigzag rows. Some depressions and protrusions due to minor impurities or defects are visible. 

(b) Affine drift corrected image displaying the individual atoms of the zigzag rows. The (1x1) unit 

cell is indicated, and the corresponding LEED pattern is displayed in the upper right corner. The 

images were acquired with bias voltage +0.020 V, and tunneling current 0.70 nA.  
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a) a) b) 

[0001] 

Figure 3: STM images of area 250x250 Å2 of the Co(11-20) surface. (a) Clean surface with 

monoatomic step, showing the zigzag rows along the [0001] direction, acquired with bias voltage 

+0.020 V and tunneling current 0.70 nA. (b) The surface with two step edges and submonolayer 

amounts of K deposited, acquired with bias voltage +0.020 V and tunneling current 5.93 nA. The 

zigzag rows are visible on the terraces. Contaminants are marked with white circles.  
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a) 
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[0001] 

Figure 4: Illustration of the favored adsorption site (tB) for K on Co(11-20), calculated using 

one K atom per (3x2) surface unit cell (θK=1/24 ML).  
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Figure 5: (a) Top and (b) side view of the Co(11-20) surface model with one pseudo step within 

the (3x4) surface unit cell. K is situated in the favored adsorption site, offset tB, beneath the 

pseudo step as predicted from the DFT calculations.   
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Figure 6: STM images acquired at RT of area 500x500 Å2 of (a) clean Co(11-20) with monoatomic steps and 

(b)-(d) the same area with increasing CO exposure at pCO = 2x10-9mbar;  exposure indicated in Langmuir (L). 

The white circles highlight selected contaminants on the surface. The images were acquired with bias voltage 

+0.447 V and tunneling current 0.95 nA.  
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Figure 7: STM images of the surface structure of a 1000x900 Å2 area of Co(11-20) with submonolayer 

amounts of K, encompassing monoatomic steps, as a function of increasing CO exposure. The images were 

acquired at RT, during CO exposure at pCO = 2x10-9mbar. The exposure of CO in Langmuir (L) is indicated 

in the upper right corner in images (a)-(f). The images were acquired with bias voltage +0.020 V and 

tunneling current 0.91 nA.  
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a) 

a) b) c) d) 

c) d) 

Figure 8: HR-PES of the K 2p and C 1s core levels of the Co(11-20) surface, clean and with 

K deposited at 2 different submonolayer levels (1 and 2), before and after exposure to CO (85 

L). The spectra before exposure is denoted with dotted lines, and the spectra after denoted 

with a continuous line. Spectra obtained before and after exposure to CO are grouped 

together:  (red) clean Co(11-20), (green) Co(11-20) with K deposited at level 1, (blue) Co(11-

20) with K deposited at level 2. All spectra were recorded at RT and a photon energy of 370 

eV. 
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Figure 9: Top view of the preferred adsorption sites of  K and CO 

co-adsorbed on Co(11-20) within the (3x2) surface unit cell (θK+CO = 

1/12 ML). CO is situated in the bA site and K above layer B as 

predicted from the DFT calculations. 
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Table 1: Calculated adsorption energies for K, (Eads,K), adsorbed on Co(11-20) within a (3x2) 

surface unit cell,  distance between K and nearest neighbor Co atom (dK-Co), and the effective 

K radius (Reff).  

# K atoms Adsorption 

geometry 

Eads,K (eV) dK-Co (Å) Reff (Å) Coverage 

1 tB -2.02 3.20 1.96 θK=1/24 ML 

2 tB, separate 

rows 

-1.92 3.14 1.90 θK=1/12 ML 

2 tB, same row -1.73 3.17 1.93 

 

 

Table 2: Calculated adsorption energies (Eads,K) for one K atom on Co(11-20) with a  pseudo 

step on within the (3x4) surface unit cell.  

Adsorption geometry  Eads,K (eV) 

offset tB, beneath step -2.18 

 tB, away from step -2.06 

 

 

Table 3: Calculated adsorption energies (Eads,CO) for one CO, and one CO co-adsorbed with 

one K on Co(11-20) within a (3x2) surface unit cell, CO bond length (dC-O), the distance 

between K and nearest neighbor Co atom (dK-Co), and the effective K radius (Reff).  

 

Adsorbate(s) CO 

adsorption 

geometry 

K adsorption 

geometry  

Eads,CO 

(eV) 

dC-O (Å) dK-Co (Å) Reff (Å) 

CO  bA  -1.60 1.19   

 tA  -1.59 1.17   

CO+ K  bA tB -1.93 1.22 3.36 2.12 

 bAB(1)  tB, offset -1.89 1.25 3.40 2.16 

 tA  tB -1.78 1.19 3.27 2.03 
 

 


