Salt clogging during supercritical CO2 injection into a downscaled borehole model

Andreas Berntsen, Jelena Todorovic, Martin Raphaug, Malin Torsæter, Elvia Anabela Chavez Panduro, Kamila Gawel

Storage in subsurface geological formations is one method to mitigate increasing CO2 concentrations in the atmosphere. In addition to storage capacity and safety, the feasibility of a CO2 storage project depends on the injectivity – the rate at which CO2 may be injected into the formation through the injection well. Injectivity is primarily dependent on formation permeability and volume, however, pilot CO2 storage projects have revealed other factors which may negatively affect injectivity. Among these factors are: presence of bacteria that produce biofilms, or scaling that will plug the formation (Morozova et al., 2011; Zettlitzer et al., 2010) and mineral precipitation due to water evaporation during dry CO2 injection into saline aquifers (Baumann et al., 2014; Eiken et al., 2011; Grude et al., 2014; Hansen et al., 2013; Martens et al., 2014). Halite (NaCl) precipitation impaired injection at Snøhvit (Eiken et al., 2011; Grude et al., 2014; Hansen et al., 2013) and Ketzin (Baumann et al., 2014; Martens et al., 2014) pilot sites. Halite is the most common deposit as NaCl is the most abundant component in formation waters. The precipitate reduces the porosity and permeability of the formation leading to formation damage and injection impairment. Several physical mechanisms have to be considered in order to adequately model propagation of dry-out front and the extent of salt precipitation (Miri and Hellevang, 2016): (1) displacement of brine by the injected CO2; (2) evaporation of water into the CO2 stream which leads to residual brine oversaturation and salt precipitation; (3) back-flow of brine driven by the capillary forces towards the dried out regions; (4) diffusion of salts within the aqueous phase driven by osmotic pressure; (5) enhanced evaporation of water from near interface polycrystalline aggregates due to enhanced surface area – self-enhancing effect (Miri et al., 2015); (6) preferential flow of less dense fluid on the top of a reservoir unit (gravity override).

It has been shown, both in laboratory experiments (Bacci et al., 2013, 2011a; Jeddiizahed and Rostami, 2016; Muller et al., 2009; Oh et al., 2013; Ott et al., 2014, 2011; Ott et al., 2015, 2013; Peysson et al., 2014, 2011; Roels et al., 2016, 2014) and by using numerical simulations (Meng et al., 2015; Pruess, 2009; Pruess and Müller, 2009; Raza et al., 2015), that formation water dissolves in the dry injected CO2, leading to oversaturation of the remaining salts and their precipitation.

1. Introduction

Storage in subsurface geological formations is one method to mitigate increasing CO2 concentrations in the atmosphere. In addition to storage capacity and safety, the feasibility of a CO2 storage project depends on the injectivity – the rate at which CO2 may be injected into the formation through the injection well. Injectivity is primarily dependent on formation permeability and volume, however, pilot CO2 storage projects have revealed other factors which may negatively affect injectivity. Among these factors are: presence of bacteria that produce biofilms, or scaling that will plug the formation (Morozova et al., 2011; Zettlitzer et al., 2010) and mineral precipitation due to water evaporation during dry CO2 injection into saline aquifers (Baumann et al., 2014; Eiken et al., 2011; Grude et al., 2014; Hansen et al., 2013; Martens et al., 2014). Halite (NaCl) precipitation impaired injection at Snøhvit (Eiken et al., 2011; Grude et al., 2014; Hansen et al., 2013) and Ketzin (Baumann et al., 2014; Martens et al., 2014) pilot sites. Halite is the most common deposit as NaCl is the most abundant component in formation waters. The precipitate reduces the porosity and permeability of the formation leading to formation damage and injection impairment. Several physical mechanisms have to be considered in order to adequately model propagation of dry-out front and the extent of salt precipitation (Miri and Hellevang, 2016): (1) displacement of brine by the injected CO2; (2) evaporation of water into the CO2 stream which leads to residual brine oversaturation and salt precipitation; (3) back-flow of brine driven by the capillary forces towards the dried out regions; (4) diffusion of salts within the aqueous phase driven by osmotic pressure; (5) enhanced evaporation of water from near interface polycrystalline aggregates due to enhanced surface area – self-enhancing effect (Miri et al., 2015); (6) preferential flow of less dense fluid on the top of a reservoir unit (gravity override).
inside the porous rock. Most often, axial core flooding has been done to study these phenomena experimentally, and one-dimensional models have been used in numerical simulations. The distribution of precipitate depends on among others the injection rate, the initial amount of brine, brine salinity, initial porosity and permeability as well as the phase at which CO2 occurs (supercritical, liquid, gaseous). Depending on the conditions, salt may accumulate locally and in most cases near the injection point (Oh et al., 2013; Ott et al., 2011, 2015; Peysson et al., 2014; Roels et al., 2016), or it may be distributed evenly throughout the core (Muller et al., 2009; Ott et al., 2011, 2015; Roels et al., 2016, 2014). A reduction of absolute permeability due to salt precipitation is typically observed (Bacci et al., 2011a; Jeddizahed and Rostami, 2016; Muller et al., 2009; Ott et al., 2011, 2015; Ott et al., 2013; Peysson et al., 2014; Roels et al., 2014), but in some cases this is not considered to cause a significant CO2 injectivity impairment (Ott et al., 2011, 2015; Ott et al., 2013; Roels et al., 2014, Van Hemert et al., 2013). A limitation of the one dimensional approach is that it includes ion diffusion and brine imbibition only in the dimension of flow; additionally, the boundaries seldom include a brine reservoir. An exception is a study by Roels et al. (Roels et al., 2016) who performed experiments flowing gaseous CO2 through a borehole (radially outward) into a brine saturated sandstone, and investigated the effect of varying the axial length and capillary properties of the brine reservoir.

The majority of laboratory experiments on salt clogging effects described thus far in the literature have been done using boundary conditions which neglect the possibility of a continuous brine influx from the aquifer. This has been noted as a major drawback of the previously reported laboratory tests (Miri and Hellevang, 2016). Miri et al. (Miri et al., 2015) studied drying effects using microfluidic chips, and emphasized capillary brine transport along wetting films on solid grains and precipitated salt as important salt clogging mechanisms. Thus, it seems crucial for better understanding of salt clogging phenomena in the near wellbore region that experiments consider: (1) boundary conditions allowing capillary and diffusive flow and mimicking a practically infinite source of reservoir formation water and (2) a more realistic radial geometry similar to an injection well in a storage aquifer.

In this paper we present the results of an experimental approach which aimed to simulate injection of supercritical CO2 into a highly saline sandstone storage aquifer. A hollow cylinder sandstone specimen was prepared as a downscaled model for an injection well and storage formation. Supercritical CO2 was injected at reservoir conditions while at the outer boundary a constant supply of brine was provided at the expected rate of water evaporation. Two axial holes were drilled at some distance from the borehole and filled with cement, acting as post test indicators of CO2 flow path due to the chemical reaction taking place between CO2 saturated brine and cement (carbonation).

2. Materials and methods

2.1. Specimen

Bentheimer sandstone (Germany) was chosen for this study. It is a high permeability outcrop rock which is frequently used as a reservoir analogue. According to the supplier (Kocurek Industries, Texas, USA) porosity is 23–26 %, and permeability is 1500–3500 mD. The specimen was drilled with a hollow core diamond bit employing compressed air for bit cleaning and cooling. End surfaces were cut parallel to each other and perpendicular to the axis of the specimen. Final dimensions of the right hollow cylinder were 190 mm outer diameter, 50 mm hole diameter and 200 mm length. The porosity of the specimen was estimated to be 24% based on measured dimensions, mass, and the assumption that grain density equalled that of quartz (2.65 g/cm3) (Scholz, 2010). Two holes of 4 mm diameter and 10 mm depth were drilled at 43 mm and 63 mm radii, in order to accommodate pressure gauge tubes from the top end cap. Two holes of 20 mm diameter were drilled diametrically at 60 mm radii in parallel with the axis and centre hole of the specimen, and at a 90° offset from the pressure gauge holes (illustrated in Fig. 1a in Supporting Information). These two holes extended through the specimen. The specimen was immersed in water overnight, and then the two 20 mm diameter boreholes were filled with Portland cement class G slurry (Norcem AS, Norway). The cement slurry was mixed according to API standard 10 A using local tap water (Trondheim, Norway) and 0.44 water-cement ratio. The cement hardened for three weeks. The photographs of a ready specimen are presented in Fig. 1 in Supporting Information. Right before the injection the specimen was immersed in 25 wt% NaCl brine. Gas from pore volumes was evacuated under reduced pressure. The NaCl concentration in the brine was chosen to mimic the ionic strength of the Ketzin formation (Ivanova, 2013). At experimental condition (40 °C) the brine was undersaturated in respect to NaCl (Sawamura, 2007).

2.2. CO2 flow path indicators

The purpose of cementing two boreholes in the sandstone was to create an indicator for CO2 flow paths. As cement typically undergoes carbonation when exposed to CO2 saturated brines, the cement pillars were acting as indicators of the presence of CO2 brine in the sandstone during CO2 injection. It was expected that any potential differences in the carbonation of the indicators would contribute to better
understanding of fluids flow patterns.

2.3. CO₂ injection setup

The diagram of the injection setup is presented in Fig. 1. The specimen was mounted between a top and bottom end cap, with 1 mm thick nitrite sheets sandwiched in-between the end caps and specimen to prevent interface flow, and surrounded by a nitrite rubber seal of slightly larger diameter. The annulus between the specimen and sleeve was filled with high permeability proppant and functioned as an isobaric circumferential boundary. The CO₂ inlet was through a port in the centre of the bottom end cap, i.e. in the bottom of the model injection well. The outlet was through 24 flow ports in the outer periphery of the top end cap, hydraulically connected to the proppant layer. The mounted specimen was then placed inside an oil-filled high-pressure vessel which provided isometric confining stress. The entire pressure vessel was heated by an electrical heating jacket to ensure a confining oil temperature of 40 °C.

CO₂ was fed from a gas bottle via a riser tube to a high precision positive displacement syringe pump (Chandler Engineering Quizix Q5000-10 K), through a heat exchanger at 40 °C and then into the inflow port at the bottom of the specimen centre-hole. The large heat capacity of the pressure cell system ensured a constant injection temperature. The gas bottle was heated with an electrical heating jacket to increase the pressure and minimize CO₂ compression and resulting flow rate reduction during pumping. The outflow port was connected to a back pressure regulator (BPR) which was heated to prevent water freezing during rapid gas expansion. The BPR consists of a needle valve which regulates the outflow pressure. A pump (Chandler Engineering Quizix QX-6000) supplying formation brine was connected to a port in the proppant from the bottom end cap. Effluent was collected in a flask placed on a digital weight scale.

Pressure was monitored by the CO₂ injection pump, at the centre-hole of the specimen, inside the top portion of the specimen at 43 mm and 63 mm radii, at the outflow port in the top end cap, at the BPR and by the brine pump. Temperature was monitored in the pressure vessel confining oil and at the CO₂ injection pump cylinders. Effluent weight was manually recorded.

2.4. Injection procedure

Initially, a small confining pressure of 0.5 MPa was applied to ensure sealing and set the end caps against the specimen. Specimen temperature was increased from room temperature to 40 °C and left to stabilize overnight. The back pressure was supplied by pressurized nitrogen and adjusted manually, which resulted in some small drifts and subsequent corrections of the back pressure. The BPR was set to 10 MPa, so that the outflow pressure would be maintained at 10 MPa independent of flow rate, and no outflow would occur if the pore pressure was less than 10 MPa. Confining pressure was increased to 2 MPa, and formation brine was then supplied from the brine pump until the entire specimen and proppant were saturated, and the centre-hole filled. Confining pressure was increased to 20 MPa.

Injection was initiated by by-passing the injection pump and pressurizing the specimen directly from the CO₂ bottle. After pressure had equilibrated, CO₂ injection was continued by pumping at 12 ml/min, approximately 16 ml/min inside the specimen due to differences in pump and specimen temperature and resulting CO₂ density. This flow rate corresponded to approximately 0.01 mm/s radial flow velocity at the centre-hole wall if averaging the volumetric flux over the entire borehole surface. Specimen pore pressure thus increased from the gas bottle pressure (8.3 MPa) until the back pressure of 10 MPa was reached, upon which outflow commenced. Brine injection into the proppant was initiated simultaneously and was maintained at 0.016 ml/min. Maximum water saturation in supercritical CO₂ at the given thermodynamic conditions is approximately 0.1% (Spycher and Pruess, 2005) and so the brine flow rate was chosen so that ideally, water evaporation and injection remained equal, and no net water was added to the specimen. The injection continued for a net period of 6 days, with intermittent pauses due to injection pressure increases.

2.5. Methods for sample analysis

2.5.1. X-ray computed tomography (CT) and 3D visualization

After the CO₂ flooding, the specimen was scanned using X-ray computed tomography to reveal local variations in formation brine saturation and salt precipitation. Scanning was done on a medical CT scanner operating at 140 kV and variable current (typically 215–265 mA) with 1000 ms exposure time. The projections were reconstructed using the medical CT software into axial (512 × 512 pixel) and longitudinal (512 × 512 × 512 pixel) images at 0.5 mm intervals.

One of the cement pillars was cored out with a 40 mm drill bit, protected against dry-out by wrapping in plastic foil and scanned with higher resolution using an industrial CT scanner (XT H 225 ST). It was operated at 210 kV and with a current of 155 mA. The exposure time per projection was 2000 ms. A thin filter was used. The raw CT data were reconstructed into cross sectional slices (2000 × 2000 pixels), and about 2000 slices were obtained per dataset. The purpose of this additional scanning was to analyse the extent of carbonation along the cement pillars.

3D visualization of the reconstructed CT data was performed in Avizo Fire software (version 9.1, FEI, 2016).

2.5.2. X-ray powder diffraction (XRD) measurements and data analysis

Two specimens for XRD were prepared from the top and bottom portion of the tested sandstone, and one reference specimen was prepared from untested material, by first drying the samples at 50 °C and then grinding them by hand using a mortar and pestle. The measurements were performed at room temperature, between 10 and 75° 2Θ on a Bruker D8 Advance DαVinci diffractometer with Bragg-Brentano geometry using CuKα radiation (λ = 1.54187 Å). The X-ray powder diffraction pattern was collected over the course of two hours.

X-ray powder-diffraction data were refined with the Rietveld program JANA 2006 (Petříček et al., 2014). For Quantitative phase analysis (QPA) the following crystalline phase models were investigated: quartz (Wei, 1935), kaolinite (Bish and Von Dreele, 1989), halite (NaCl) (King, 1978), anatase (Weirich et al., 2006), microcline (Brown and Bailey, 1964). Background, pseudo-Voight peak shape parameters of each phase as well as phase contents were refined. Atomic positions and isotropic displacement parameters of individual atoms were refined only for quartz and fixed at values extracted from the models for other phases used in the refinement. Table 1 shows the resulting mineral quantification. Diffraction patterns are shown in Fig. 2 in The Supporting Information. The mineralogical compositions of a reference Bentheimer core, and cores drilled from the top and bottom regions of the Bentheimer sandstone used for CO₂ injection, are presented in Table 1. For comparative quantitative NaCl content analysis the assumption was made that quartz content is homogeneous within the sample as well as it is not affected by CO₂ injection.

Table 1

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Reference</th>
<th>Top</th>
<th>Bottom</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>0.980 (± 0.001)</td>
<td>0.987 (± 0.002)</td>
<td>0.970 (± 0.002)</td>
<td></td>
</tr>
<tr>
<td>Kaolinite</td>
<td>0.011 (± 0.001)</td>
<td>0.005 (± 0.001)</td>
<td>0.007 (± 0.001)</td>
<td></td>
</tr>
<tr>
<td>Microcline</td>
<td>0.007 (± 0.001)</td>
<td>0.001 (± 0.001)</td>
<td>0.002 (± 0.002)</td>
<td></td>
</tr>
<tr>
<td>Anatase</td>
<td>0.0020 (± 0.0002)</td>
<td>0.001 (± 0.002)</td>
<td>0.001 (± 0.003)</td>
<td></td>
</tr>
<tr>
<td>Halite (NaCl)</td>
<td>0</td>
<td>0.0060 (± 0.0003)</td>
<td>0.0200 (± 0.0007)</td>
<td></td>
</tr>
</tbody>
</table>
2.5.3. Scanning electron microscopy

After CT scanning, the cement pillar core was prepared for scanning electron microscopy (SEM) characterization. First, three thin cross-sections (up to 10 mm thick) were cut out: from the top end, middle and bottom end (2.5 cm from the bottom). For each of these cross-sections, a region of interest at the cement-sandstone interface was selected, and then this section (diameter of 20 mm) was drilled out and polished. Finally, thin polished slices were imbedded in epoxy and coated with thin gold layer (10-30 nm) prior to loading in SEM.

Hitachi TM3000 TableTop SEM equipped with energy dispersive X-ray spectroscopy (EDX) was used to characterize cement-sandstone interface for the extracted samples. Backscattered electron (BSE) images were taken at 5 kV.

3. Results

3.1. Injection

A total of 110 pore volumes (PV) CO₂ was injected over a course of 9 days, including some pauses in the injection due to maintenance issues, giving a net injection time of 6 days. Fig. 2 shows the pressure evolution with time during the entire test. Confining pressure was constant at 20 MPa throughout the test, providing a large margin for any pore pressure increase due to salt clogging. Although the CO₂ pump rate was 20 MPa throughout the test, providing a large margin for any pore pressure increase. The calculations are made based on assumption that the CO₂ leaving the system is saturated with water and that the solubility of water in CO₂ decreases with decreased pressure (down to 0.0011 m³ H₂O/m³ CO₂ at 4 MPa and 0.00011 m³ H₂O/m³ CO₂ at 10 MPa; Pruess and Spycher, 2005) As the solubility of water in CO₂ decreases with decreased pressure (down to 0.00011 m³ H₂O/m³ CO₂ at 4 MPa and 0.00001 m³ H₂O/m³ CO₂ at 10 MPa; Pruess and Spycher, 2005) it is likely that large amount of water present in CO₂ could have condensed at the outlet where the gasses expand. Nevertheless, Bacci et al. showed that the amount of water that can exit the flooding system (T = 45°C, p = 8 MPa) in the form of vapour can be as high as 50% of the weight of the liquid state water. (Bacci et al., 2011b)

Established. Production after this point was very limited; only 0.21 PV brine was produced in total after 110 PV of injected CO₂. Fig. 4 shows the evolution of the pressure and volume of the produced brine with respect to injected volume of CO₂. It is seen that increases in cumulative produced brine occur following pressure build-up (due to clogging) and subsequent release – notably the event at 38 h, while periods of steady flow correspond to low brine production rate. In addition to produced brine replaced from the system, water in the form of vapour most likely was released. The water vapour was not collected during the experiment; however the maximum mass of water expected to be released from the system along with CO₂ was calculated to be around 0.11 PV.

The mass of produced brine was measured at certain times during the experiment, and this is presented in Fig. 3. During the initial 0.25 PV of injected CO₂, 0.1 PV of brine was produced in a more or less steady manner as observed at the outlet. Thereafter, brine production was more intermittent and in smaller bursts. After 1 PV of injected CO₂, only 0.14 PV of brine had been produced, indicating that the initial viscous displacement of brine by CO₂ constituted only a small fraction of the total pore volume before a preferential pathway had been established. Production after this point was very limited; only 0.21 PV brine was produced in total after 110 PV of injected CO₂. Fig. 4 shows the evolution of the pressure and volume of the produced brine with respect to injected volume of CO₂. It is seen that increases in cumulative produced brine occur following pressure build-up (due to clogging) and subsequent release – notably the event at 38 h, while periods of steady flow correspond to low brine production rate. In addition to produced brine replaced from the system, water in the form of vapour most likely was released. The water vapour was not collected during the experiment; however the maximum mass of water expected to be released from the system along with CO₂ was calculated to be around 0.11 PV. The calculations are made based on assumption that the CO₂ leaving the system is saturated with water and that the solubility of water in supercritical CO₂ at the 40 °C and 10 MPa is 0.0011 m³ H₂O/m³ CO₂. (Spycher and Pruess, 2005) As the solubility of water in CO₂ decreases with decreased pressure (down to 9*10⁻⁵ m³ H₂O/m³ CO₂ at 4 MPa (Spycher and Pruess, 2005)) it is likely that large amount of water present in CO₂ could have condensed at the outlet where the gasses expand. Nevertheless, Bacci et al. showed that the amount of water that can exit the flooding system (T = 45°C, p = 8 MPa) in the form of vapour can be as high as 50% of the weight of the liquid state water. (Bacci et al., 2011b)

3.2. Post-injection analysis of the specimen

After 9 days of injection the specimen was removed from the CO₂ injection cell. There was extensive, visible salt precipitate on the bottommost 4–5 cm of the center hole surface (see Fig.SI3 in The
Supporting Information). The specimen was protected against evaporation and then subjected to CT scanning. Representative horizontal and vertical CT cross-sections through the specimen are presented in Fig. 5. The two cement pillars are clearly visible.

The bright rim in the cement at the interface with the sandstone indicates increased X-ray absorption in this region. The effect of increased X-ray absorption is visible in the cement near the cement-sandstone interface along the whole length of the specimen (see Fig. 5a,b). We assume that the origin of this effect is increased material density and/or increase of average atomic number in the cement matrix near the interface with the sandstone due to calcium carbonate precipitation in the cement pore matrix. This will be discussed in more detail later in this section.

Regions with the highest X-ray absorption inside the sandstone matrix are highlighted in blue in Fig. 5b and c. They occupy mainly the bottom half of the specimen (see 3D visualization in Fig. 5d). The resolution of the CT images was not sufficient to distinguish between the brine and the salt at the pore scale, hence the discussion will be based on interpretation of the variation of the image intensity on cm-scale. The density of halite (2.17 g/cm³) (John Kotz and Townsend, 2009) is slightly lower than the density of quartz (2.65 g/cm³) (Scholz, 2010) – the main component of Bentheimer sandstone. Nevertheless, it is expected that when sandstone pores (low density volumes) are filled with halite the brightness of regions where pores are filled with NaCl will be higher compared to the regions where pore volumes are filled with brine only. Thus the regions with the highest brightness (i.e. X-ray absorption) are assumed to originate from increased salt content within the porous sandstone matrix which could have been due to either higher brine saturation or salt precipitation. In order to determine which of these two causes is dominant, a quantitative analysis of water and NaCl content within the porous rock matrix in the Bentheimer sandstone core was performed.

The average water content in the topmost and bottommost regions of the specimen (3 cm from the top and 3 cm from the bottom) was estimated based on gravimetric analysis of cored segments before and after complete drying. The total content of halite in the topmost and the bottommost regions was estimated based on the powder XRD measurements (described in ‘Materials and Methods’ section). The estimated values of pore volume filled with water as well as total content of NaCl per 100 g quartz in the topmost and the bottommost regions are given in Table 2. The bottommost region contained more than twice as much water as the topmost region. The bottommost pore volume was only in 35.5% filled with brine. The partial only saturation is a result of gravity drainage of the specimen after the experimental cell was emptied from fluids. Moreover capillary forces might have to some extent redistributed the brine in the specimen. Thus the water saturation values during the experiment might have differed from the values estimated based on the post-test analysis. Nevertheless the post-test analysis of water and salt content gives a good indication of differences between the processess undergoing within the top and the bottom part of the specimen.

It was found that the topmost region contains slightly
undersaturated NaCl solution. The concentration of this solution was the same (within the limits of experimental error) as the concentration of brine supplied to the system before the injection onset, namely 25–26 wt%. The bottommost region contained more than three times more of NaCl than the topmost region. The amount of salt dissolved in brine and salt precipitated within the porous matrix at the experimental conditions were calculated. When the measured total concentration of salt per pore water volume exceeded NaCl solubility limit at 40 °C i.e. 37 g per 100 g of water (Sawamura et al., 2007), the excessive amount of salt was assumed to be precipitated salt. The amount of salt in the bottommost region was higher than NaCl solubility limit at experimental conditions could allow for. This suggests that beside the salt saturated brine (27 wt%) there is also a significant amount of precipitated salt in the Bentheimer pore spaces. The estimated amount of the precipitated salt was 0.45 g (mNaCl) per 100 g quartz (mQ). Given quartz density ρQ = 2.65 g/cm³ (Scholz, 2010), NaCl density ρNaCl = 2.17 g/cm³ (John Kotz and Townsend, 2009) and sandstone porosity of 24 vol%, the sandstone pore volume fraction filled with salt (q_{filled}) in the bottommost region was estimated to be around 1.7% based on Eq. (1):

\[
q_{\text{filled}} = \frac{V_{\text{NaCl/100g}Q}}{V_{\text{pores/100g}Q}} \times 100\% = \frac{0.76m_{\text{NaCl/100g}Q} \times \rho_Q}{0.24m_Q \times \rho_{\text{NaCl}}} \times 100\%
\]

(1)

where \(V_{\text{NaCl/100g}Q}\) is volume of NaCl per 100 g of quartz, and \(V_{\text{pores/100g}Q}\) – is volume of pores per 100 g of quartz.

The quantitative analysis of brine and precipitated salt content indicates that the higher X-ray absorption within the bottom region of the sandstone specimen results from both higher content of brine as well as a higher amount of precipitated salt in the pore volume compared to the top region.

Fig. 6 shows vertical cross sections of one of the cement pillars (pillar on the right in Fig. 5b). The altered layer was thicker at the bottom region of the pillar compared to the top (see Fig. 6b). The thickness of this layer varied also with respect to the brine and CO₂ flow directions. Surprisingly, it was the thickest at the side facing brine injection (wall with proppant – brine conduit) and thinnest at the side facing CO₂ injection port (towards the centre-hole). Fig. 6c shows the relationship between the thickness of the altered layer in the thinnest (left) and thickest (right) cross-section, and the distance from the bottom of the cement pillar i.e. sandstone specimen. The thickness of the altered layer at the very top of the specimen was around 0.3 mm. The thickness gradually increased towards the bottom. It reached approximately 1.8 mm and 3.5 mm at the sides facing CO₂ and brine injection respectively. The alteration of the cement within the topmost 5 cm was the least extensive. This slight alteration at the topside coincides with the significantly lower content of brine in the pore volume in this region.

SEM analyses of the cross-section through the sandstone/cement interface from the top, middle and bottom of the specimen were performed. For simplicity, only SEM images of the interface in the middle and bottom part of the specimen are presented in Fig. 7. More precisely, backscattered electron (BSE) images are presented, where the brightness is proportional to the average atomic number (similarly to the intensity of CT images), so they can be easily compared with the CT images. In Fig. 7a typical for cement carbonation, a brighter rim within the cement (Chavez Panduro et al., 2017; Kutchko et al., 2007) close to the cement/sandstone interface can be seen. The presence of the rim corresponds to the brighter rim within the cement pillars observed in the CT images (Fig. 5). This brighter zone within the cement observed by the two techniques is referred to in literature as carbonated zone. (Kutchko et al., 2007) The brightness contrast between the carbonated and unreacted zones is a result of density difference between carbonation product i.e. calcium carbonate (d = 2.71 g/ml) and substrate i.e. calcium hydroxide (d = 2.12 g/ml). The 1.5 mm thick carbonated zone is indicated in Fig. 7a by a red arrow. The SEM image captured for the bottom (2.5 cm height) cross-section shows a 200–300 μm thick zone with higher porosity (darker spots) than the cement bulk present within the carbonated zone close to the cement/sandstone interface, (see Fig. 7b). This higher porosity is an effect of calcium carbonate dissolution.(Carroll et al., 2016; Kutchko et al., 2007, 2008) The dissolution is due to a reaction of acid with calcium carbonate which leads to the formation of water soluble calcium bicarbonate (\(\text{Ca}^{2+} + 2\text{HCO}_3^- \)) and thus leaching of calcium carbonate from the cement matrix if convective transport is present (which is the case in the bottom region of specimen). The calcium depleted porous zone was not observed in the top and middle cross-section samples where the carbonation front was not that advanced and where the carbonated zone was narrower.

4. Discussion

During the course of the experiment, no significant pressure build-up was observed across the rock specimen, indicating that permeable flow paths were not completely clogged. Darcy's law applied to the cylindrical geometry and assuming perfectly radial flow is of the form \(\Delta p = Q \ln (r_h/r_i)/2\pi kL\). The pressure difference resulting from a flow of 16 ml/min is of the order of 10 Pa, much lower than the resolution of the pressure transducers (~500 Pa). Thus, partial clogging of flow paths could occur without being indicated by changes in differential pressure measurements. Low content of brine in the topmost region indicates that brine from this region has been displaced. Due to buoyancy (Cardoso and Andres, 2014), the CO₂ injected at the bottom of the centre hole will tend to penetrate into the uppermost parts of sandstone cylinder on its way to the outlet. Strong gravity segregation is expected to occur over relatively short time-scales because of the large density differences between the resident brine (1.19 g/cm³) and the injected supercritical CO₂ (0.63 g/cm³), (Moll Nilsen et al., 2011; Span and Wagner, 1996) Thus at the beginning of CO₂ injection displacement of brine from the topmost regions mostly occurred due to CO₂ buoyancy and viscous displacement between the pumped CO₂ and the brine. Around 300 ml of brine was expelled from the system during the first hour of injection. This volume corresponds to approximately 14% of the total pore volume of the specimen. This suggests that around one fifth of the topmost pore space might have been utilized as a CO₂ flow path. During the later stages of the injection, viscous brine displacement was negligible and evaporation was the main water displacement mechanism from the system. Precipitation of salt was most pronounced close to the CO₂ inlet, suggesting that drying was most efficient in the region where the dry CO₂ was in contact with the brine. Salt precipitate was observed both at the surface of the centre hole and in the rock pores mainly at the bottom side of the specimen. This suggests that the largest evaporative fluxes occur nearest to the injection point where supercritical CO₂ is not yet saturated with water vapour. The local decrease of water saturation close to the injection point can to some extent be compensated by capillary backflow of formation water towards the well (Miri and Hellevang, 2016). This could explain why the bottommost region of the specimen was still rich in brine despite of extensive
precipitation. The absence of salt precipitate and the presence of slightly undersaturated brine (25.4 wt%) in the topmost region suggests that CO₂ that flowed through this region was already entirely saturated with water and thus did not cause any further drying in this region. Based on these observations, the residence time was likely much longer than the time needed for complete water saturation. The theoretical upper bound on the CO₂ residence time in the cell is 100 min, but the actual residence time is probably significantly less and scales inversely with the flow path volume which is difficult to quantify.

Fig. 8 depicts the proposed flow patterns of brine and dry and wet CO₂ within the downscaled near wellbore reservoir model as well as the most likely drying regimes in different regions. Miri et al. distinguish between three main drying regimes and their resulting distribution of salt precipitate (Miri and Hellevang, 2016):

1. The diffusive regime occurs at very low injection rates when evaporation is slow enough to allow sufficient diffusion of salts away from the evaporation interface, preventing local oversaturation and precipitation. Precipitation under this regime will be spatially quite homogeneous.

2. The capillary regime occurs when the rate of evaporation is high, water losses are compensated by capillary brine backflow, and diffusion of ions away from the interface is too slow to prevent oversaturation. This causes massive salt accumulation at the drying front.

3. The evaporative regime exists at high injection rates when the rate of evaporation is higher than the rate of capillary backflow. Salt precipitation in this regime will result in rather homogeneous deposition of salt within the dried out porous medium.

The post-injection CT analysis of salt distribution within the specimen combined with water content analysis suggests that there might have been two different drying regimes acting within our specimen. The presence of the accumulated salt precipitation in the bottommost regions of the centre hole walls coinciding with high water content in this region suggest the capillary precipitation regime. In this region significant evaporative flux must have been compensated by the capillary backflow of brine. On the other hand, right above the bottommost region with visible salt precipitate in the centre hole there is a region with homogeneous salt distribution within the sandstone pore spaces. The most probable drying regime in this region is the diffusive one where the evaporative flux is low compared to the capillary flux. The lower
evaporative flux in this region is most likely associated with higher humidity of the CO2 flowing in this region due to partial water saturation in the bottommost area. Apparently, the injection rate applied here was too low to allow for the evaporative regime to occur. Due to long CO2 residence time the CO2 flowing through the topmost regions was already water saturated thus did not cause any drying in this region.

The typical Portland well cement is susceptible to carbonation when exposed to carbonated brine, but it is resistant to dry CO2 (Carroll et al., 2016; Chavez Panduro et al., 2017; Duguid, 2009; Duguid et al., 2011; Duguid and Scherer, 2010; Kutchko et al., 2007, 2008; Matteo and Scherer, 2012; Riaz et al., 2006; Walsh et al., 2013). The degree of carbonation of the cemented pillars is an indication of availability of carbonated brine. Carbonated brine reacts with portlandite (Ca(OH)2) and calcium silicate hydrate (C-S-H phase) present in the hardened cement. These reactions lead to the formation of poorly water-soluble calcium carbonate (CaCO3) in the cement matrix. This primary carbonation process often results in a decrease in overall cement porosity and permeability (Bachu and Bennen, 2009) which was manifested by an increased X-ray absorption within the cement close to the sandstone/cement interface in the CT data (see Figs. 5a,b and 6). The carbonation has been confirmed by SEM analysis. The SEM imaging showed also cement degradation due to calcium carbonate dissolution in the bottommost sections of cement pillars. The cement degradation that follows carbonation is a process caused by transformation of the poorly water-soluble calcium carbonate to easily soluble calcium bicarbonate at low pH conditions. This results in leaching out of the cementitious material which leads to cement degradation. The faster the carbonation and carbonate dissolution processes are, the broader dissolution zone is expected (Kutchko et al., 2007; Walsh et al., 2013). A small degree of carbonation of the cement pillars was observed within the topmost region (5 cm long) compared to the bottommost region. The rate of cement carbonation depends on availability of reactive CO2 species like carbonate and bicarbonate ions (CO32-, HCO3−) in the cement matrix (Brunet et al., 2016). This availability is related to thermodynamic conditions (temperature and partial CO2 pressure) and to reactants transport capabilities within the surrounding media (Brunet et al., 2016; Walsh et al., 2013). The less extensive carbonation in the topmost region may be a result of either (1) lower concentration of carbonate and bicarbonate ions (CO32-, HCO3−) in the brine in this region or (2) a limited transport of carbonate ions to the cement surface within this region compared to the bottommost region. The limited transport could have been a result of significantly lower brine content in the pore matrix in the topmost region (Genty and Pot, 2014; Ghanbarian et al., 2014) This low brine saturation within the upper part of the sandstone could have been a likely cause of constrained diffusive and convective transport of carbonate and bicarbonate ions (CO32-, HCO3−) to the cement surface resulting in a limited carbonation compared to the middle and bottommost region (Genty and Pot, 2014; Ghanbarian et al., 2014).

On the other hand, the concentration of these ions might have been higher in the bottommost region due to density differences between the brine and CO2-rich brine (Cardoso and Andres, 2014; Riaz et al., 2006). Once CO2 dissolves in brine, the mixture becomes denser. Due to density differences between CO2 free and CO2 rich brine the interface between these two fluids may become gravitationally unstable. This will lead to the formation of so-called fingers that transport the CO2-rich brine downward, while deeper, CO2 free, formation water will rise. Convection is much faster transport mechanism than molecular diffusion (Pau et al., 2010) and a convective mixing establishes within minutes to hours timescale (Faisal et al., 2015; MacMinn and Juanes, 2013). This process may have caused an uneven distribution of carbonate ions along the specimen length, namely higher concentration of these ions in the bottommost region and thus more extensive carbonation. In addition, in the capillary drying regime in the bottommost region the transport is supported by capillary forces that drag water towards the dried-out regions. The more extensive carbonation at the sides facing brine inlet compared to centre hole sides at the bottom must have been due to higher availability of carbonate ions on this side. The reason why the carbonate ions where more available on the brine inlet side can be twofold: (1) they were constantly supplied along with the brine transported by capillary forces and/or (2) their concentration was higher at lower salt concentrations present closer to brine inlet then inside the specimen where brine was losing water and getting saturated.

5. Implications for carbon storage projects

The medium scale CO2 injection experiments presented here mimic supercritical CO2 injection into a saline aquifer where the salinity of reservoir waters is high and close to the saturation at the reservoir conditions. Although no significant pressure build-up was observed across the rock specimen, during the course of the injection, salt precipitation within the borehole of the wellbore model as well as in the porous rock matrix occurred. This may suggest that wellbore and reservoir clogging may undergo without early stage pressure build-up symptoms which may delay identification of salt clogging problem and decisions about remediation operations until the situation becomes critical. Clogging of the entire borehole diameter or CO2 flow pathways within the rock that could lead to complete CO2 flow path blockage seems likely but would require longer exposure to dry CO2. Given that after 9 days of injection 46% of the borehole radius closest to the CO2 inlet was filled with halite and assuming a linear decrease of the borehole radius with time upon salt precipitation we have estimated that the complete closure of the borehole diameter at given experimental conditions may occur after around 20 days. A typical production casing is around 2.8 times larger thus the time needed to close the hole
would be around 56 days at similar temperature, pressure and flow rate conditions. The above estimation is, however, very rough and calls for a detailed study of salt precipitation kinetics in the borehole system.

We have shown that in the wellbore and near wellbore region different drying regimes can be expected on a relatively short length scale. The type of drying regime will be related to the distance from the injection point. Its occurrence and range will depend on CO2 residence time and water saturation thus will be directly related with flow rate and drying kinetics at certain reservoir conditions.

In the present experimental campaign only one injection geometry was tested, which corresponds to open hole completion of a CO2 injection well. It can, however, be expected that the choice of well completion (open hole or cased hole with perforations) may affect injection geometry and thus also fluid distribution within the near wellbore region and salt precipitation regimes. It would therefore be valuable to validate experimentally how different completion strategies affect CO2 injectivity.

The results suggest also that carbonation of a cement sheath present within the reservoir section in the case of a cased hole completion, will depend on the distribution of fluids within the reservoir. The accumulation of CO2-rich brines at the bottom of the reservoir will result in a higher concentration of carbonate ions in these regions and thus enhanced carbonation of the well cement placed at the bottom of the reservoir section. On the other hand, in the regions from which brine is displaced i.e. close to the caisson the carbonation will be less significant than in the regions rich in CO2 saturated brines. The drying effect can thus be positive for the integrity of the well as it has a potential to slow down the carbonation processes.

6. Conclusions

This paper reports medium-scale experiments on salt precipitation in the near-wellbore region upon a dry CO2 injection. The uniqueness of the experimental approach applied in this work relies on (1) realistic radial geometry of CO2 flow similar to wellbore geometry, and (2) opened boundary conditions for brine inflow allowing capillary and diffusive flux of brine components from and to practically infinite source of reservoir formation water. The experiment involved injection of supercritical CO2 (40°C and 100 bar) into a thick-wall sandstone cylinder representing a downscaled near-wellbore region over a period of nine days. During the course of injection, no significant pressure build-up was observed across the rock specimen, indicating that permeable flow paths were not entirely clogged. Partial clogging of the model wellbore took place close to the CO2 inlet but also salt precipitated in the rock matrix in the near wellbore region. Post-test analysis of the specimen and the incorporated CO2 indicators provided indication of the most probable flow patterns of supercritical CO2 and CO2 rich brines in the system. We have shown that in the wellbore and near wellbore region different drying regimes can be expected on a relatively short length interval. At our experimental conditions, three different drying regimes were found to occur in different wellbore regions. Simultaneous occurrence of these different regimes was ascribed to the differences in water saturation of the CO2 passing by the different regions. The results underline the importance of understanding possible drying and salt precipitation issues prior to drilling, to ensure that optimal completion solutions can be chosen.

Acknowledgements

The authors gratefully acknowledge financial support from the research project “Avoiding loss of CO2 injectivity” (255490/E20) which was funded by The Research Council of Norway through the CLIMIT program. Work done by E. A. Chavez Panduro (XRD characterisation) was financed by the project ‘Closing the gaps in CO2 well plugging’ (243765/E20) which was also funded by The Research Council of Norway through the CLIMIT program. Special thanks go to Bartlomiej Gawel for semi-quantitative XRD data analysis. We also thank NTNU Department of Physics and NTNU NanoLab (NorFab) for using their laboratories and equipment. The Research Council of Norway is acknowledged for the support to the Norwegian Micro- and Nano-Fabrication Facility, NorFab.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.ijggc.2019.04.009.

References
