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Abstract

This work takes aim at studying numerical stability in distributed simulations through dynamic stability
and stability criteria for explicit solvers. This is done by studying outer stability limits, for example stability
conditions when handling unstable subsystems or marginally stable solvers. To conclude global stability of a
distributed system simulation both dynamic stability and solver stability must hold, and this work combines
these stability criteria into one unified criterion for distributed linear dynamical systems. Some examples are
given in order to both highlight numerical stability issues and to prove stability in different case studies. The
derived stability criterion is also extended to include distributed systems containing non-linear dynamics.
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1. Introduction

Stability is a widely used term in the field of mod-
elling and is used both in context of dynamical sys-
tems and solutions in simulations. These concepts are
often separated, even though both are somewhat de-
pendent on the system characteristics, because they
usually have separate area of application. In gen-
eral, stability in systems is a measure of convergence,
often expressed through asymptotic- or exponential
characteristics, and is related to the dynamics in the
system. Dynamic stability is well documented in the
field of modelling [1, 2, 3], as well as in the field of
control [4, 5]. Stability in numerical solutions is a
measure of numerical convergence [6] and is more or
less only dependent on the eigenvalues of the system
to be solved and the solver characteristics. In other
words, the stability of a system is a property charac-
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terized by the system dynamics and stability of solu-
tions is a solver property, whether the eigenvalues of
the system to be solved are inside the stability region
of the chosen solver or not. However, in distributed
systems the stability of the system and the solution
seems to be more related.

Distributed systems are often characterized as sys-
tems that have been divided into smaller subsys-
tems, connected in a distributed setup, communicat-
ing at fixed time instances, but often solved sepa-
rately. This enables distribution of computational
power both locally between cores in a computer as
well as through a network among different computing
members. A more thorough definition of distributed
systems can be found in [7]. Distributed systems also
give an advantage in industry collaborations. Dif-
ferent industries can keep their ”know-how” hidden
from competitors through the use of so called ”black
boxes” where the user only has access to the inputs
and outputs from the system and where everything
else is hidden. Then, third party vendors can dis-
tribute their submodels, or black box models, to cus-
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tomers, yet still keep their ”know-how” in-house. In
order for subsystems in a distributed system to in-
teract with each other, a common standard for ex-
porting distributed systems and enabling communi-
cation between different distributed subsystems is re-
quired. One such standard is the Functional Mockup
Interface, FMI [8], which in addition is tool indepen-
dent and enables ”black box” implementations of dis-
tributed models. Many examples on the use of dis-
tributed simulations, or co-simulations, can be found
in different industries such as aerospace industry [9?
], the automotive industry [10, 11, 12] and the marine
industry [13, 14].

Dynamical stability of distributed systems is sim-
ilar to sampled system stability [15, 16]. However,
when using fixed-step size solvers, the dynamical sta-
bility of linear distributed systems is closely related
to the stability of discretized linear systems [5, 17].
Stability of distributed systems has been studied from
many different angles in the literature, for example
through zero-stability analysis of coupled integration
[18, 19], jacobian-based co-simulation algorithm to
overcome stability issues [18], stability and conver-
gence analysis of sequential algorithms [20], mod-
ular integration for Runge-Kutta methods [21] and
Dahlquist test equations [22] for stability analysis of
distributed systems [23, 24]. However, less results
containing numerical stability of distributed simula-
tion results can be found in the literature.

In this work the stability of distributed simulations
will be studied on a general level, and much focus
will be given to linear systems. The contributions in
this work is similar to the Dahlquist test equation ap-
proach for analysing stability, but is based completely
on the solver characteristics and the system dynamics
for each connected submodel in a distributed system,
with respect to local time steps and global commu-
nication time steps. These contributions also enable
stability analysis of distributed systems including dif-
ferent explicit local solvers, that may have different
local time steps, and is a continuation of the work pre-
sented in [25]. Following, the results from studying
linear distributed systems with local explicit solvers
are extended to also yield for non-linear distributed
systems under certain conditions.

Before diving into the core topics, some back-

ground and definitions are given in the following.

2. Background Theory and Definitions

A general system of differential equations is here
given as

ẋ = f(x,u, τc)

y = h(x,u, τ c)
(1)

where x ∈ Rn is the state vector, u ∈ Rm is the
input vector given by the surrounding systems, τc ∈
Rp is the control vector, f(·) : Rn×Rm×Rp ⇒ Rn

is the vector of differential functions, y ∈ Rr is the
output vector and h(·) : Rn ×Rm ×Rp ⇒ Rr is
the output mapping function vector.

Relevant background theory regarding distributed
systems and solver stability are given in the following.

2.1. Distributed Systems

A distributed system is in general a collection of
subsystems interacting with each other with a given
communication rate. Locally, a subsystem is solved
by itself with fixed inputs and a local time step ∆ti,
smaller than, or equal to, the communication time
step Td, and when all local time steps converge to
the communication time step, the distributed system
converges to one total discrete system. In general,
dynamical systems given as (1) can be connected in
a distributed system as shown in Figure 1. Note that
the output mapping in the figure is slightly changed
in comparison to (1).

In this work, the main focus will be given to lin-
ear dynamical systems, since, as will be shown later
on, the results from studying linear systems can be
extended to also yield for non-linear systems. This
means that (1) may for subsystem i be rewritten as

ẋi = Aixi +Biui +Bciτci

yi = Cixi
(2)

where Ai ∈Rn×n is the state mapping matrix, Bi ∈
Rn×m is the input matrix mapping, Bci ∈ Rn×p is
the control matrix mapping and Ci ∈ Rr×n is the
output mapping matrix for a set of linear differen-
tial equations with n states, m inputs, r outputs and
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Figure 1: A general distributed system

p control variables. If only two single uncontrolled
subsystems are present in the distributed system, the
differential equations can be simplified and expressed
as

ẋ1 = a1x1 + b1u1 (3a)

y1 = c1x1

ẋ2 = a2x2 + b2u2 (3b)

y2 = c2x2

where y1 and y2 are the subsystem outputs, and at
each communication point

u1 := y2

u2 := y1
(4)

A simple algorithm for solving such a distributed
system is given in Algorithm 1. Note that Td ≥
max{∆t1,∆t2} in the algorithm.

Before solving a distributed simulation each sub-
system may be analysed separately and studied as a
single system in order to say something about the lo-
cal subsystem stability. However, this is not enough
to guarantee that the distributed system is stable,
which will be shown in the following.

2.2. Local Solvers in Distributed Systems

In a distributed system each subsystem has its own
local solver, and in this work only explicit solvers

Algorithm 1 Solution procedure for a distributed
system containing two single, linear subsystems.

1: procedure DistributedSim()
2: Initialize()
3: while t ≤ tstop do
4: t = t+ Td
5: u1 = c2x2
6: u2 = c1x1
7: while t1 < t do
8: ẋ1 = a1x1 + b1u1
9: [x1, ∆t1] = Solve(ẋ1, x1, t1)

10: t1 = t1 + ∆t1
11: end while
12: while t2 < t do
13: ẋ2 = a2x2 + b2u2
14: [x2, ∆t2] = Solve(ẋ2, x2, t2)
15: t2 = t2 + ∆t2
16: end while
17: Collect(t, x1, x2...)
18: end while
19: plot(t, x1, x2...)
20: end procedure

are considered. A thorough introduction to numeri-
cal solvers is given in [26] and will not be given any
particular attention here. For simplification reasons,
the solvers used here are also assumed to have fixed
time-step sizes. This is because the same conditions
for assuring stable simulation results will yield for
variable time-step sizes, where the maximal (and in
some cases the minimal) local time-step sizes are de-
termined. The stability of the local solvers in each
subsystem is closely related to the eigenvalues in the
subsystem itself, and by knowing the eigenvalues it is
possible to choose a solver and a time step that sta-
bilizes the local solution. Moreover, such solvers are
also linear which means that when solving non-linear
differential equations the solvers approximate the so-
lution of the system by solving piecewise linearized
systems of the non-linear system. This fact will be
useful later on.

For subsystem i, given as in (2), the eigenvalues λi
can be found by solving

det(Iλ−Ai) = 0 (5)
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where I is the diagonal unit matrix of size n × n
where n is the number of states in the subsystem. By
assuming that the forward Euler integration method
is used one can find the largest time step for which
the solution is stable. A simple differential equation
given as

ẋ = f(x) (6)

can be solved by the forward Euler integration
method as

xi+1 = xi + f(xi)∆ti (7)

where xi+1 is the numerical solution of the differential
equation at time ti+1 = ti + ∆ti. The forward Euler
integration method is stable if ∀ λi,

|1 + λi∆ti| ≤ 1, ∆ti > 0 (8)

where λi is eigenvalue i ∈ {1, ..., n} of the differential
system. If the eigenvalues are all real, the stability
criteria can be simplified to

∆ti ≤ −
2

λi
(9)

However, for a continuous system including two sub-
systems the eigenvalues for the entire system are
given as

det

(
Iλ−

[
A1 B1

B2 A2

])
= 0 (10)

where the state vector for the system is defined as
x = [x1, x2]>. As long as Bi has at least one non-
empty element, the two subsystems are dependent on
each other and the eigenvalues would change in com-
parison to (5). In other words, it would be impossible
for a subsystem developer to think of all surrounding
subsystems possible in a distributed system in order
to always assure stability. However, it is fairly simple
to prove than when Td →∞, the subsystems become
independent on each other since the inputs become
constant. This means that the global communication
time step has an effect on the numerical simulation
stability and must be included in the analysis. This
will be elaborated in the following.

3. Numerical Stability in Distributed Systems

When studying a single system it can be deter-
mined which solver to use, and what time step to use
if the solver is an explicit fixed-step size solver, as as-
sumed here. However the subsystem inputs will affect
the total distributed system dynamics and change the
eigenvalues respectively. This can cause instability in
the local solvers and is the topic of this section.

Two uncontrolled single linear differential systems
are considered as in (3). This can be argued for since
a system given as (2) including an internal linear sta-
bilizing control law can always be rewritten as a new
system given as

ẋi = Aixi +Biui

yi = Cixi
(11)

when the control reference is assumed zero or ob-
tained through ui. Since the solver stability is related
to the eigenvalues of a system it is of great interest
to study the interconnected dynamics between sub-
systems and how they affect the eigenvalues.

3.1. Continuous System Analysis and Eigenvalues

A single linear differential subsystem given as in
(3a) has the eigenvalue λ1 = 1

a1
. It can be verified

that if a1 < 0 and that u1 is bounded and equal to
some constant, the system is stable when assumed
continuous. Moreover it is actually input-to-state
stable since ẋ1 = a1x1 can be proven 0-GAS, meaning
that the origin is globally asymptotically stable when
a1 < 0 with the storage function V (x1) = 1

2x
2
1, using

Lyapunov dynamical stability analysis theory. By as-
suming that the Euler integration method is used to
solve this subsystem, the time step requirement for
a stable solution given in (9) would require that the
solver time step ∆t1 <

−2
a1

, and since the system is
stable, a1 < 0, the solver time step ∆t1 > 0.

Now, consider two single uncontrolled linear differ-
ential equations as given in (3) with ui = yk ∀i 6= k as
subsystem connections. These differential equations
can be rewritten as a compact set of differential equa-
tions in continuous time under the assumption that
the two subsystems interchange data continuously,[

ẋ1
ẋ2

]
=

[
a1 b1c2
b2c1 a2

] [
x1
x2

]
(12)
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or in an even more compact form

ẋ = Ax (13)

where x = [x1 x2]>. This system will always be sta-
ble when treated as an ordinary system of differential
equations if all eigenvalues of A are less than zero.
The eigenvalues in (12) can be calculated as in (10),
and are found by solving the equation

(λ− a1)(λ− a2)− b1b2c1c2 = 0 (14)

which gives the eigenvalues

λ1,2 =
1

2

[
a1 + a2 ±

√
(a1 − a2)2 + 4b1b2c1c2

]
(15)

This clearly shows that when considering the two
subsystem as one continuous system, the eigenvalues
for the total system are different from the eigenval-
ues in each subsystem, as long as {b1, b2, c1, c2} 6= 0.
Hence, when two or more subsystems are connected,
which have own local solvers and continuously ex-
change data, the stability of the local solvers would
depend on the interacting dynamics between subsys-
tems. This is illustrated in the following example.

Example 1 (Two single linear differential subsys-
tems). Consider two single linear differential subsys-
tems given as

ẋ1 = −2x1 + u1

y1 = x1
(16)

and

ẋ2 = −1.5x2 + 0.5u2

y2 = x2
(17)

These two systems have the eigenvalues λ1 = −2 and
λ2 = −1.5, respectively, and can be solved separately
by Euler integration with the time steps ∆t1 ≤ 1.0
and ∆t2 ≤ 4

3 , respectively, if ui is considered con-
stant. Now, consider the two subsystems as one con-
tinuous system, meaning that u1 = y2 = x2 and
u2 = y1 = x1, such that[

ẋ1
ẋ2

]
=

[
−2 1
0.5 −1.5

] [
x1
x2

]
(18)

The two eigenvalues for the total system are given as
λ1 = −1.0 and λ2 = −2.5. This means that if the
total system is to be solved using Euler integration,
∆t ≤ 2

2.5 = 0.8. This will give a stricter requirement
for ∆t for the total system compared to the separated
subsystems in the distributed system.

The two different system settings are solved using
the Euler integration method and the initial condi-
tions are set to x1(0) = 5 and x2(0) = 2. The first
simulation shows the results from when the two sub-
systems are separated and the subsystem inputs are
set as u1 = x2(0) and u2 = x1(0), meaning that u1
and u2 are constant and equal to the initial condi-
tions. Figure 2 shows the simulation results with the
two different time-step settings.

Figure 2a shows the simulation results when the
time steps are set to 0.01 s and in Figure 2b the
two different time steps are set close to the stabil-
ity region for the forward Euler integration method,
∆t1 = 0.980 s and ∆t2 = 1.313 s. Both x1 and x2
converge to the same values as in Figure 2a but now
the time it takes to converge is increased significantly,
about 100 s and 200 s, respectively.

In Figure 3 the simulation results for the system
given in (18) are shown when the total system is
solved by the Euler integration method with two dif-
ferent time steps. The initial conditions are the same
as in the previous case. As can be seen in Figure
3a both states converge to 0 in approximately 5 sec-
onds and the simulation results look smooth when
∆t = 0.01 s. Figure 3b shows the simulation results
when ∆t = 0.78 s, close to the forward Euler inte-
gration stability limit. The states still converge to 0
but the time it takes to do that is also in this case
significantly increased.

Example 1 shows that the maximal time step al-
lowed for stable solutions for the two subsystems,
considered as an ordinary system of differential equa-
tions, is lower than the ones allowed when solving
the subsystems separately. One could argue that by
choosing the local solver time-steps as small as possi-
ble the simulation results from the total system would
also become stable. However, it is not certain that
the combined dynamics are stable, and even if they
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Figure 2: Simulation results of separated subsystems with dif-
ferent time steps.

are, the time it takes to solve the total system would
increase significantly. It is then reasonable to be-
lieve that by decreasing the communication rate in a
distributed system, the interconnected dynamics get
weakened and the total simulation results in the dis-
tributed system may remain stable. This is summa-
rized in Lemma 1.

Lemma 1. A set of subsystems in a distributed sys-
tem, having their own local fixed step size solvers with
large time steps that keep the unconnected subsystems
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Figure 3: Simulation results of connected subsystems with dif-
ferent time steps.

stable by themselves, may not result in stable solu-
tions in a distributed setting due to the interconnected
dynamics when the global distributed time step goes
to zero, but will become stable when the global time
step is set large enough.

To be able to stabilize the local solvers, one must
find a global time step Td that reduces the effects of
the interacting dynamics such that each local solver
time step is within the solver’s stability limit. How-
ever, it is believed that there may be some restric-
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tions, when choosing the global time step, related to
sampling and signal processing theory. These topics
will be studied in the following.

3.2. Stability Analysis of Distributed System with re-
spect to Local Solvers

The example and the discussion in the previous sec-
tion, roughly summarized in Lemma 1, give a good
idea of the goal in this section. However before start-
ing with the stability analysis, a few thoughts and
comments regarding expected restrictions need to be
mentioned. To be more specific, Lemma 1 points to a
solution of the stability problem where the phenom-
ena of aliasing is utilized. Aliasing in sampling is
when the sampling frequency is chosen too low such
that the sampled data fails to represent the sampled
system, see Figure 4. This means that we want to

0 5 10 15 20 25 30
T ime [s]

−1.0

−0.5

0.0

0.5

1.0
Aliasing in Sampled Process

Figure 4: Aliasing in sampled system. The blue graph repre-
sents the process to be sampled, the read dots are the sampled
values and the green graph is the recreated process from the
sampled data.

set Td large, such that the communication frequency
becomes low enough for the local solvers to become
stable. However, aliasing often introduces distortions
and numerical errors, in this case also difference in
global time when subsystems exchange data, which
will be given more attention to later on. The ques-
tion that now comes to mind is why we in the first
place want to utilize aliasing and fail to represent

the system interactions in a proper manner. The an-
swer is however rather simple. If we do not have the
opportunity to choose the local time steps in the sub-
models, there may exist system configurations where
the solution of the total system becomes unstable.
We then have two opportunities. We can choose to
not use the system in simulations because we are not
allowed to change the local time-steps, or, if we are
not interested in transient simulation results, we may
choose Td such that we at least may be able to ob-
tain a correct and stable solution after an incorrect
transient simulation period. In many cases the latter
is the preferred option.

Before moving on with the analysis we need to de-
fine the concepts local and global solutions. A local
solution is here defined as the solution obtained lo-
cally in one connected subsystem, in comparison to a
global solution, which is the collection of local solu-
tions sampled with Td. In this study the stability of
both these solutions would be of interests since they
strongly depend on each other, meaning that if all
local solutions are stable with a given Td, so is the
global solution. However we cannot guarantee that
the local solutions are stable based on the fact that
the global solution is stable due to the aliasing side
effects.

Given a single linear differential equation as in (3a),
representing subsystem i in a distributed simulation,
is to be solved locally with the forward Euler integra-
tion method, as in (7). Hence, the numerical solution
of such a differential equation can be calculated as

xi(k + 1) = xi(k) + ∆ti (aixi(k) + biui(k)) (19)

for a given time step k. By defining that

ni :=
Td
∆ti

, (20)

meaning that the subsystem does not communicate
with the rest of the distributed system before ni local
time-steps have been taken, we know that if k was the
last communication point,

ui(k) = ui(k + 1) = ... = ui(k + ni) (21)

Since the subsystem i is not communicating with the
rest of the distributed system in the time interval
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t ∈ [k, k + ni], the system only depends on itself and
the last input ui(k). Hence,

xi(k + ni) = xi(k + ni − 1)

+ ∆ti (aixi(k + ni − 1) + biui(k))

= (1 + ∆tiai)xi(k + ni − 1) + ∆tibiui(k)

= (1 + ∆tiai)
2xi(k + ni − 2)

+ [(1 + ∆tiai) + 1] ∆tibiui(k)

= (1 + ∆tiai)
3xi(k + ni − 3)

+
[
(1 + ∆tiai)

2 + (1 + ∆tiai) + 1
]

∆tibiui(k)

= ...

= (1 + ∆tiai)
nixi(k)

+

ni∑
j=1

(1 + ∆tiai)
j−1∆tibiui(k)

(22)

The sum in (22) can be recognized as a known geo-
metric progression,

n∑
j=1

qj−1 =
1− qn
1− q , (23)

and if ai 6= 0

ni∑
j=1

(1 + ∆tiai)
j−1 =

(1 + ∆tiai)
ni − 1

∆tiai
(24)

By inserting k := t, where t is the progressing time,
and k+ ni = t+ Td, the global solution of the solved
subsystem can be expressed as

xi(t+ Td) = (1 + ∆tiai)
nixi(t)

+ [(1 + ∆tiai)
ni − 1]

bi
ai
ui(t)

(25)

These results are similar to the solution of discrete-
time equations given in [5], and for comparison the
solution for a continuous-time state equation with
sampled input is given as

xi(t+ Td) = eaiTdxi(t)

+

(∫ Td

0

eai(Td−τ)dτ

)
biui(t)

= eaiTdxi(t) +
(
eaiTd − 1

) bi
ai
ui(t)

(26)

It can be seen that when ∆ti → 0, (25)→≈(26) where
ni is given as in (20), when neglecting higher order
terms in the Tailor expansion of the exponential func-
tion. By including the output mapping given as in
(3), we might for simplicity rewrite subsystem i in
(25) as

xi(t+ Td) = ani
xi(t) + bni

ui(t)

yi(t) = cixi(t)
(27)

where

ani :=

{
(1 + ∆tiai)

ni for ai 6= 0
1 for ai = 0

bni
:=

{
bi
ai

(ani
− 1) for ai 6= 0

Tdbi for ai = 0

(28)

Equivalently, when a subsystem contains a set of dif-
ferential equations, we may rewrite (27) as

xi(t+ Td) = Anixi(t) +Bniui(t)

yi(t) = Cixi(t)
(29)

where

Ani
:= (I + ∆tiAi)

ni

Bni
:= A−1i (Ani

− I)Bi, Ai is nonsingular.

(30)

and where xi ∈ Rm, Ai ∈ Rm×m, ui ∈ Rp,
Bi ∈ Rm×p, yi ∈ Rr and Ci ∈ Rr×m, meaning
that there are m states, p inputs and r outputs in
subsystem i. If Ani

is singular, similar requirement
as established in (28) can be applied. Note that some
of the subscripts have been neglected because for a
matrix Ci, size(Ci) = size(Cni).

Now, let us assume that a given distributed system
contains s linear subsystems, with solutions given as
either (27) or (29). These subsystems are connected
together in the total distributed system through a
predefined connection configuration, typically

ui = M iyi (31)

where M i is a mapping matrix, and we might define
the global solutions in the distributed system as

xd(t+ Td) = (Ad +Bd)xd(t) (32)
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where xd denotes all states in the distributed system,

Ad := diag(An1
,An2

, ...,Ans
) (33)

and Bd is a mapping matrix between outputs and
inputs with the diagonal equal to zero. Since Ad and
Bd have the same size we might define the solution
mapping matrix as

Sd = Ad +Bd (34)

such that
xd(t+ Td) = Sdxd(t) (35)

To clarify, the solution mapping matrix for a dis-
tributed system containing two single linear differ-
ential equations such as (3), each implemented as a
subsystem, is then given as

Sd =

[
an1

bn1
c2

bn2c1 an2

]
(36)

where ani
and bn1

are defined as in 28. Note that a
similar expression for Sd can be found when yi(t) =
cxi(t) + dui(t), where d is assumed a constant map-
ping value.

In order for a general distributed system to have a
stable global solution, we must first assure that

|Sd| ≤ 1 (37)

by choosing Td. In other words, we must choose Td
such that all eigenvalues in Sd have an amplitude
with absolute value less than, or equal to, 1. How-
ever it is actually not enough to guarantee that the
solution mapping matrix has decreasing characteris-
tics. This has to do with possible differences between
the local subsystem propagating times and the global
propagating time and will be discussed more in detail
later on.

The example below is a revised version of Example
1 where the derived properties are tested.

Example 2 (Example 1 revised). By using the same
parameters as before, we can write the solution map-
ping matrix for the system given in Example 1 as

Sd =

[
(1 − 2∆t1)n1 − 1

2
[(1 − 2∆t1)n1 − 1]

− 1
3
[(1 − 1.5∆t2)n2 − 1] (1 − 1.5∆t2)n2

]
(38)

It can be verified that by setting ∆t1 = 1 and ∆t2 =
4
3 , meaning that the local solvers are only marginally
stable, the absolute values of the two eigenvalues in
Sd are equal to 1 when Td = 2. This gives n1 = 2 and
n2 = 1.5 which means that subsystem 1 is allowed 2
local steps and subsystem 2 is allowed 1.5 local steps
between each data exchange. This means that subsys-
tem 2 does not always have its local propagating time
synchronized with the global propagating time, which
may introduce errors causing the distributed system
to become unstable. Figure 5 shows the simulation
results for the two connected subsystems.

The first plot in Figure 5a shows the global solu-
tion, blue graph, compared to the local solution, green
graph, for subsystem 1. Due to the sampling rate, the
communication frequency between the subsystem, the
global solution is constant in comparison to the lo-
cal solution which oscillates and is barely affected by
subsystem 2. This is as expected when the global time
step is chosen twice as large as the local time step and
the local solver is marginally stable. However the lo-
cal propagating time is always synchronized with the
global propagating time. The second plot in Figure
5a shows a rather different picture. Here, the global
solution oscillates and with a different frequency than
the local solution. However, the total system is stable
because the global solution of subsystem 1 is constant
and does not excite subsystem 2 in any particular way
other than giving an offset.

To illustrate more in detail the effect of unsyn-
chronized propagating times the global time step is
changed to Td = 2.1 s which gives |eig(Sd)| =
{0.9877, 0.9560}. Figure 5b shows the correspond-
ing simulation results. Clearly, the total distributed
system is unstable, which indicates that synchronized
propagating time is closely related to stability in this
setting.

Example 2 shows that synchronization of the prop-
agating times is crucial for global solution stability.
It can also be shown in the derivation of the solu-
tion mapping matrix where it is actually assumed
that the times are synchronized without giving it any
thoughts. Based on the derived stability criterion and
the experiences gained in Example 2 the following
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Figure 5: Simulation results of two subsystems, with
marginally stable local solvers, connected in a distributed sys-
tem. Green graph denotes local solution and blue graph de-
notes global solution.

theorem can be established.

Theorem 1 (Convergence of local and global solu-
tions in distributed systems.). Given a set of linear
subsystems in a distributed system, each given as

ẋi = Aixi +Biui

yi = Cixi
(39)

that are solved locally by fixed step size solvers, such

as the forward Euler integration method with a time
step ∆ti, and by assuming that each local propagating
time is synchronized with the global propagating time,
the global solution of subsystem i can be expressed as

xi(t+ Td) = Anixi(t) +Bniui(t)

yi(t) = Cixi(t)
(40)

where Ani and Bni are solver dependent matrices
(for the forward Euler integration method see (30))
where

ni :=
Td
∆ti

(41)

and Td is the global step size in the distributed system.
By collecting the subsystems and applying the given
connection setup, the total global solution of the dis-
tributed system may be expressed as

xd(t+ Td) = Sd(Ani
,Bni

,Ci)xd(t) (42)

where Sd(·) is denoted the solution mapping matrix
for the total distributed system. Then, if Td can be
chosen such that

|eig(Sd(·))| ≤ 1 (43)

then both the local and the global solution will be sta-
ble. Moreover, if

|eig(Sd(·))| < 1 (44)

the global steady state solution of the distributed sys-
tem will converge to the local steady state solutions.

Proof. The proof is equal to the derivation of Sd(·),
where the forward Euler integration method is used,
when assuming synchronized propagating times. The
proof is similar when other explicit integration meth-
ods are used.

Definition 1. A distributed system is said to have
synchronized local and global propagating times when
ni ∈ N≥1 for each subsystem i, where N≥1 denotes
all integers larger than, or equal to 1.

As can be seen in Theorem 1 we do not need to
specify that each subsystem is locally stable, both in
the dynamics and in the solution. This has to do with

10



the fact that both the solver characteristics and the
system dynamics are already included in the stability
criteria.

Example 3 shows the use of Theorem 1.

Example 3 (Example 2 continued). Assuming a dis-
tributed system is given as in Example 2, but now
∆t1 = 0.9, ∆t2 = 0.9 and Td = 1.8, giving n1 = n2 =
2. Note that these local time steps guarantee that the
local solutions will be stable by themselves when us-
ing the Euler integration method. Then the ampli-
tudes of the eigenvalues in the solution mapping ma-
trix are given as |eig(Sd)| = {0.7271, 0.0354}. Since
|eig(Sd)| < 1 and ni ∈ N≥1 ∀i, the steady state global
solution will converge to the local solutions according
to Theorem 1. The simulation results are shown in
Figure 6. As can be seen in the figure the steady state
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Figure 6: Simulation result of two subsystems with stable local
solvers connected as in a distributed system. Green graph
denotes local solution and blue graph denotes global solution.

global solution converges to the two steady state local
solutions. Hence, the total system solution is stable.

As can be seen in Example 3 the global solution
converges to the local solutions when the propagating
local times are synchronized with the global propa-
gating time. However Theorem 1 may be relaxed
with respect to time synchronization when the lo-
cal solvers are robust. When a local solver is only

marginally stable we must assure that the propagat-
ing times are synchronized in order to guarantee sta-
bility. This is a measure of robustness of solutions
and when ∆ti → 0 we might choose Td arbitrary, as
long as the subsystems have certain passivity prop-
erties, due to the overhead in the local solvers.

3.3. Global Distributed System Stability

Until now only distributed systems containing sub-
systems with stable dynamics and stable local solvers
have been studied. However Theorem 1 guarantees
stability in a distributed system containing unstable
subsystems or subsystems without certain passivity
properties as long as the propagating times are syn-
chronized. This means that we also can use Theorem
1 to guarantee stability if subsystems in a distributed
system do not have certain passivity properties. It is
also possible to determine stability limits for a dis-
tributed system containing one or more subsystems
that have unstable dynamics, that are dependent on
surrounding stabilizing systems in order for the to-
tal distributed simulation to become stable. This is
shown in Example 4.

Example 4 (Unstable Subsystem). Two linear sin-
gle differential systems are given as

ẋ1 = −x1 + u1

ẋ2 = 0.1x2 − u2
(45)

It can be verified that the eigenvalues for the con-
tinuously connected systems are given as λ1,2 =
−9±3i

√
31

20 , and are therefore stable. However, when
solving the two systems separately in a distributed
manner, system 2 would become unstable when Td be-
comes arbitrarily large. The Euler integration method
is used to solve both systems locally, and the time
steps are set to ∆t1 = ∆t2 = 0.01, respectively. It
can be verified that when choosing Td = 0.89, giv-
ing n1 = n2 = 89, |eig(Sd)| = {0.9984, 0.9984}.
Hence, from Theorem 1 the total distributed system is
stable. The simulation results from the system when
x1(0) = 5 and x2(0) = 2 are shown in Figure 7.
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Figure 7: Simulation result of speed regulated mass-damper-
spring system implemented in a distributed system. Green
graph denotes local solution and blue graph denotes global
solution.

3.4. Explicit Fixed Step Size Solvers

So far, only the forward Euler integration method
has been studied. However, at least two more fixed
step size solvers, that are quite popular, should be
studied in the context of distributed simulation sta-
bility, namely the Runge-Kutta 2 integration method,
RK2, and the Runge-Kutta 4 integration method,
RK4.

3.4.1. Runge-Kutta 2

The classical RK2 integration method is known by
many names like Heun’s method and Improved Euler
integration method. For a general single differential
equation i given as

ẋi = f(t, xi) (46)

the classical RK2 algorithm is given as

k1 = f(t(j), xi(j))

k2 = f(t(j) + ∆ti, xi(j) + ∆tik1)

xi(j + 1) = xi(j) +
∆ti
2

(k1 + k2)

(47)

Assuming a single linear differential equation given
as

ẋi = aixi + biui (48)

it can be shown that the solution for time step j+ni
is given as

xi(j + ni) = ani
xi(j) + bni

ui(j) (49)

where

ani
:=

{
(1 + ai∆ti +

a2i
2 ∆t2i )

ni for ai 6= 0
1 for ai = 0

bni
:=

{
(ani

− 1) biai for ai 6= 0

Tdbi for ai = 0

(50)

If subsystem i contains a set of linear differential
equations, then

xi(j + ni) = Ani
xi(j) +Bni

ui(j) (51)

where

Ani
= (I +Ai∆ti +

1

2
A2
i∆t

2
i )
ni

Bni
= A−1i (Ani

− I)Bi, Ani
nonsingular

(52)

When the RK2 integration method is used, Ani
and

Bni given in (52) are used in Theorem 1 to construct
the solution mapping matrix. Note that when Ani

is singular, similar results as found in (50) can be
applied.

3.4.2. Runge-Kutta 4

For a linear differential equation as given in (46)
the RK4 algorithm may be given as

k1 = ∆tif(t(j), xi(j))

k2 = ∆tif(t(j) +
∆ti
2
, xi(j) +

k1
2

)

k3 = ∆tif(t(j) +
∆ti
2
, xi(j) +

k2
2

)

k4 = ∆tif(t(j) + ∆ti, xi(j) + k3)

xi(j + 1) = xi(j) +
k1
6

+
k2
3

+
k3
3

+
k4
6

(53)

By assuming a single linear differential equation as
given in (48), it can be shown that the solution for
time step j + ni is given as

xi(j + ni) = ani
xi(j) + bni

ui(j) (54)

12



Table 1: Summary of solver dependent matrices. Note that
Si is given as in (59). Note that FE and RK in the table are
an abbreviations for the forward Euler integration method and
the Runge-Kutta integration method, respectively

Solver Ani Bni

FE (I + ∆tiAi)
ni A−1

i (Ani − I)Bi

RK2 (I + ∆tiAi + 1
2
∆t2iA

2
i )ni A−1

i (Ani − I)Bi

RK4 (I + Si)
ni A−1

i (Ani − I)Bi

where

ani :=

{
(1 + si)

ni forai 6= 0
1 for ai = 0

bni
:=

{
(ani

− 1) biai for ai 6= 0

Tdbi for ai = 0

(55)

and

si :=
a4i
24

∆t4 +
a3i
6

∆t3 +
a2i
2

∆t2 + ai∆ti (56)

If subsystem i contains a set of linear differential
equations, then

xi(j + n) = Ani
xi(j) +Bni

ui(j) (57)

where

Ani = (I + Si)
ni

Bni
= A−1i (Ani

− I)Bi, Ani
nonsingular

(58)

and

Si :=
1

24
A4
i∆t

4 +
1

6
A3
i∆t

3 +
1

2
A2
i∆t

2 +Ai∆ti (59)

When the RK4 integration method is used, Ani and
Bni given in (58) are used in Theorem 1 to construct
the solution mapping matrix. If Ani

is singular, sim-
ilar results as found in (55) can be used. A summary
of solver dependent system matrices are given in Ta-
ble 1.

The following example illustrates the use of two
different solvers applied on a mass-damper-spring
system that is affected by a speed regulator.

b

k

m Fr

Figure 8: Mass-damper-spring
system.

Example 5 (Dis-
tributed mass–
damper-spring system
with speed regulator).
A mass-damper-spring
system as given in
Figure 8 is to be imple-
mented as a subsystem
in a distributed system,
and the differential equations describing its dynamics
are given as

ẋ1 = x2

ẋ2 =
1

m
(Fr − bx2 − kx1)

(60)

where x1 is the position, x2 is the speed and Fr is
the speed regulator force. This regulator force is as-
sumed to be another subsystem in the distributed sys-
tem given as

Ḟr = KIFr +KPx2 (61)

and is comparable to a PI-controller where the speed
reference is set to zero. We might assume that the
mass-damper-spring dynamics are solved with the Eu-
ler integration method and the regulator with the RK2
integration method. Hence, we might write

Sd =

[
An1 Bn1

0, bn2 an2

]
(62)

where

An1
=

([
1 0
0 1

]
+ ∆t1

[
0 1
− k
m − b

m

])n1

(63)

Bn1 =

[
0 1
− k
m − b

m

]−1(
An1 −

[
1 0
0 1

])[
0
1
m

]
(64)

an2 =

(
1 +KI∆t2 +

K2
I

2
∆t22

)n2

(65)

and

bn2
= (an2

− 1)
KP

KI
(66)
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where ni is as defined in (20). By setting m =
2, k = 10, b = 1, KI = −0.1, KP = −0.5,
∆t1 = 0.01 and ∆t2 = 0.1, it can be verified that
Td = 1.0 gives n1 = 100, n2 = 10 and |eig(Sd)| =
{0.8424, 0.8424, 0.9075}, which means that the dis-
tributed system is stable when solved. The initial val-
ues are set as x1(0) = 5, x2(0) = 0 and Fr(0) = 2,
and the simulation results are shown in Figure 9.
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Figure 9: Simulation results showing the speed controlled
mass-damper-spring system. Green graph denotes local so-
lution and blue graph denotes global solution.

It should be mentioned that the control law would
have preformed much better if KP > 0 which would
have put Fr and x2 in opposite phases, not equal as
shown in the figure.

As seen in the example, it can be more time con-
suming to calculate the solution matrix when using
higher order explicit solvers in comparison to first
order solvers such as the forward Euler integration
method, at least when the total system becomes
large. However, if only a conservative stability re-
sult is required it is possible to assure stability by
using a lower order solver in the analysis as long as
the stability regions of the solvers overlap. This is
summarized in Corollary 1.

Corollary 1. A conservative stability analysis can be
performed for a distributed system containing higher

order solvers by reducing the order of the solvers. In
particular, a conservative stability result can be found
for distributed systems containing higher order ex-
plicit Runge-Kutta integration methods by assuming
that the forward Euler integration method is used in
the simulation.

Proof. Since the higher order explicit Runge-Kutta
integration methods contain the stability region for
the forward Euler integration method, simulation re-
sults from a distributed system containing higher or-
der Runge-Kutta integration methods would be sta-
ble if stability is assured when using the forward Eu-
ler integration method.

3.5. Towards Nonlinear Systems

So far, much attention has been given to dis-
tributed linear dynamical systems. However, as it
turns out, the numerical stability criteria for linear
dynamical systems can also be applied to nonlinear
systems, although generating more conservative re-
sults. This is because linearization of the nonlinear
system, and an analysis of the eigenvalues, are re-
quired. To illustrate this, assume that a nonlinear
dynamical system is given as

ẋ = −x3 + u

y = x+ u
(67)

It can be shown that the linearized system is given
as

∆̇x = −3x20∆x+ u

x = x0 + ∆x

y = x+ u

(68)

where x0 is the operating point for the linearized sys-
tem. The linearized system has a range of eigenval-
ues, given as a function of x0,

λ(x0) = −3x20 (69)

which in this case only contains negative eigenvalues.
This is of no surprise since the nonlinear dynamics
are stable when the input is set to zero. It is then
possible to specify a validity range of the nonlinear
system, such that the system is only valid for a finite
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range of values for x, typically x ∈ [xl, xu] where the
subscript l stands for the lower limit and subscript

u stands for the upper limit. If xl = −xu for the
system given in (67), the eigenvalues for the system
are in the range λ ∈ [−3x2u, 0]. This means that when
using for example the Euler integration method, a
simulation of the nonlinear system will be stable as
long as ∆t ≤ 2

3x2
u

.

In general, for a nonlinear system given as

ẋ = f(x,u)

y = h(x,u)
(70)

the linearized system can for the operation points x0,
u0 and y0 be expressed as

∆̇x =
∂f

∂x

∣∣∣∣
x=x0
u=u0

∆x+
∂f

∂u

∣∣∣∣
x=x0
u=u0

∆u

∆y =
∂h

∂x

∣∣∣∣
x=x0
u=u0

∆x+
∂h

∂u

∣∣∣∣
x=x0
u=u0

∆u

x = x0 + ∆x

u = u0 + ∆u

y = y0 + ∆y

(71)

Note that both the inputs, the outputs and the states
need to be linearized in order to apply the stabil-
ity criterion. Also note that the control vector τ c is
omitted in (71) since the control law can be treated
as internal system dynamics or a separate distributed
subsystem. Corollary 2 summarizes the procedure for
applying Theorem 1 for analysing stability in nonlin-
ear distributed systems.

Corollary 2 (Simulation Stability Criterion for Non-
linear Systems). A nonlinear dynamical system as
given in (70) can be linearized according to (71) and
if finite ranges for the states, the inputs and the out-
puts can be determined and given as x ∈ [xl,xu],
u ∈ [ul,uu] and y ∈ [yl,yu], respectively, Theorem 1
can be applied where Ai(xi,0), Bi(ui,0) and Ci(yi,0)
are used to determine conservative values for ∆ti and
Td that make the total distributed simulation stable.

Proof. A linearized version of a nonlinear system i,

given in (71), can be expressed as

∆̇xi = Ai(x0i,u0i)∆xi +Bi(x0i,u0i)∆ui

∆yi = Ci(x0i,u0i)∆xi +Di(x0i,u0i)∆ui
(72)

Given x0i ∈ [xli,xui], u0i ∈ [uli,uui] and y0i ∈
[yli,yui] then ∃ eigenvalues for system i so that
λi(x0i,u0i) ∈ [λli,λui], which means that a fi-
nite range of eigenvalues can be determined. More-
over, ∃ Ani

(x0i,u0i), Bni
(x0i,u0i), Cni

(x0i,u0i)
and Dni

(x0i,u0i) such that

eig(Sd(An1
,Bn1

, · · · ,DnN
)) ∈ [eig(Sd)l, eig(Sd)u]

(73)
Then, if both |eig(Sd)l| ≤ 1 and |eig(Sd)u| ≤ 1, the
simulation results from the nonlinear system are sta-
ble.

Typically the finite ranges for the states, the inputs
and the outputs are chosen based on validity regions
of the subsystems, initial values, maximal expected
values or saturation limits.

To illustrate the use of Corollary 2, Example 5 is
revised.

Example 6 (Regulated and distributed mass–
damper-spring system with nonlinear spring stiff-
ness). The mass-damper-spring system given in Fig-
ure 8 has now a spring with nonlinear spring stiffness,
and the system of differential equations are now given
as

ẋ1 = x2

ẋ2 =
1

m
(Fr − bx2 − kx31)

(74)

The linearized mass-damper-spring system can be
written as

∆̇x1 = x2

ẋ2 =
1

m
(Fr − bx2 − 3kx201∆x)

(75)

which gives

An1(x01) =

([
1 0
0 1

]
+ ∆t1

[
0 1

− 3kx2
01

m − b
m

])n1

(76)
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Figure 10: Simulation results from regulated and distributed
mass-damper-spring system with nonlinear spring stiffness.
Green graph denotes local solution and blue graph denotes
global solution

Bn1(x01) =[
0 1

− 3kx2
01

m
− b

m

]−1(
An1 −

[
1 0
0 1

])[
0
1
m

]
(77)

Since the uncontrolled system is strictly passive and
since the regulator was able to stabilize the linear
mass-damper-spring system in Example 5, it is rea-
sonable to assume that the initial value for x1 in
(75) would be the highest value for x1 such that
x1 ∈ [−x1(0), x1(0)]. By assuming that all values are
as in Example 5, it can be verified that |eig(Sd)| =
{1.0000, 1.0000, 0.9922} when ∆t1 = 0.0013 s, ∆t2 =
0.026 s and Td = 0.078 s, giving n1 = 60 and n2 = 3.
The simulation results are shown in Figure 10. As
can be seen in the figure the total distributed system
is stable and converges relatively quickly to zero. This
means that the stability criterion for nonlinear sys-
tems, as given in Corollary 2 is a bit conservative.
However, this is not surprising since maximal values
for the states, the inputs and the outputs were used
in the stability criterion.

4. Conclusion

In this work numerical stability of distributed sim-
ulations has been studied by exploring outer solver
stability limits. Numerical stability of distributed
simulations has not been treated in any detail in the
literature. In this work stability requirements for ex-
plicit solvers for differential equations have been com-
bined with system dynamics and the global commu-
nication time-step in distributed system, and a cri-
terion for guaranteeing stable simulations has been
derived. This criterion is also extended to include
nonlinear system dynamics in the stability analysis.
Several examples are given to illustrate the use of
the criterion as well as illustrating stable numerical
results from distributed simulations.
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