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Abstract  5 

This study employs a systematic literature review to investigate how insurance data can be applied in 6 

the analysis of Surface Water Flood events. The study firstly identifies the variables expressing 7 

insurance data and those explaining them, together with their interrelationships. Damage variables may 8 

be expressed as either monetary-based or number of claims-based. Explaining variables may be 9 

subdivided into four categories: meteorological, geographic, demographic and property/building-based. 10 

Most of the common and under-researched combinations of these variables and their expression are 11 

discussed. Secondly, a comparative analysis is presented of current models, highlighting their 12 

differences and similarities. The study demonstrates that the scope and approach of the models varies in 13 

relation to scale, the coverage and period of incorporated insurance claims, and the methods used for 14 

model development and validation. Thirdly, the study proposes a generic and adaptable framework, 15 

constructed from an aggregation of information contained in relevant literature, to define a workflow 16 

for model development and future deployment. The study concludes with a discussion of the challenges 17 

facing model development and opportunities for deployment. 18 
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1 Introduction  20 

Flooding is a common environmental hazard that endangers the physical, economic and social 21 

environment (J. I. Barredo, 2009; Falconer et al., 2009; Kron, 2005). Pluvial flooding is triggered by 22 

accumulated rainfall that results in overland water flow and ponding that cannot be drained away, either 23 
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by natural or artificial systems (Bernet, Prasuhn, & Weingartner, 2017; Falconer et al., 2009; Hurford, 24 

Parker, Priest, & Lumbroso, 2012). Surface water flooding (SWF) represents a combination of pluvial 25 

flooding, stormwater flooding, sewer flooding, flooding from small open-channel and culverted urban 26 

watercourses, and overland flows from groundwater springs (Bernet et al., 2017; Falconer et al., 2009; 27 

Hurford et al., 2012; Kaźmierczak & Cavan, 2011). The term SWF can be regarded as the optimal 28 

general definition of rainfall-related (pluvial) flooding events (Bernet et al., 2017). Economic loss 29 

resulting from SWFs, including both tangible and intangible consequences, has increased dramatically 30 

in recent decades, and is expected to do so in the future as reported for several countries in Europe and 31 

as well as USA and Canada (J. Barredo, Saurí, & Llasat, 2012; Bernet et al., 2017; L. M. Bouwer, 2013; 32 

Cheng, Li, Li, & Auld, 2012; Kousky & Michel-Kerjan, 2017; Kron, 2005; David Moncoulon et al., 33 

2016; Wobus, Lawson, Jones, Smith, & Martinich, 2014; Zhou, Panduro, Thorsen, & Arnbjerg-Nielsen, 34 

2013). On the one hand, patterns and intensities of rainfall events are expected to alter in response to 35 

climate change, leading to more frequent and severe flooding events (Cheng et al., 2012; Falconer et al., 36 

2009). On the other, a large body of research currently points towards increasing concentration densities 37 

of valuable assets due to urbanization and an expanding population as the principle cause of the 38 

increasing cost of natural disasters (J. Barredo et al., 2012; J. I. Barredo, 2009; Bernet et al., 2017; 39 

Laurens M Bouwer, 2011; L. M. Bouwer, 2013; Kreibich & Thieken, 2008; Spekkers, Clemens, & ten 40 

Veldhuis, 2015). Consequently, risk mapping and risk assessment are applied as methodologies for the 41 

identification of risk-influencing factors and the evaluation of risk-mitigating measures. 42 

The term risk in this context is commonly expressed as the multiplication of the factors hazard, 43 

vulnerability and exposure (Crichton, 1999; Field, Barros, Stocker, & Dahe, 2012; IPCC, 2012; Koks, 44 

Jongman, Husby, & Botzen, 2015; Kron, 2005). Hazard refers to threatening natural events, such as 45 

intense rainfall, expressed in terms of probability of occurrence. Vulnerability refers to the capacity, or 46 

inability, of a society to deal with the hazard. Exposure refers to that of the human population involved, 47 

combined with the value of the assets subject to the hazard (Crichton, 1999; Koks et al., 2015; Kron, 48 

2005). An understanding of each component of this risk triangle is required as a basis for analysing how 49 

risk due to flooding can be reduced most effectively. Research over the past decades has mostly focused 50 
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on improving our understanding of the hazard component (Grahn & Nyberg, 2017; Kaźmierczak & 51 

Cavan, 2011; Koks et al., 2015; Mechler & Bouwer, 2015; Mechler et al., 2014), while vulnerability 52 

and exposure have started to gain attention only during the past decade in the field of flood risk 53 

assessment (Cutter, Emrich, Morath, & Dunning, 2013; Koks et al., 2015; Lujala, Lein, & Rosvoldaune, 54 

2014; Rød, Opach, & Neset, 2015). Hazard is a very uncertain phenomenon, which cannot be predicted. 55 

The ranges of levels of vulnerability and exposure are very wide and constantly changing. For this reason 56 

it is important to develop policies that are able to address a range of different outcomes (Falconer et al., 57 

2009; Kron, 2005). To achieve this, it is important to understand the fundamentals of flood damage data 58 

and its possible causes or influences. 59 

Insurance databases represent a potential source of flood damage data. Consequently, analytical research 60 

has been carried out in recent years to apply insurance data as a proxy for the analysis of the impact of 61 

flooding events (Bernet et al., 2017; Cortes, Turco, Llasat-Botija, & Llasat, 2018; Grahn & Nyberg, 62 

2017; Sorensen & Mobini, 2017; Spekkers et al., 2015; Spekkers, Kok, Clemens, & ten Veldhuis, 2013; 63 

Torgersen, Bjerkholt, Kvaal, & Lindholm, 2015; Torgersen, Rød, Kvaal, Bjerkholt, & Lindholm, 2017; 64 

Zhou et al., 2013). The outcomes of these studies have included an understanding and ranking of the 65 

variables that can explain damage data, the development of models that can predict the likelihood of an 66 

SWF event, and the implementation of said models’ flood risk assessment frameworks. These studies 67 

share a common objective – the development of models that explain insurance data in terms of other 68 

rainfall-related, geographic and socio-economic factors. However, the models differ in their 69 

identification and expression of the variables used, their interrelationships, the methods used to develop 70 

and validate the models, and their further implementation and deployment. The studies have concluded 71 

that such models can provide an insight into the relationship between insurance data and key explaining 72 

variables. However, much of the statistical variance is left unexplained, emphasising the need: to 73 

increase the availability, completeness and reliability of relevant data on one hand; and, to consider 74 

alternative ways of expressing selected variables, as well as the inclusion of other explaining variables 75 

and their interrelationships, and the methods used to develop the models on the other hand. In the light 76 

of this, an aggregation and synthesis of the relevant literature is required in order to compare the 77 
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similarities and dissimilarities between these studies, and thereafter deliver recommendations for future 78 

application based on current best practice. 79 

The aim of this study, carried out in the form of a systematic literature review, is to look into how 80 

insurance data can be used to analyse SWF events. It has the following objectives: 81 

- to analyse the historical development of the use of insurance data for analysing SWF events (Section 82 

3.1), 83 

- to identify the variables that express insurance data, and those explaining them (Section 3.2), 84 

- to identify current interrelationships between insurance data and other explaining variables (Section 85 

3.3), 86 

- to provide a current overview of existing models and analyse their differences and similarities 87 

(Section 3.4), 88 

- to propose a generic framework based on an aggregation of current models and methods as a basis 89 

for a discussion of the challenges related to model development, as well as opportunities for their 90 

deployment (Section 3.5) 91 

Section 1 describes the motivation, aims and scope of the study. The methodology is then presented in 92 

detail in Section 2. The results and discussions, addressing the aforementioned objectives, are presented 93 

in Section 3, and conclusions are set out in Section 4. 94 

2 Methodology 95 

The literature review presented in this study is based on an established research methodology (Booth, 96 

Papaioannou, & Sutton, 2011) that ensures a comprehensive search process and systematic review of 97 

the relevant literature. The methodology originates from the field of health and social sciences, but its 98 

principles are applicable to other fields of study. The approach provides a tool capable of providing a 99 

transparent and reproducible research synthesis, thus offering greater clarity, internal validity and 100 

audibility (Booth et al., 2011).  101 
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The first step in the review process is to define the scope of research that directs focus on the research 102 

question (Booth et al., 2011). In the present study, the research question opts to identify how can the 103 

insurance data be used to derive models explaining SWF events. In this study, the definition of an SWF, 104 

as set out in references (Bernet et al., 2017; Falconer et al., 2009; Hurford et al., 2012; Kaźmierczak & 105 

Cavan, 2011), is used because it covers the different types of floods described in the studied literature. 106 

The CIMO framework (Petticrew & Roberts, 2008) is used to define the key concepts of the research 107 

process (Table 1). The research question is identified as follows: "How (O) do we use insurance data (I) 108 

to analyse (M) Surface Water Flooding events (C)?" 109 

Table 1.The CIMO framework 110 

Context Surface Water Flooding/pluvial floods/rainfall/precipitation/urban floods/surface water/storm water 

Intervention The use of insurance data to predict/analyse/explain/understand the occurrence of floods 

Mechanisms 
Analysis/derivations/relationships between insurance data and other explaining variables to model/predict 

the occurrence of pluvial floods 

Outcomes Models representing/explaining/associating flood occurrence and insurance data 

 111 

The keywords, presented in Table 2, were identified based on the titles, abstracts and keywords provided 112 

in the literature (Bernet et al., 2017; Cortes et al., 2018; Grahn & Nyberg, 2017; Sorensen & Mobini, 113 

2017; Spekkers et al., 2015; Spekkers et al., 2013; Torgersen et al., 2015; Torgersen et al., 2017; Zhou 114 

et al., 2013) following a preliminary screening (first step) using the electronic database Scopus, and 115 

Google Scholar. The search scheme and exclusion criteria are shown in Figure 1 and Table 3.  116 

Table 2. Keywords and Boolean operators 117 

What? 
 

Where? 
 

How? 

Intervention  Context  Outcomes/Mechanisms 

insurance and 

storm* 

and 

analysis model* 

pluvial assessment relation* 

precipitation occurrence statistic* 

flood* technique verification 

rain* correlation regression 

urban flood* risk validation 

surface water   

 118 
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Three electronic databases of peer-reviewed literature were used for the final screening (second step). 119 

Scopus, Web of Science and Engineering Village are all relevant sources of information in this research 120 

area (Aghaei Chadegani et al., 2013; Falagas, Pitsouni, Malietzis, & Pappas, 2008; Jacso, 2005). The 121 

keywords, operators and nesting combinations are presented in Table 2. The keywords were applied at 122 

title - abstract - keywords - topic level. The last search was performed on 25 April 2018. All years of 123 

publication were included in the search process. 124 

 125 

Figure 1. PRISMA framework (Moher, Liberati, Tetzlaff, Altman, & Group, 2009) showing the literature 126 
screening process  127 

Table 3. Exclusion criteria 128 

Exclusion 1st exclusion criterion 2nd exclusion criterion 3rd exclusion criterion 4th exclusion criterion 

Reason 

for 

exclusion 

Qualitative based on type of 

literature 

Scientific based on 

keywords, titles 

Scientific based on 

abstract 

Scientific based on 

article and quality 

assessment 
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What is 

excluded 

Literature other than Article; 

Review; Proceeding Paper; 

(Chapter) Books; English  

Other types of floods or storms or drought; insurance programmes, schemes or 

policies; implementations and types of insurance programmes; description of 

insurance data, but not how to use it. 

 129 

Literature screening based on a full content, cross-referencing methodology and author searching was 130 

used to check for additional sources. In cases of similar studies being included in different literature 131 

sources, priority was assigned to the most recent publication. The final number of selected publications 132 

was 34. Subsequently, a data extraction process (Booth et al., 2011) was developed to retrieve and code 133 

relevant variables and elements in order to facilitate comparison and identify patterns, themes or trends. 134 

Table 4 shows the subgroups of data extraction that help to structure the literature review results 135 

described in the following sections.  136 

Table 4. Extraction of the reviewed literature 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

3 Results and Discussion 145 

3.1 Historical development: graphical representation 146 

Figure 2 presents an historical development of the selected literature that has addressed the relationship 147 

between insurance claims and SWFs. The literature is subdivided into publications that have modelled 148 

this relationship (solid line) and others that have simply provided relevant research results and 149 

discussions (dotted line). Despite the fact that the potential of applying this relationship has been 150 

discussed over many decades, results show that it has only been in recent years that an increasing number 151 

of publications have appeared that actively develop a model. Nevertheless, these studies cite a limited 152 

number of cities, and countries including Canada, Denmark, France, Germany, the Netherlands, 153 

Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom and the USA. In some cases, more 154 

Data/ Variables 

Damage variable 
Expression 

Categorisation 

Explanatory variables  
Combination with 

other variables 

Models 

Establishment/development 

Validation 

Implementation 
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than one study per country is identified, some investigating different regions, and others cited by either 155 

similar or different authors.  156 

 157 

Figure 2. Historical development of selected literature divided between literature in which it was developed a 158 
model and all relevant literature 159 

The increasing number of publications produced during the past decade suggests an increased interest 160 

in the use of insurance claim data to assess flood risk. Nevertheless, only very few countries have applied 161 

such methodologies, thus highlighting the potential for wider application of the approach. Consequently, 162 

an aggregation of relevant literature may provide the basis for further development and application of 163 

these models and, for this reason, a review of current models and their characteristics, including the 164 

variables used and their combinations, should be made available.  165 

3.2 Identification and categorization of the variables used to develop the 166 

relationship between damage and explaining variables 167 

A variety of different definitions in relation to the variables used to define insurance data and variables 168 

used to explain them are identified in the literature. The term damage is a dependent or response variable 169 

that expresses the nature of insurance data. The term explaining is a damage-influencing or independent 170 
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variable used to account for or explain the damage variable. In the following, the terms 'damage 171 

variable' and 'explaining variable' are used.  172 

Figure 3 presents a schematic overview, in the form of a bubble map, of the variables identified and 173 

used in these studies. The literature is indexed with numbers according to Table 6. The damage variables 174 

are grouped in two main categories based on their expression, as follows: 175 

1- Monetary-based, which express the damage variable in terms of a currency value. They include 176 

values expressed both as a whole or as a fraction of, or relative to, other parameters or variables. 177 

2- Number of claims-based, which express the damage variable in terms of the number of 178 

policies/claims that are dependent on other parameters or variables. 179 

The explaining variables may be subdivided into four categories, based on their characteristics and their 180 

role in the risk triangle (hazard-exposure-vulnerability). The literature shows sometimes contrasting 181 

views when assigning different variables to one of the roles within the risk triangle. An example is the 182 

discussion of the variable 'density of built environment', which has been considered both as part of 183 

vulnerability  and exposure (Koks et al., 2015).  184 

The following categories are defined: 185 

1- Meteorology-based variables (M) that describe physical atmospheric or natural extreme 186 

weather events such as intense rainfall. They may or do cause, influence or trigger the 187 

occurrence of flood events. This category belongs to the hazard risk component.  188 

2- Geographic-based variables (G) that describe the spatial characteristics and parameters of the 189 

area under investigation. They may be expressed as single parameters or be combined in the 190 

form of a map describing terrain characteristics. These in turn may influence the degree of the 191 

hazard if an SWF event occurs, and the coping mechanisms of the system. This category belongs 192 

to both the exposure and vulnerability risk components. 193 
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3- Demographic-based variables (D) that state the inventory of elements and assets in a given area 194 

in which the SWF event may occur. Such variables may be used to aggregate damage variables. 195 

This category belongs to both the exposure and vulnerability risk components. 196 

4- Building/property-based variables (B) that describe susceptible (at-risk) elements and the 197 

system’s ability to cope with the hazard. They are directly related to the relevant damage 198 

variable. This category belongs to both the exposure and vulnerability risk components. 199 

Damage variables: There are two ways of expressing the damage variables; 1) total number of claims, 200 

and 2) claim size. In both cases, these values can be aggregated with other parameters or explaining 201 

variables and be expressed as relative values. The review identifies a variety of ways of expression and 202 

conclusions in terms of their applications. Findings (Zhou et al., 2013) show that rainfall data cannot be 203 

used to explain variation in individual cost per claim. However, such data may be a suitable indicator of 204 

overall costs per day. In contrast, in Spekkers et al (2014) the cost per claim term was inadequate to 205 

express  the damage variable, while claim frequency appeared to provide more satisfactory results. The 206 

latter sounds plausible, since cost per claim is related to real estate value, the cost of cleaning and the 207 

economic value of the insurance holders’ belongings. Consequently, high-income neighbourhoods may 208 

appear to be more easily flooded, regardless of the real probability of SWF events in such areas 209 

(Sorensen & Mobini, 2017). Nevertheless, the total number of claims term may be biased if it is not 210 

aggregated or expressed in a relative manner. A neighbourhood containing a high building density or a 211 

high percentage of insured buildings will likely result in a larger total number of claims than an area that 212 

is less populated or less densely developed. This observation underlies the importance of using 213 

aggregated or relative values (Bernet et al., 2017; Spekkers, Kok, Clemens, & ten Veldhuis, 2014). 214 

However, relative values can also be misleading. For example, a neighbourhood containing only one-215 

storey buildings may seem to be more easily flooded than a similar neighbourhood with the same number 216 

of multi-storey buildings. For this reason, the use of suitable parameters or variables that aggregate the 217 

damage variable may be more useful than using the ‘cost of claims’ or ‘total number of claims’ terms. 218 

Nevertheless, a combination of both claim size and total number of claims, aggregated by the use of 219 

different parameters or in terms of total values, is proposed in order to fully exploit the relationship. 220 
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Explaining variables: This review presents several variables that are used to explain the damage 221 

variables. Focus is directed mainly on the meteorological category since variables describing rainfall 222 

are considered to be the main causes of SWF events. However, a variable that has not been identified is 223 

‘wind-driven rain’, which may damage certain parts of a building that are not accessible to vertical 224 

rainfall. Similarly, snow and hailstorms may also contribute to damages paid in response to insurance 225 

claims (Hanak & Korytarova, 2014). Moreover (and similar to the damage variable), results may be 226 

dependent on how the rainfall data are aggregated. For example, in (Grahn & Nyberg, 2017) the intensity 227 

variable, which takes both the duration of the rainfall and the aggregated volume of rain into account, 228 

exhibited a statistically significant effect on flood-related damages, while the aggregated volume of rain 229 

alone did not. This illustrates the importance of applying meteorological information that reflects the 230 

rainfall phenomenon in a temporal perspective. Despite the fact that rainfall may be the main cause of 231 

SWF events, previous research has concluded that use of this variable alone is not sufficient to explain 232 

observed variance (Cortes et al., 2018; Spekkers et al., 2015; Zhou et al., 2013), thus underlying the 233 

importance of considering the impacts of other categories. Different studies include different variables 234 

within the four identified categories of explaining variables. However, almost none of these studies 235 

include variables from each of these categories in the same analysis. The absence of key variables may 236 

explain the large unexplained variance. 237 

The selection of variables also depends on the scale of the investigation (macro-, meso- or micro-, 238 

referring to city/country, neighbourhood and building scale, respectively). Different variables are 239 

associated with different scales, meaning that different variables and aggregations can be used to explain 240 

a given damage variable based on the scale of the latter. At microscales, detailed information regarding 241 

a given property may be very relevant (D. Moncoulon et al., 2014). On the other hand, the relationships 242 

between socio-economic variables and the damage occurred may be weaker at district level (compared 243 

to that of individual households), especially where such districts are heterogeneous. An example of this 244 

is in situations where there is a large variance in household incomes (Spekkers et al., 2014). Similarly, 245 

the type of insurance database plays an important role in the selection of variables. Different socio-246 
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economic variables may play different roles when insurance claims are subdivided between property 247 

and movable assets.  248 

Other variables: This review indicates that many variables have been used and screened as important 249 

when explaining the damage variable. In addition to the common variables used for similar purposes in 250 

different studies, special variables are also noted. The latter include a binary variable depending on 251 

whether the event occurred during the day shift or night shift (Grahn & Nyberg, 2017), urban exposure 252 

(Grahn & Nyberg, 2017) or the permeability of surfaces (Torgersen et al., 2017); property value 253 

(Spekkers et al., 2014); or socio-economic variables such as household income, age and education of 254 

breadwinner or fraction of homeowner (Spekkers et al., 2014). Others include urban drainage system 255 

properties (drainage capacity, age of infrastructure, percentage of surface water), level of urbanization, 256 

socio-economic indices (household income and property value), and district-related parameters 257 

(percentages of low-rise and high-rise buildings, percentage impervious surface) (Spekkers et al., 2013), 258 

as well as the weather conditions prevailing during preceding days (Torgersen et al., 2015). Other 259 

variables have been identified as influential from other studies although they are not used in any of these 260 

publications. They include green spaces (Koks et al., 2015), self-protective behaviour (Grothmann & 261 

Reusswig, 2006), precautions, external response and early warning (Merz, Kreibich, Schwarze, & 262 

Thieken, 2010), as well as building condition (Yazdani, Dowgul, & Manzur, 2010). A systematic map 263 

of all the variables that may affect flood occurrence may be useful for the future application of similar 264 

research. Moreover, damage variables are also influenced by a complexity of factors associated with the 265 

social vulnerability of residents and communities to surface water flooding such as age of residents, 266 

willingness to pay for insurance, presence during occurrence of the event, and so on. Vulnerability may 267 

be a complex phenomenon to quantify, since it is represented as a composite of other economic, social, 268 

cultural and psychological factors that are themselves difficult to describe quantitatively (Holand, 269 

Lujala, & Rød, 2011; Shirley, Boruff, & Cutter, 2012).  270 
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 271 

Figure 3. Map of identified variables. [Numbers] refer to the indexed literature in Table 6.Categories of damage (left) and explanatory (right) variables are grouped by 272 
colour shades (H-hazard; E-Exposure; V – vulnerability). The increasing area of each cell represents the increased frequency of variables/categories.273 
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3.3 Interrelation between variables 274 

Subsequent to the identification of the various influential variables, this section addresses the 275 

interrelationships between these variables. A quilt plot showing the frequency of all potential 276 

combinations between the variables used is presented in Table 5. Results from the quilt plot include the 277 

following: 278 

- Within the categories expressing the damage variable, the occurrence of the ‘number of claims’ 279 

variable is greater than the ‘monetary terms’ variable. 280 

- Within the categories expressing the explaining variables, the meteorological variable is the most 281 

commonly used. This makes sense since it is directly related to the cause of the floods. Thereafter, 282 

geographic, demographic and building/property-based variables occur, in that order. 283 

- The most frequent combination of two categories (one from damage, and one from the explaining 284 

variable groups) is 'number of claims' combined with 'meteorological'. 285 

- The most frequent combination of two variables (one from damage, and one from the explaining 286 

variable groups) is 'number of claims per period' combined with the 'rainfall by intensity'. 287 

- Among the categories, the two most common variables are meteorological and monetary-based. 288 

However, among variables, the most common combinations involve one from meteorological and 289 

one from number of claims-based groups. 290 

- The monetary-based variables are quite widespread in terms of frequency. The reason for this may 291 

be the different ways in which the databases are structured, while the number of claims variables 292 

are mostly focused on the number of claims per period. This may be explained by the fact that it is 293 

possible to retrieve the total number of claims from the databases during a specific timeframe. 294 

- The most used damage variable is ‘number of claims over a specified timeframe’.  295 

- The most used explaining variable is ‘rainfall by intensity’.  296 
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- Many variables exhibit low frequency of occurrence. Those exhibiting a single frequency and 297 

expressing the damage variable include 'Building claim over building value or insurance coverage', 298 

'Claims per capita or GDP', 'Total daily claims per number of claims', 'Number of claims per gauge' 299 

and 'Number of claims per number of policy holders'. Those exhibiting a single frequency and 300 

expressing the damage variable include 'Other meteorological parameters', 'Density' and 'GDP'.  301 

The most under-researched areas include the building/property-related and demographic categories. 302 

Both of these categories include variables that are vulnerability-based. All green-coloured cells in the 303 

quilt plot suggest new combinations between variables that have already been used. The red-coloured 304 

cells may provide a useful insight into what should be accounted for at the initial stages. For example, 305 

the most exploited relationship is that between 'number of claims' and 'rainfall intensity'. This may imply 306 

that these variables exhibit the strongest correlation, and as such may provide a useful insight into which 307 

relationship should first be accounted for. While a few of the damage variables specifically belonging 308 

to one of the four categories may have been considered as insignificant among the different studies, in 309 

general terms, the four categories have all been shown to be important. As a result, it may be expedient 310 

to combine variables derived from each of categories as follows: 311 

𝐼𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = {

𝐼1(𝑚𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙)
𝐼2(𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐)
𝐼3(𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐)
𝐼4(𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔)

}  (1) 312 

where I represent an index value. 313 

The inclusion of four categories does not necessarily imply that the variance will be better explained 314 

here than in situations that include only two or three categories. However, part of the variance will 315 

always remain unexplained if no account is taken of variables from any of the identified categories. The 316 

results are highly dependent on the selection of both the variables within the given category and their 317 

combinations. Similarly, the choice of model used to develop this relationship significantly influences 318 

the results.   319 
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Table 5. Quilt plot showing the frequency and combination of identified variables, where from red to green colour means high to low frequency. [Numbers] refer to the 320 
indexed literature presented in Table 6. 321 

   Damage variable  

 

Monetary-based Number of claims-based   
Claim per 

building 

value or 
insurance 

coverage 
[2; 9] 

Claims per 

capita or 
GDP 

[13] 

Daily 
claims per 

number of 

claims 
[6] 

Movable 
or damage 

to 

buildings 
[1;3;6] 

Total 

claims for 
building 

[7;9;14] 

Total 

claims per 
event 

[3;5] 

Total 

claims per 
period 

[4;12;13] 

Claims per 
period/eve

nt 

[1;2;4;5;8;
10;11] 

Claims per 

gauge 

[1] 

Claims per 

policy 
holders 

[6] 

  

E
x
p

la
in

in
g
 v

ar
ia

b
le

 

Meteorological 

Rainfall by event 
[2;3;11;13] 

1 1 0 1 0 1 1 2 0 0 4 

11 

Rainfall by index 

[2;4;14] 
1 0 0 0 1 0 1 2 0 0 3 

Volume by timeframe 

[1-7;10;11;13;14] 
1 1 1 3 2 2 2 6 1 1 11 

Intensity-duration-
frequency curve [5;11] 

0 0 0 0 0 1 0 2 0 0 2 

Other meteorological 

parameters [10] 
0 0 0 0 0 0 0 1 0 0 1 

Geographic 

Drainage system 

[8;11] 
0 0 0 0 0 0 0 2 0 0 2 

8 

Mapping or address 
[2;6-9;11;12;14] 

2 0 1 1 3 0 1 3 0 1 8 

Terrain parameters 

[6;8] 
0 0 1 1 0 0 0 1 0 1 2 

Urban exposure 

[3] 
0 0 0 1 0 1 0 0 0 0 1 

Demographic 

Administrative units 
[3;6;13] 

0 1 1 2 0 1 1 0 0 1 3 

4 

Density 

[3] 
0 0 0 1 0 1 0 0 0 0 1 

GDP 

[13] 
0 1 0 0 0 0 0 0 0 0 1 

Socio-economic 
[6] 

0 0 1 1 0 0 0 0 0 1 1 

Population 

[3;7;13] 
0 1 0 1 0 1 1 0 0 0 3 

Property-based 

Building type and 

quality [2;6;9] 
2 0 1 1 1 0 0 1 0 1 3 

5 
Number of buildings 
[7;12] 

0 0 0 0 1 0 1 0 0 0 2 

 

  2 1 1 3 3 2 3 7 1 1 Number of 
frequencies.  

  10 8 

       High    Low    

322 
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3.4 Modelling the relationship between the variables 323 

Table 6 presents the characteristics of the case studies taken from the fourteen identified publications 324 

that have modelled the relationship between the damage and explaining variables. The applied case 325 

studies share the same scope, although they vary in terms of both extent and approach. This covers the 326 

scale involved, as well as the coverage and period of incorporated insurance claims. Similarly, the 327 

methods used to develop and validate the models are different. The methods applied in model 328 

development (see Table 6) include visual analysis techniques, a linear, logistic and Poisson regression 329 

model, decision trees, principal component analysis and partial least squares discriminant analysis. The 330 

percentage of the explained variance also varies. Lastly, the ways in which results are visualised and 331 

deployed vary from the provision of a variable correlation function to the development of probabilistic 332 

hazard maps. 333 

The results show that regression is the most commonly applied method. This approach is widely used 334 

in the field of flood risk assessment (J. Barredo et al., 2012; Botzen & Bouwer, 2016; Changnon, 335 

Changnon, & Hewings, 2001; Donat, Pardowitz, Leckebusch, Ulbrich, & Burghoff, 2011; Haug, 336 

Dimakos, Vardal, Aldrin, & Meze-Hausken, 2011; Kim, Seo, & Jang, 2012; Lohmann & Yue, 2011; 337 

Peng et al., 2014; Wobus et al., 2014). Regressions are simple to apply and to visualise the results. 338 

However, the variation in validation techniques used indicate that the explained variance may be 339 

relatively low. One reason for this may be the choice of the modelling method. However, low variance 340 

may also be caused by 1) the poor availability of, or variation in, the aggregated data (Spekkers et al., 341 

2014), 2) the assumptions regarding the variables included in the study (either by their absence or 342 

aggregation/expression), 3) the percentage of insured buildings as a ratio of all the buildings, or 4)  343 

alterations to insurance policies over the years.  344 

The choice of modelling method is an important factor influencing outcomes. Different conclusions 345 

regarding model application and efficiency are drawn in different studies. According to Spekkers et al. 346 

(2014), decision-tree models perform better than global regression models in terms of the explained 347 

variance in damage data. Similar conclusions are drawn by Merz et al. (2010) in applications related to 348 
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fluvial flooding. However, a satisfactory percentage of the variance may be explained using regression 349 

techniques (D. Moncoulon et al., 2014; Torgersen et al., 2017). Nevertheless, consideration should be 350 

given to the possibility of a non-linear relationship between the damage and explaining variables 351 

(Sorensen & Mobini, 2017; Spekkers et al., 2014; Zhou et al., 2013). Regression-based models may not 352 

be able to capture this variance. Furthermore, satisfactory results have been derived by applying 353 

principal component analysis even when account is taken only of variables within the meteorological 354 

category (Torgersen et al., 2015). Similarly, the partial least squares regression technique was also found 355 

to be suitable due to the high collinearity in the dataset (Torgersen et al., 2017), although this in turn 356 

may lead to poor results when using ordinary least squares regression (Tobias, 1995).  357 

Many of the conclusions derived from the literature are contradictory and no specific modelling method 358 

has been proved to produce more satisfactory results than the others. However, the study does reveal 359 

that for a model to produce satisfactory results it is crucial to employ a combination of the variables and 360 

the methods used. Even if the choice and aggregation of variables corresponds to the specific 361 

characteristics of the case study in hand, explained variance and consequently outcomes may be 362 

improved by accounting simultaneously for the combination of variables derived from the main four 363 

categories. Sensitivity analysis and bootstrapping are additional techniques that can be used to verify 364 

and validate the models.  365 

 366 
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Table 6. Case study and model characteristics.  SWF – Surface Water Flood; FV – Fluvial Flood; M – Meteorological, G – Geographical, D – Demographic, P – Property. 367 
Macro-, meso- and micro-scale refer to city/country, neighbourhood and building scale respectively. 368 

                                                      
2 See section 3.2. 

 Literature Model characteristics Case study description 

  
Development: 

method 
Validation: method Validation: results Visualisation Outcome/Deployment 

Coverage of 

insurance 
Scale 

Flood 

type 
Categories2 

Years 

covered 

1 (Spekkers et al., 

2013)  

Logistic 

regression 

model 

 McFadden’s R2/ 

Goodness-of-fit using 

contingency tables 

34% (property damage) 

30% (content damage) / 

5-17% prediction 

accuracy 

Logistic 

function/ 

tables/ graph 

Function predicting damages 

based on rainfall intensities 

20-30% of the 

market 

[Netherlands] 

Macro/meso  SWF M 

2003-2009 

2 (D. Moncoulon et 

al., 2014) 

Logistic 

regression 

model/ square 

root function 

Bootstrap method to 

determine confidence 

interval based on 

differences between 

simulations and 

extrapolations. Overlay 

of historical events with 

probabilistic maps.  

74% of the flood claims 

are located inside the 

modelled areas 

Hazard maps 
Multi-peril exceedance 

probabilistic hazard maps 

50% of claims for 

the market 

[France] 

Macro 
 SWF 

+ FV 
M, G, B 

1995-2010 

3 (Grahn & Nyberg, 

2017) 

Logistic 

regression 

models 

R2-value 

3-57% of variance is 

explained by regression 

model and variables 

used 

Function/ 

tables/graph 

Aggregated flood damage 

graph showing relationship 

between damage and rain 

intensity 

35% of the 

market 

[Kristianstad, 

Sweden] 

Micro and 

meso 
 SWF M, D 

2000-2013 

4 (Cheng et al., 

2012) 

Visual 

analysis/ 

relationship 

- - Graph 

Graph showing relationship 

between number of claims 

and monthly rainfall 

20000 claims 

[Ontario, Canada] 

Meso and 

macro  

 SWF 

+ FV 
M 

1992-2002 

5 (Torgersen et al., 

2015) 

Principal 

Component 

Analysis 

(PCA) 

Correlation loading plot 

Up to 99% of the 

variance is described 

by the model 

Graphic 

analysis 

Graph showing importance of 

each variable  

90% of the 

market 

[Fredrikstad, 

Norway] 

Meso  SWF M 

2006-2012 

6 (Spekkers et al., 

2014) 

Decision 

trees; Poisson 

and linear 

Cross-validation 

results/R2-value 

22-26% of the variance 

is explained compared 

to 11-18% when global 

Table/ 

decision tree 

graph 

Ranking of importance of the 

explaining variables and how 

22% of all 

households 

[Netherlands] 

Macro and 

meso 
 SWF M, G, D 

1998-2011 
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regression 

model 

multiple regression 

models are used 

they affect the damage 

variable 

7 (Leal, Ramos, & 

Pereira, 2018) 

Relationship 

defined by 

correlation 

coefficient 

- - Map 
Spatial distribution of claim 

per type of flooding 

60% of the 

market [Lisbon, 

Portugal] 

Macro and 

meso 

 SWF 

+ FV 
M, G, D, B 

2000-2010 

8 (Torgersen et al., 

2017) 

Partial Least 

Square-

Discriminant 

Analysis 

(PLS-DA) 

Correlation loading 

plot/cross validation 

Up to 65% of the 

variance is described 

by the model 

Graphic 

analysis 

Graph showing importance of 

each variable  

90% of the 

market 

[Fredrikstad, 

Norway] 

Micro and 

meso 
 SWF G 

2006-2012 

9 (Kousky & 

Michel-Kerjan, 

2017) 

Using fixed 

effects 

regressions; 

fractional 

logit model 

Robustness check/R2-

value 

Up to 36% of the 

variance is explained 
Table 

Table showing importance of 

each variable  

1,000,000 claims 

[USA] 
Macro 

 SWF 

+ FV 
G, D, B 

1978-2012 

10 (Spekkers et al., 

2015) 

Logistic 

regression 

model 

 McFadden’s R2/Wald 

test 

Up to 20% of the 

variance is explained 
Graph 

Graph showing empirical 

probability of precipitation-

related claim occurrence as a 

function of rainfall intensity 

6% of the total 

number of 

households 

[Rotterdam, 

Netherlands] 

Micro and 

meso 
 SWF M 

2007 - 2013 

11 (Sorensen & 

Mobini, 2017) 

Visual 

analysis 
- - Map Flood hazard map 

Up to 8% of the 

market [Malmo, 

Sweden] 

Meso and 

macro 
 SWF M, G 

20 years 

12 (Bernet et al., 

2017) 

Visual 

analysis 
- - Map 

Spatial distribution of claim 

per type of flooding 

Up to 48% of 

buildings 

[Switzerland] 

Meso and 

macro 

 SWF 

+ FV 
G, B 

2004-2013 

13 (Cortes et al., 

2018) 

Linear and 

logistic 

regression 

model  

Relative operating 

characteristic (ROC) 

diagram 

Relative area under 

ROC curve up to 0.81 
Table/graph 

Graph simulating the 

probability of damage as a 

function of precipitation 

43,640 claims 

[Catalonia, Spain] 

Meso and 

macro 
 SWF M 

1996-2015 



21 

 

   369 

14 (Zhou et al., 

2013) 

Linear 

regression 

model  

Significance 

level/boxplot 
 - Table/map Flood hazard map 

1000 claims 

[Aarhus, 

Denmark] 

Meso and 

macro  
 SWF M, G 

2005-2011 
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3.5 Proposed generic framework for developing models for the analysis and 370 

assessment of SWFs  371 

3.5.1 On the relevance and development of the framework 372 

The results from this review indicate that the process of developing models that use insurance data to 373 

explain SFW event occurrence depends on the characteristics of the case study, data availability and 374 

assumptions regarding how to interrelate data. Due to the specificity of their applications, no overall 375 

conclusions can be drawn regarding the variables or methods that can be used, or the steps for developing 376 

the models and their further application. Consequently, a generic and adaptable framework has been 377 

developed, using the aggregated results from relevant literature, to define a workflow that may be 378 

implemented to develop a model of the relationship between the damage and explaining variables, and 379 

its further application and deployment. This framework is presented in Figure 4 together with notes 380 

accompanying several of the steps (Table 7). It incorporates the assumptions and decisions that may be 381 

adapted to any specific case study in hand. The framework should be regarded as a guide to the 382 

development and further deployment of models used in the analysis and assessment of SWF events. 383 

 384 
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 385 

Figure 4. Proposed generic framework: guidelines for data collection, visualisation and descriptive statistics, the selection and expression of damage and explaining 386 
variables, model development and evaluation, and further deployment. 387 
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Table 7. Notes referring to the steps in the aggregated framework illustrated in Figure 4. 388 

Step Comments/notes 

1 Coverage of the insured building within the studied area is of interest since this percentage may influence the variance of the data.  

A clear distinction should be made when data from different insurance companies are used within the same sample, since there may be differences in the policies they provide and their reporting procedures. 

Insurance data should be carefully checked for duplicates, missing data or outliers. 

2.1. a) A classification methodology for pluvial and fluvial flood events and other failure mechanisms (e.g. roof leakage), can be performed as in (Kaźmierczak & Cavan, 2011; Leal et al., 2018). 

2.1. b) The filter approach based either on (Spekkers et al., 2013) or press information (Cortes et al., 2018) can be applied. 

2.1. c) Event classification based on conditions covered by the insurance. The reader is referred to (Sorensen & Mobini, 2017). 

2.1. d) In cases of multiple event occurrence, the damage claim should be further investigated in order to find out whether it is a consequence of just one event or the sum of all events.  

2.1. e) In situations where costs of insurance coverage may be subdivided (costs for cleaning, replacement, etc.) – a study investigating both total and individual cost components is proposed.  

2.1. f) Division between these two factors may enable better differentiation between costs associated with structural damage and those associated with the residents. This may increase variance from one claim to 

another. In (Grahn & Nyberg, 2017), no difference was observed in the explained variance from property and movable components. However, in (Spekkers et al., 2013), which addressed only property damage, 

the variance was better explained than in the case of content damage. 

2.1. g) Different timeframe windows and intensities have been proposed by different studies. These range from 7-8 minutes to up to 12 days (Cortes et al., 2018; Sorensen & Mobini, 2017; Spekkers et al., 2015; 

Spekkers et al., 2013). This may enable a differentiation of claims that may be related to other failure mechanisms in the private domain.  

2.1. h) Data can be sorted according to location, number of buildings, address, district or neighbourhood level. 

2.1. i) A range of 10 kilometres from the rainfall gauge is proposed in (Spekkers et al., 2013), while 15 kilometres is suggested in (Berne, Delrieu, Creutin, & Obled, 2004). The range value may be influenced by 

several characteristics. For this reason, it is proposed that a study be carried out that defines the decorrelation distance used in the case study in hand.  

2.1. j) Insurance claims can be sorted using one of the demographic variables (see step 3.2.3.).  

2.1. k) When the damage variable is monetary-based, the value should be adjusted for inflation during the year in question. A transformation into normality can be performed by using the natural logarithm as applied 

in (Grahn & Nyberg, 2017). In addition, account should be taken of any insurance policy that states a minimum reimbursement amount as part of its terms and conditions (Grahn & Nyberg, 2017). Careful 

consideration should be made if the damage variable as monetary-based, since the cost of reimbursement may be highly dependent on the value of the real estate. 

2.1. l) Variable expression based on number of claims may reduce the influence of disproportionalities between areas with different property values. 

2.2. A qualitative analysis of the characteristics of the area is proposed as a means of identifying the kind of variables that can be used to explain, or relate to, the damage variable. 

2.2.1. g) Differentiation between precipitation types may be applied since some, such as snow, will not generate an immediate flood event response (Torgersen et al., 2015). 
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2.2.2. Different techniques are available for the calculation of topographic variables (Wilson, O’Connell, Brown, Guinan, & Grehan, 2007) and the development of multi-dimensional terrain models (Yang, Grönlund, 

& Tanzilli, 2002; Zischg, Mosimann, Bernet, & Rothlisberger, 2018). 

2.2.3. Median instead of mean values can be used for variables that exhibit strong variance. This will reduce the influence of outliers (Spekkers et al., 2014). 

3.1. A visual correlation may be helpful as a means of identifying the linearity or monotonicity of the relationships. This in turn will provide a useful insight into subsequent steps and model selection. It will also 

provide an overview of what should be included in the explaining variables categories.  

3.2. The development of a representative dataset is based on the aggregation of different variables and their correlation. 

3.3. Parameters may be defined using the maximum likelihood (Kousky & Michel-Kerjan, 2017; Spekkers et al., 2015; Spekkers et al., 2014) or ordinary least squares method (Spekkers et al., 2015; Spekkers et 

al., 2013, 2014; Zhou et al., 2013). A sensitivity analysis may be carried out in order to obtain greater insight into the parameters involved and their influence on the output. 

3.4. Validation of the model depends on the method used in step 4.3. The reader is referred to specific literature examples presented in Table 7. Bootstrapping is also recommended.  

4.1. The results can be presented in the form of: 

1. Graphical representations of the probability of damage occurrence due to SWF events as a function of one of the explaining variables (e.g. rainfall). 

2. Flood hazard maps in the form of: 

      - a spreadsheet of the claims reported based on location (point) and surface (degree of the damage). Visualisation of at-risk zones in the studied area based on rainfall intensity. 

   - a visualisation of the spread of risk calculated according to a risk triangle. Future weather scenarios may be used to express the probability of hazard occurrence. 

389 
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3.5.2 On the challenges facing model development 390 

The outcome of applying an aggregated framework, which includes both the model and its further 391 

deployment, is dependent on the availability of the data (willingness to share) and their quality or 392 

reliability. These parameters are the result mainly of the degree of systematic recording (classification) 393 

of the data, combined with the uncertainties involved. Any scarcity, inhomogeneity, or lack of 394 

availability of data hinders the spatial and temporal correlation between the damage and explaining 395 

variables, and in turn constrains the quality of the model outcome, which may be represented by the 396 

explained variance.  397 

A crucial issue that limits the potential for such model development is the availability of damage data, 398 

which is derived from either insurance companies or individual data collectors. It is observed a 399 

reluctance within the insurance industry to share detailed information (such as the exact location of the 400 

source of flood damage compensation (Grahn & Nyberg, 2017)). There may be many reasons for this 401 

reluctance, such as competition for market share, reputational issues, loyalty towards customers, or 402 

anxiety about the impact disclosure may have on residential property markets. A recent study, which 403 

carried out interviews and analysed the results from eight largest insurance companies in Norway in 404 

regard to their willingness and demands to share damage data, concludes that the largest insurance 405 

companies (representing 90 % of the market) are willing to share their data with municipalities and 406 

governmental agencies (Hauge et al., 2018). However, in order to share their data, several demands were 407 

identified: an arrangement that ensures restricted manageable admission of their data, especially to other 408 

(inter-)national companies; the availability of a data administrator and/or intelligent infrastructure that 409 

guarantees security and confidence in data protection; and, compliance and adaptation to new 410 

implemented regulations regarding protections of privacy (Hauge et al., 2018). The availability of such 411 

information would facilitate a better understanding of the vulnerability component of the risk triangle.  412 

Currently, there exists several databases in Norway and worldwide that have collected damage or other 413 

relevant data regarding SWF events, and a review can be accessed in (Labonnote, 2017; Labonnote, 414 

Hauge, & Siversten, 2018); however, data are spread around a heterogeneous community of stakeholders 415 

concerned with different motivations, needs, and levels of data processing. It is concluded that 416 
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digitization and its opportunities can improve the workflow of data collection and analysis and increase 417 

the quality of data. The recent availability of Internet of Things, Big Data analytics and Artificial 418 

Intelligence can enable fast, systematic and sustainable (digital) data analytics, which can subsequently 419 

trigger a global data-driven evaluation system regarding the SWF event occurrence and their impact on 420 

society.  421 

A commonly acknowledged issue that arises during the comparison of different studies is the lack of a 422 

consistent classification system for damage claims. Several schemes have been developed involving the 423 

classification of flood events by type (fluvial or pluvial), degree (event extremity), damage to assets 424 

(movable or non-movable), or origin/consequences (non-rainfall and rainfall-related damages) based on 425 

spatial resolution, temporal resolution, costs or degree of wetness. However, all these approaches have 426 

their shortcomings (Bernet et al., 2017), which in turn may decrease the explained variance derived from 427 

the model.  428 

Even when data are accessible, they may be characterised by levels of uncertainty associated with both 429 

damage and explanatory variables. The temporal and spatial distribution of rainfall may not be correctly 430 

accounted for due to non-uniform distribution or a non-representative number of measurement 431 

gauges/stations. The spatial resolution of radar images may be too coarse to capture the spatial variability 432 

of rainfall at the subpixel scale, causing an underestimation of rainfall peaks of convective cells 433 

(Spekkers et al., 2014). Data variation in a spatial context is another source of uncertainty that may be 434 

attributed to a lack of specified addresses, the availability of which may enable the parametrization of 435 

geographical information at the level of other damage, demographic and meteorological variables 436 

(Spekkers et al., 2013, 2014; Zhou et al., 2013). It should be noted that an absence of recorded damage 437 

in a given area does not necessarily mean that the area has not been affected by a flood event (Bernet et 438 

al., 2017). It may simply indicate that no buildings were in the vicinity of the flooded area, or that the 439 

buildings were properly protected against the flood event, or the occurred damages were not properly 440 

registered. Lastly, the scale of a given area may increase the variability of the outcome because different 441 

scales of district (neighbourhoods/cities/countries) may be associated with different parameters linked 442 

to climatic conditions, insurance policies or the percentage of insured buildings. Another source of 443 
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uncertainty resides in variables associated with the buildings themselves and the socio-economic status 444 

of their residents, which is related in turn to self-protective behaviour. For example, building 445 

refurbishment may not have been recorded. Moreover, tenants or owners may share different 446 

responsibilities, and consequently different levels of vulnerability.   447 

It is widely acknowledged that risk assessment should provide an indication of the degree of reliability 448 

of risk quantification (Merz & Thieken, 2009), although such reliability may be constrained if data are 449 

scarce, missing or associated to uncertainties. Consequently, a strategy involving the implementation of 450 

a systematic and homogenous recording process that includes information from different explaining 451 

variable categories at both local and national scales is suggested even if a comprehensive harmonization 452 

at international scale has been deemed as unlikely to be effective (Surminski et al., 2015). Policies that 453 

regulate and digitise the claims process can better facilitate both grounds for claims and more accurate 454 

inputs as a means of improving current models. Subsequently, the application of risk assessment can be 455 

more useful to higher implementation schemes such as policies or programmes.  456 

3.5.3 On the opportunities for model application presentation 457 

The model relating the damage and explaining variables can be further applied within a risk assessment 458 

framework or sensitivity analysis. These applications can be useful for stakeholders such as insurance 459 

companies, government agencies and meteorological institutes. Figure 6 provides a schematic 460 

presentation of the interrelations between model application, implementation and involved stakeholders. 461 

Risk assessment enables the graphical representation of risk distributed in a spatial and temporal context. 462 

One outcome is the production of probabilistic maps of metropolitan areas showing the likelihood of 463 

occurrence and degree of damage based on meteorological events, similar to that illustrated in 464 

Moncoulon et al. (2014). A graphical display such that the one used in (Brevik, Aall, & Rød, 2014) 465 

might then be employed (see Figure 5). Such a framework can be used to evaluate potential increases in 466 

damage resulting from flooding that may be caused by climate change. This may be achieved by 467 

incorporating a global climate model(Cheng et al., 2012). The likelihood of both SWF and fluvial flood 468 

events may be included as part of the overall hazard scenario. Furthermore, insurance data can be 469 
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collected from different sources for different purposes related to residential, business or agricultural 470 

properties, as well as state-owned public buildings and transport infrastructure. Lastly, multi-471 

dimensional models for flood events and specified terrains can be incorporated into risk assessment 472 

frameworks. 473 

 474 

Figure 5. Example of graphical display showing the distribution of insurance claims in Trondheim, Norway. 475 
This figure has been reproduced with permission from Brevik et al.( 2014). [Translation from Norwegian 476 

language: Overvann – Stormwater; Hendelser – Events],   477 

Application of global sensitivity analysis (Saltelli et al., 2008), which is identified as a research gap, 478 

enables the understanding and quantification of a given system. As such, it is able to provide estimates 479 

of the influence of the inputs on the outputs. The relationship between the damage and explaining 480 

variables is replete with uncertainties. As a consequence, the application of global sensitivity analysis 481 

enables a ranking of the importance of given parameters and/or their uncertainties. Such rankings can 482 

support decision-making processes by means of facilitating comparisons of relative performance, and 483 

by optimizing design selection and the implementation of a policy or mitigation action. 484 

3.5.4 On the opportunities for model deployment 485 

The following is a summary of implementations of the models discussed in the foregoing: 486 

- Policy writing and the execution of mitigation measures.  487 
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• The importance of socio-economic variables, as identified from sensitivity analysis, may 488 

provide an insight into their relative contributions in the vulnerability and exposure 489 

components of the risk triangle. The temporal distribution of damage claims may provide 490 

insights into what values of rainfall intensity and seasons of the year most closely correlate 491 

with damage claims. This facilitates a clearer identification of parameters that can reduce risk 492 

effectively. The latter can be applied during policy writing and the prioritization of mitigation 493 

measures. 494 

• The implementation, based on risk assessment, of more proactive, cost-effective and 495 

politically achievable investments in infrastructure adaptation at local, regional, and national 496 

scales (Kousky & Michel-Kerjan, 2017). 497 

• An understanding of trends in damage claims and causality based on sensitivity analysis. For 498 

example, several authors have concluded that the causes of increases within the vulnerability 499 

component of the risk tringle are associated with socio-economic factors, such as population 500 

growth and increased wealth among policy holders (and thus, the damaged products may be 501 

more valuable), rather than the hazard component associated with climate change (J. I. 502 

Barredo, 2009; Bernet et al., 2017; Laurens M Bouwer, 2011; L. M. Bouwer, 2013; Spekkers 503 

et al., 2015). 504 

• Improvements in insurance policy writing, such as the inclusion of specific clauses related to 505 

rainfall intensity criteria (Spekkers et al., 2013). 506 

- Writing and updating of design codes.  507 

• Current design criteria related to urban drainage system capacity or the return period of design 508 

storms (Spekkers et al., 2015) can be implemented or updated.  509 

• The development or validation of damage models. 510 

- Improving customer service. 511 
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• Once a clear association between hazard intensity and its consequences is established, direct 512 

weather alerts or warnings can be communicated to residents. This will boost the emergency 513 

preparedness of residents, which may in turn may limit damage and levels of vulnerability. 514 

• Better management of call centres during flood events. Many companies have indicated that 515 

there is a sudden increase in communication demand from clients during extreme events 516 

(Spekkers et al., 2013). 517 

 518 

Figure 6. Opportunities for applying and implementing models  519 

4 Conclusion 520 

This study has carried out a systematic literature review to investigate how insurance data can be applied 521 

in the analysis of SWF event occurrence. The review concludes that models that identify the 522 

relationships between insurance data and explaining variables may provide an insight into the 523 

occurrence of surface water flood events. The study has identified four main categories of explaining 524 

variables (meteorological, geographical, demographic and property/building-related). Potential ways of 525 

expressing both damage and explaining variables, as well as their combinations, have been discussed, 526 

and recommendations for future applications proposed.  527 

A generic framework providing guidelines for the development of models of similar scope and their 528 

further deployment has been aggregated on the basis of previous applications. The review shows that 529 

the outcome of such models is sensitive to factors such as the selected variables and their 530 

expression/aggregation, the combination of variables, the methodologies used to establish the model in 531 

question, data availability and quality. The study emphasises the importance of the systematic recording 532 
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and public disclosure of insurance data as a means of improving the implementation of, and outcomes 533 

from, these models.  534 

Such models can enable sensitivity analysis and risk assessment frameworks that can be further 535 

incorporated into decision-making processes, policy writing and implementations. The review 536 

demonstrates an increase in interest worldwide in the development of such models at local and national 537 

scales. However, their application is mostly geographically focused, which emphasises the potential for 538 

wider application. 539 
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