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A B S T R A C T

When using Computational Fluid Dynamics to simulate ventricular blood flow in the heart, it has been common
practice to neglect the effect of the sub-valvular apparatus and the trabeculae on the flow conditions. In this
study, we analyze the effect of neglecting the chordae tendineae on the fluid flow and pressure drop. To test the
assumption we use a previously developed dynamic 3D model of the left ventricle, aorta and valves that is based
on 3D echocardiographic recordings. To this model we add the chordae tendineae as a sub-grid model.

The previously developed 3D model for the left ventricle during systole is based on real-time three-dimen-
sional echocardiography (RT3DE) recordings of a 30 years old female volunteer. The segmented ventricular wall
does not include details of the aorta and the mitral valve, so these were reconstructed. The subgrid model for the
flow across the chordae tendineae is based on the Actuator Line Method, which means that they are represented
by drag coefficients. The analysis shows that the effect of the chordae tendineae on the pressure drop and work
efficiency of the normal heart during systole is minor, and it seems that for simulating ventricular fluid flow and
pressure drop during systole, one can follow the current practice and ignore the chordae. However, there can be
local effects such as small vortices behind the chordae. Whether such effects are important for a particular
application must be evaluated for the given case.

1. Introduction

The mitral valve (MV) apparatus of the human heart consists of two
leaflets, the mitral annulus, the chordae tendineae and the papillary
muscles (PM). The latter two are also referred to as the sub-valvular
apparatus [1] which supports the mitral valve against the large pressure
difference during ventricular systole. Thus, the chordae tendineae and
the papillary muscles are required from a mechanical point of view for
normal operation of the valve. Rupture of chords may lead to valve
regurgitation and thus indirectly to unfavorable flow conditions.

When simulating blood flow using Computational Fluid Dynamics
(CFD), it has been common practice to neglect the effect of the sub-
valvular apparatus and the trabeculae on the flow conditions in the
heart. The effect of this simplification on the flow field and pressure
drop is then left as an open question, with the suggestion that it can
have an effect on the flow [2–18]. However, there has been recent work
on the trabeculae and papillary muscles in the literature, both in the left
ventricle [19–24] and in the right ventricle [25]. In this study, the focus
has been on the influence of the chordae tendineae on the flow, thus the
papillary muscles and the trabecula have not been modeled. There are
some recent articles who have included the chordae tendineae in their
model [26–28]. These are fluid structure interaction (FSI) models and

different approaches for calculating the flow equations have been used.
Caballero et al. [26] and Singh-Gryzbon et al.[28] used a mesh free
method called the Smoothed Particle Hydrodynamics (SPH) method.
Meschini et al. [27] used a fixed grid method called the Immersed
Boundary method, whereas our work is based on a moving grid method
called the Arbitrary-LagrangianEulerian (ALE) method. The different
methods have their advantages and drawbacks.

Intra-cardiac blood flow has been calculated by CFD as early as in
1977 by Peskin [29,30], who used an immersed boundary method to
represent the moving heart walls. Basically this amounts to using mo-
mentum source terms to represent the moving solid walls. However,
whereas this method is very flexible it is difficult to resolve flow details
on realistic grids, especially close to the walls. Since then, there has
been an enormous development both in computer power and in nu-
merical techniques. A trend in academia has thus been towards ex-
tremely detailed simulations where small structures of the heart wall,
papillary muscles and even the chordae tendineae are recorded using
high-resolution CT and used to generate geometries for CFD and FSI
simulations. Such high-fidelity simulations can then be used as a va-
luable supplement to experiments in fundamental studies in order to
understand the flow and mechanics of the heart [20–22,24,31].

Whereas high-fidelity simulations are valuable for fundamental
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studies, they have large costs both in terms of CPU usage and geometry
recording by imaging. For practical clinical applications in the future it
is thus desirable to strive for simplification of the geometry and develop
CFD models that have lower setup- and computational costs. In the
present work we make a trade-off: The geometry of the ventricular wall,
aorta and mitral valve is represented by means of a dynamic mesh,
whereas the chordae tendineae are represented using a sub-grid model
based on the ”Actuator Line Method” (ALM) of [32]. This method is
commonly used for simulating rotating wind turbines.

The purpose of this paper is twofold. First, to analyze and discuss to
what extent the chordae tendineae are relevant for the flow conditions,
or whether the direct effect on flow can be neglected. Second, to discuss
whether it is necessary to include the chordae tendineae in practical
CFD simulations or not.

The outline of the paper is as follows: We first describe a CFD model
of the left ventricle during systole and a sub-grid model for the effect of
the chordae tendineae on the fluid flow. To simulate the resistance of
the chordae tendineae to fluid flow, we model them as cylinders in cross
flow. We validate the subgrid model against a rigorous simulation of a
transient test case. Finally, we present simulation results of a heart
during systole and discuss the effect of the chordae tendineae on sys-
tolic flow.

2. Method

2.1. CFD model of the left ventricle

We use an existing model for the left ventricle (LV) during systole
[3]. The model has prescribed LV wall movement and is based on
segmented 3D echocardiography recordings of a healthy female vo-
lunteer as described in the following.

2.1.1. 3D echocardiography and segmentation of the LV
In a previous work [3], the left ventricle volume of a 30 years old

female volunteer was acquired by real-time three-dimensional echo-
cardiography (RT3DE) (also known as four-dimensional echocardio-
graphy). The volume was acquired during apnea over 4 heart cycles.
The segmentation of the endocardial LV wall resulted in 27 closed three
dimensional surface meshes, one for each time frame. Fig. 1 shows the
surface mesh at one instance during the cardiac cycle. Each mesh
consists of 1946 nodes and 3888 triangular cells, and were used to
create the prescribed subject-specific LV movement throughout systole.
The mesh was further refined for better accuracy in the CFD simula-
tions, as described in Ref. [33].

The segmented LV wall from the 3D echocardiography (Fig. 1) does
not include the mitral valve or the aorta. The physiological MV and the
proximal part of the ascending aorta (AAo) have therefore been re-
constructed from the same RT3DE recordings as for the LV wall and
included into the original segmented LV surface mesh. The details can
be found in Ref. [3].

The MV geometry was reconstructed from its physiological shape at
peak systole and set to be static throughout the simulation. The subject-
specific 3D MV model is shown in Fig. 2.

The ascending aorta is the first section of the aorta, commencing at
the upper part of the LV base. The shape and tilting angle of the AAo
was traced in the recordings and attached to the LV. During the simu-
lation the AAo will deform in accordance to the LV base. The aortic root
with its sinuses of Valsalva, which is the first part of the AAo, was
simplified to a tube. The length of the AAo was set to minimize the
influence of the outflow conditions on the flow field of interest. Fig. 3
shows the complete subject-specific model at different instances during
systole.

2.1.2. Implementing the dynamic mesh in CFD
The time step in the CFD-simulation (0.0005 s) is significantly

smaller than the time step between the recorded frames. This required

new intermediate meshes for each CFD time step to be calculated be-
tween the segmented time frames. The meshes were generated by cubic
spline interpolation of the mesh node coordinates in time. The spline
polynomials were precomputed in the form of a coefficient table, using
the standard spline routine in Matlab.

The simulation period is the systolic part of the heart cycle from the
onset of aortic valve (AoV) opening to AoV closure in end-systole, i.e.
the isovolumetric contraction in start-systole is not included. The length
of this period was, in our recordings, measured to 285ms in a heart
cycle of 962ms [3]. The start geometry is from the segmented LV wall
at AoV opening.

The prescribed LV wall movement was implemented as a User-
Defined-Function (UDF) and used as a boundary condition in our CFD
simulations. The AAo was set to deform in accordance to the LV,
whereas the MV was set to be static throughout the simulation.

2.2. CFD closure model for the chordae tendineae

A sub-grid model was used to represent the chordae tendineae.
When the blood flows across the chordae tendineae there will be a drag
force. For practical purposes the force can be calculated by considering
the chordae as cylinders, for which correlations for the drag force are
well known from the literature. In the following the theory of fluid drag

Fig. 1. Closed three dimensional surface mesh of the endocardial LV wall at one
instance of the cardiac cycle.

Fig. 2. 3D model of the physiological mitral valve at peak systole. As seen in the
figure, the curvature of the normal, healthy mitral leaflets is approximately flat
at peak systole.
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on cylinders is developed.

2.2.1. Flow across cylinders
Consider the drag force from the blood on a chordae, considering

the chordae as an approximate cylinder. For moderate Reynolds num-
bers (below the drag crisis), Re, one can basically assume that the drag
force is orthogonal to the cylinder and due to the velocity component,

⊥V , in the orthogonal direction (”Cross-flow principle”, [34]). The ve-
locity decomposition is shown in Fig. 4.

The drag force per length of cylinder, D [N m/ ], can be approxi-
mated by the Morison equation, Equation (1):
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where t is time, d is the cylinder diameter, ρ is the fluid density,
= −⊥

∞ ∞ ∞V V τ V τ( • ) is the free-stream velocity component normal to
the cylinder, ∞V is the free-stream velocity and τ is a unit vector tan-
gential to the cylinder (axial direction).

The first term (I) on the right hand side is due to the acceleration of
the fluid around the cylinder (added mass effect) plus the force from the
pressure gradient that produces the fluid acceleration (Krylov force).
The inertia coefficient for a cylinder is =C 2M .

The second term (II) is the steady state drag, where C Re( )d is the

drag coefficient and = ⊥
∞

Re
Vρ d

μ is the Reynolds number. We use a
simple approximate correlation (∼20% relative error) for the drag
coefficient in the range < <Re0.1 250000 as given by Ref. [35]:
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A more accurate relation (< 8% relative error) valid for
× < < ×− Re1 10 2 104 5 is given by Ref. [36]:

= + + −
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We argue in Appendix A that the transient term is negligible com-
pared to the second term when applied to the drag on chords. Thus,

Equation (1) reduces to:

≈ ⊥
∞

⊥
∞V VC d ρD 1

2d (4)

2.2.2. Implementation as source terms in CFD codes
The drag force from the fluid on the chordae, D, is described by

Equation (4), and is a force per meter chordae. By Newtons third law
there is a reaction force from the chordae on the fluid. However, as we
do not resolve the detailed chordae geometry on the computational
mesh we need to approximate the reaction force as a source term.

To achieve this we use the Actuator-Line Method by Ref. [32]. The
basic idea is to distribute the drag force over a region of the order of
radius ε [m] from the force. Ideally, ε should be small. However, it can
not be smaller than about two times the local mesh size for stability
reasons. Also, the drag formulae (Equation (2) or 3) are based on the
freestream velocity, i.e. the local fluid velocity that is unperturbed by
the presence of the chordae, which means that ε should not be too
small. Thus, there is a trade-off. In the present simulations we have used

∼ε m0.005 .
The source term is calculated as follows:
1. The chordae are divided into short elements of length dxi,

= …i N1,2, .
2. The drag force of element i is ≡D D x dx( )i i i where xi is the centre

of the element.
3. The discrete Di is distributed in space using a distribution func-

tion rη ( ).
The distribution function used is given by Equation (5) [32]:
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Mathematically, the volume integral of the distribution function
over all space integrates to one. However, close to walls one needs to
normalize to account for what falls outside the fluid domain:
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Summing over all drag elements, the momentum source term N m[ / ]3

becomes:

∑= ⋅ −f x D x xη( ) ˜ ( )i
i

i
(7)

The source term was implemented as a user-defined-function (UDF)
in ANSYS Fluent [37].

2.3. Ventricular pressure drop due to the chordae tendineae

We derive a relation for the contribution to pressure drop in the
ventricle that is caused by the drag across the chordae. As pressure drop

Fig. 3. The complete subject-specific
3D model of the LV including the MV
and the proximal part of the AAo. The
AAo is longer in our model, but cut
only the first part is shown here Figure
(a) is from start systole, (b) is from peak
systole, i.e. 100ms into the simulation
from AoV opening and (c) is from end
systole. Figure (d) shows the model
from an atrial view, where the mitral
”smiley” is clearly visible.

Fig. 4. Flow across cylinder.
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times flow rate equals the power loss, we can compute the contribution
to pressure drop as power loss per flow rate. The instantaneous power
loss per length of chordae, w [W m/ ], can be expressed as:

= ∞D Vw | • | (8)

The loss is dissipated into heat. The equivalent pressure drop,
pΔ chordae [Pa], relative to the aortic outflow, Q [m s/3 ], can thus be found

by integrating the power loss over the chordae length, s [m], and di-
viding by the outlet flow rate:

∫= ∞D Vp
Q

dsΔ 1 | • |chordae
chordae (9)

2.4. Validation of the actuator line method

In order to validate the ALM approach and implementation, we have
simulated a simple test case with ALM and compared against a rigorous
simulation where the details are resolved. The test case is shown in
Fig. 5 and consists of a single 1mm cylinder placed at a 30° angle in a
40 mm×40 mm channel. The channel walls are taken as frictionless.
The transient inlet velocity as function of time is shown in Fig. 6 and
resembles the velocity across chordae during systole. Peak systole is at
approximately t= 0.1 s. Physical properties are as for blood (μ=3.5
cP, ρ=1050 kg m/ 3).

For the rigorous simulation we have used the mesh shown in Fig. 7,
which is refined in the vicinity of the cylinder to ensure proper flow
resolution. A grid sensitivity test was performed to ensure proper

spatial resolution. This was done by comparing the flow calculated with
×1.44 106 and with ×4.0 106 grid cells. As there was no significant

difference, the grid with ×1.44 106 cells was used.
Fig. 8 shows the velocity magnitude around the cylinder at the xz

symmetry plane at peak systole. The Reynolds number based on
crossflow velocity is about 50, which according to theory is just on the
border of onset of vortex shedding. In the simulations there is no sign of
vortex shedding at this point.

For the simplified ALM simulations a uniform hex-mesh was used
(Fig. 9).

Fig. 10 shows the calculated force per unit length of cylinder at peak
systole (U=0.2m/s). The drag force in the ALM method is orthogonal
to the cylinder as intended.

Fig. 11 compares the net force on the cylinder calculated by dif-
ferent methods. The ”analytical:total” is the prediction by using equa-
tion (1) directly based on the specified inlet velocity. This is composed
of a drag term and inertia term shown as dotted lines, and it can be seen
that the inertia term is an order of magnitude smaller than the drag
term. The ALM method as currently implemented ignores inertia, and
only predicts the viscous drag term. As can be seen, the FLUENT ALM
prediction is close to the ”Analytical:Drag” as intended.

The peak of the rigorous FLUENT simulation comes about 5ms
before the Analytical result. The lead increases to about 15ms after
peak systole. This indicates that the balance between the inertia term
and the viscous drag term in the Morison equation is not completely
accurate. Also, the Morison equation ignores history effects.
Nevertheless, the small time lag in the Morison equation compared to
the rigorous simulation is unlikely to have much practical significance.

Fig. 5. Single Chordae in accelerated flow.

Fig. 6. Freestream velocity, U(t), as function of time.

Fig. 7. Mesh for rigorous simulation. Showing only one side of the channel
wall.
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2.5. Construction of the chordae tendineae geometry

The geometry of the chordae tendineae in general is well described
in the literature. For example Lam et al. [38], investigated the chordae
tendineae of 50 human hearts. They found that an average of 25
chordae insert into the mitral valve. Of these, nine pass to the anterior
leaflet (seven rough zone chordae and two strut chordae), 14 to the
posterior leaflet (10 rough zone chordae, two cleft chordae and two
basal chordae) and two are inserted into the commissures.

We do not have an actual patient-specific geometry of the chordae
tendineae for the simulated case. For the present numerical demon-
stration we model the chordae tendineae very simplistically, as shown
in Fig. 12. This geometry was constructed manually by using the
computer mouse to pick the insertion points of the chordae into the
mitral valve, snapped to the nearest node of the surface mesh. In our
model there are 6 chordae originating from each papillary muscle, each
chordae then split up into three branches before a total of 36 chords are

inserted near the free edge of the mitral valve. As a modeling simpli-
fication, the chordae originate from the same point at their respective
papillary muscle. Fig. 12 c) shows a close-up of the distribution of the
chordae tendineae in our model.

For the purpose of the demonstration we set the chordae diameter
uniformly as 1mm.

2.6. Solver settings and fluid properties

The system was solved in FLUENT using first order implicit time
integration (PISO) with a fixed time step of 0.0005 s, second order
spatial discretization for pressure and second order upwind discretiza-
tion for momentum. Blood properties were: density 1050 kg m/ 3, visc-
osity 3.5 cP.

3. Results

3.1. Velocity field and resulting forces on the chordae

Simulation results are presented for the time until peak systole
(t= 100ms), which is when the forces are largest. After peak systole,
the velocities and forces decrease again. Fig. 13 shows the magnitude of
the flow velocity at the central cross section of the ventricle (long-axis
view) at four different instances (i.e. t = 10, 20, 50 and 100ms). The
overall flow is from the apex towards the aorta. As a comparison, the
same simulation runs without including the chordae tendineae are
shown in Fig. 14. The overall flow patterns with and without the
chordae tendineae are almost indistinguishable. This is demonstrated in
Fig. 15, showing the difference in velocity magnitude with and without
chordae at t= 100ms. As can be seen the maximum velocity difference
in the simulations is only 0.045m/s, in a small area in the aorta. In
most of the domain the velocity difference is less than 0.02m/s.

Fig. 16 shows the calculated flow velocity at the chordae position.
As can be seen, the velocity is increasing until peak systole. The highest
velocities at the chordae occur near the mitral valve where the flow
pass the coaptation zone.

Fig. 8. Velocity field at symmetry plane (xz-plane) for rigorous simulation, peak systole (velocity U=0.2m/s).

Fig. 9. Mesh for ALM simulation. Mesh size 1.5 mm. Showing only one side of
the channel wall.
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The fluid drag forces per length of the chordae tendineae are shown
in Fig. 17. The fluid drag forces are quite small, of the order of
10–30mN per meter chordae. They are largest close to the coaptation
zone where the fluid velocity is highest. Closer to the tip of the papillary
muscles the forces are smaller due to lower fluid velocities.

Table 1 shows the equivalent pressure drop caused by the chordea
as calculated by Equation (9). As can be seen, the pressure drop at peak
systole ( =t ms100 ) is only 2.7 Pa, or about 0.02 mmHg. This is negli-
gible compared to the ∼ 100 mmHg pressure difference of the heart.

4. Discussion

4.1. Pressure drop and pumping work in systole

During systole the heart has to provide work in order to pump blood
against the aortic pressure. This is the useful work of the heart, and any
work that is much smaller than this is insignificant in comparison. For
the ventricle in this study (Section 2.1), a volume of about =V ml56

blood is pumped against an aortic pressure difference of about
∼p mmHgΔ 100 , which means that a useful work of

= ∼ = × −W V p J kcalΔ 0.75 1.8 10 4 has to be provided per heart beat.
This provides a reference for comparing the pressure drop and work
losses due to fluid dynamic drag across the chordae tendineae.

4.1.1. Influence of the chordae tendineae on pressure drop and flow
That the pressure drop penalty of the chordae tendineae in a healthy

heart only correspond to about 2.7 Pa (= mmHg0.02 ) at the maximum
should not come as a complete surprise from an evolutionary per-
spective, as other solutions would be favored if otherwise. The heart
needs to pump blood against more than a 100mmHg pressure differ-
ence; thus the power loss due to chordae is negligible in comparison.
One can obtain an order-of-magnitude estimate of the forces on the
chordae by assuming a velocity of the order of =V m s0.15 / across the
chordae (typical value from the simulation shown in Fig. 16). The drag
coefficient according to Equation (4) is then ≈Cd 2. Thus the drag is
about ∼ =D C d ρV N m0.02 /d

1
2

2 which is comparable to the number
obtained by CFD.

4.2. Vortex formation behind the chords

By treating the chordae tendineae using source terms the tiny details
of the flow around the chordae are not resolved. To do so, one would
have to resolve the geometry of the chordae individually using an ex-
cessively fine grid, which is unpractical.1 However, the details are
known from theory.

For Reynolds numbers larger than about 47 ( = ⊥
∞

Red
ρV d

μ ), vortices
will form behind a chordae in crossflow2 (von Kármán vortex street).
This manifests itself as a slight vibration of the chordae. For a 1mm
chordae in blood, this corresponds to a velocity larger than about3

≈⊥
∞V 0.15 m s/ . The frequency of the vortex shedding for cylinders is

Fig. 10. Force per chord length calculated by ALM, [N/m]. Peak systole (velocity U=0.2m/s).

Fig. 11. Net force on cylinder as function of time, calculated by various
methods, [N/m].

1 Some papers in the literature actually resolve the chordae, e.g. Ref. [31].
However, the aim of the present work is towards model simplification.

2 Assuming they can be approximated as cylinders.
3 Assuming blood viscosity = × −μ 3.5 10 3kg ms/ and density. =ρ 1050kg m/ 3

J.C. Morud, et al. Computers in Biology and Medicine 109 (2019) 91–100

96



given by the Strouhal number, = ≈
⊥
∞Str 0.2fd

V , where f [Hz] is the

vortex shedding frequency. At ≈⊥
∞V 0.15 m s/ the shedding frequency

for a 1mm chord is thus ≈f 30 Hz. The vortices dissipate into heat
downstream of the chordae. As the overall pressure drop caused by the
chordae is very small one may hypothesize that these vortices have only
minor effects on the heart function.

4.3. Effect of inertia on the drag on the chordae tendineae

As explained in section 2.2.1 the drag forces on the chordae

tendineae are in principle the sum of a steady state drag and inertia
forces due to fluid acceleration. In Appendix A it is shown that the
inertia forces on the chordae are much smaller than the steady state
drag. From the discussion above the steady state drag on the chordae is
again small compared to the pumping forces of the heart.

4.4. Relation to complementary work

In this study, the focus has been on the influence of the chordae
tendineae, thus the papillary muscles and the trabecula have not been
modeled. However, there has been recent work on the trabeculae and

Fig. 12. Simplistic chordae tendineae geometry.

Fig. 13. Velocity magnitude, [m/s], at the central cross section (with chordae).
Peak Systole at 100ms

Fig. 14. Reference simulation without chordae tendineae. Velocity magnitude, [m/s], at the central cross section. Peak Systole at 100ms. Legend is the same as in
Fig. 13.

Fig. 15. Difference in velocity magnitude, [m/s], at the central cross section
with and without chordae. Peak Systole at 100ms
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papillary muscles in the literature, both in the left ventricle [19–24]
and in the right ventricle [25]. Gao et al. [19] discusses the morphology
of the papillary muscles and trabeculae and describes a method of
geometry reconstruction from high resolution CT. They show how to
represent the structures accurately by means of curve skeletons. Sacco
et al. [23] and Sacco et al. [25] studied the effect of the trabeculae and
papillary muscles on haemodynamics and pressure drop in the left and
right ventricle, respectively. In these works, the endocardial structures
are modeled in detail and the flow is simulated in a simplified (static)
heart model. Kulp et al. [20] performed patient-specific simulations of
blood flow in the left ventricle based on high-resolution CT imaging and
an immersed boundary method. By flow field visualization they show
the interaction between the blood and the trabeculae in high detail, and
compared the flow fields between a healthy heart and two diseased
hearts Lantz et al. [22]. developed a framework for computing patient
specific hemodynamics based on time-resolved CT-images, which was

applied to a patient with a dilated left ventricle. The model included
papillary muscle motion and the folding and unfolding of left ven-
tricular trabeculae, and the results indicated that these are important
aspects to consider when computing cardiac blood flow. They indicated
that these features strongly interacted with the blood, which could not
be observed in a simplified model Vedula et al. [24]. investigated the
impact of trabeculae and papillary muscles on the hemodynamics of the
left ventricle, using a high resolution immersed boundary method. Two
different models were compared, the most detailed one comprising a
trabeculated endocardium including trabeculae and papillary muscles.
Conclusions are that although the trabeculae and papillary muscles
significantly increase the viscous dissipation in the flow, the magnitude
of this increase is negligible compared to the total pressure work as-
sociated with the left ventricle. However, the papillary muscles act in
concert to guide the mitral jet deeper into the apical region and en-
ergize the apical flow. Another significant effect of the papillary mus-
cles on the flow pattern is the migration of the mitral jet from the
posterior wall towards the anterior wall of the LV; however, it was
unclear whether patient-specific variations in the morphology of the
papillary muscles would modulate this effect. These papers can be seen
as complementary to the present work, which has focus on the chordae
tendineae.

Also, there has been recent work on the modeling of the chordae
tendineae [26–28]. Meschini et al. [27] modeled Fluid-Structure-In-
teraction of a mitral valve with chordae, using a simplified (static) heart
model and a simplified model of the chordae where the chords are
lumped into four main bundles. Compared to the present work the
bundling appear to yield some overprediction of the drag on the
chordae (overprediction of energy dissipation due to the chordae);
otherwise the approach for representing the chordae is very simple and
interesting as a direction for practical/simplified models if more at-
tention is given to get better prediction of chordae drag. Other recent
work is Caballero et al. [26]; who calculate fluid flow in a mitral valve
and chordae load distributions using Smoothed Particle Hydrodynamics
to simulate the flow. They also quantify the amount of regurgitation.
The article has focus on load distributions and rupture of chordae and
not so much on the effects of the chordae on the flow Singh-Gryzbon
et al. [28]. developed a computational model of the flow in a tricuspid
valve (TV), based on high resolution μCT of a porcine TV. The flow in
the valve was modeled as well as studied experimentally in a cylindrical
test chamber with valve. Also this paper has focus on the structure part
and stresses in the chordae; and thus is complementary to the present
paper.

4.5. Limitations of the study

By representing the chordae tendineae by means of source terms,
the main effects of the chordae on flow and pressure drop are captured.
What is not resolved in the CFD simulations are the tiny flow structures
around the chordae. These structures are known from literature (von
Kármán vortex street). As the drag force on the chordae is relatively
weak one may hypothesize that these structures have only minor effects
on the heart function.

The CFD simulations have only been performed for the systole.
However, the order-of-magnitude estimates of the effects of the chordae
tendineae also apply for the diastole. Thus, the effects of the chordae on
the overall flow pattern during diastole are also expected to be minor,
however, this must be studied in order to conclude.

5. Conclusion

The effect of the chordae tendineae on blood flow during ventricular
systole has been analyzed by CFD. Within this model the chordae ten-
dineae were represented using a sub-grid model based on the ”Actuator
Line Method”. By this combination we resolve the main features of the
flow on a dynamic mesh while avoiding the complexities of tiny details

Fig. 16. Velocity at chordae position, [m/s], as function of time. Peak Systole at
100ms

Fig. 17. Drag force per length of chordae, [N/m], as function of time. Peak
Systole at 100ms

Table 1
Equivalent pressure drop caused by the chordae tendi-
neae as function of time.

Time, [ms] Pressure drop, [Pa]

10 0.7
20 0.7
50 1.1
100 2.7

J.C. Morud, et al. Computers in Biology and Medicine 109 (2019) 91–100

98



around the chordae tendineae.
The fluid forces on the chordae tendineae can be considered to be

the combination of inertia forces (added mass + Krylov) and a steady
state drag. An order-of-magnitude analysis shows that the steady state
drag dominates compared to the inertia forces, and the inertia effects
can be neglected in comparison. From a fluid pressure drop point of
view, also the steady state drag has an insignificant effect in a healthy
heart. Thus, the chordae tendineae do not result in any work in-
efficiencies (power loss) in the healthy heart.

At velocities above approximately m s0.15 / , which may occur close
to peak systole, there can be vortex shedding behind the chordae (von
Kármán vortex street). This manifests itself as a weak vibration of the
chordae at a frequency of around Hz30 . As the fluid drag forces are
quite weak it is unlikely that this has any clinical implications (in a
healthy heart).

Thus, it seems that for simulating ventricular fluid flow and pressure
drop during systole in the healthy heart one can follow the current
practice and ignore the chordae tendineae. However, there can be local
effects such as small vortices behind the chordae. Whether such effects
are important for a particular application must be evaluated for the

given case.
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Nomenclature

Latin symbols

Cd Drag coefficient, [−]
CM Inertia coefficient, [−]
D Drag per chordae length, [N m/ ]
d Chordae diameter, [m]
Di Drag on small chordae element, [N]
f x( ) Momentum source term, [N m/ 3]

pΔ Pressure drop, [Pa]
Q Flow rate, [m s/3 ]
r Distance from force centre, [m]
Re Reynolds number of Chordae, [−]
s Length along chordae, [m]
t Time, [s]
V Fluid velocity, [m s/ ], or volume, [m3]

⊥
∞V Velocity component parallel to chordae, [−]

∥
∞V Velocity component orthogonal to chordae, [..]

w Power loss per chordae length, [W m/ ]
x Position vector, [m]
Greek symbols

ε Length scale for η, [m]
η Source distribution function, [ −m 3 ]
ρ Fluid density, [kg m/ 3 ]
τchord Chordae flow time scale, [s]
τglobal Global time scale, [s]
η̃ Normalized source distribution function, [ −m 3]
Superscripts

∞ Freestream value away from chordae
Subscripts

⊥ Component orthogonal to chordae
∥ Component parallel to chordae
i Small element #i on chordae

Appendix A. Order of magnitude analysis of drag terms

We perform an order-of-magnitude analysis to demonstrate that the transient drag term in Equation (1) can be ignored. The time derivative is of
the order ∼

∂
∂

⊥
∞V
t

V
τglobal

where V is a typical velocity during systole (∼ 1m/s in the aorta and ∼ 0.1 m/s below the coaptation zone) and τglobal is a
global time scale of the order of the time to peak systole (∼ 0.1 s). Ignoring constants of the order of one, we get the order of magnitude:
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∂
∂

∼⊥
∞V

C ρ πd
t

ρd V
τ4M

global

2
2

(A.1)

The second term is larger than4 or of the order:

≳⊥
∞

⊥
∞V VC d ρ dρV1

2
‖ ‖d

2
(A.2)

Introducing the time scale for the fluid to flow past the chordae, ≡τchord
d
V , the ratio between the two terms becomes:

≲ = = < <
∂

∂

⊥
∞

⊥
∞

⊥
∞

V V

C ρ

C d ρ

ρd

dρV
d V
τ

τ
τ

/ 1
V

M
πd

t

d

V
τ

global

chord

global

4
1
2

2

2
global

2

(A.3)

Thus, as long as the time scale for a fluid particle to pass the chordae is much smaller than the overall time scale of the systole the transient term
can be safely ignored. For example, for a cross-flow velocity of the order of 0.1m/s across a 1mm chordae the chordae time scale is (0.001m)/
(0.1 m/s)= 0.01 s= 10ms. The time to peak systole is approximately 100ms; thus the ratio of the terms becomes (10ms)/(100ms)= 0.1. That is,
the inertia term is expected to be about one order of magnitude smaller than the viscous drag term.
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