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A B S T R A C T

Recent developments have shown that Deep Learning approaches are well suited for Human Action Recognition.
On the other hand, the application of deep learning for action or behaviour recognition in other domains such as
animal or livestock is comparatively limited. Action recognition in fish is a particularly challenging task due to
specific research challenges such as the lack of distinct poses in fish behavior and the capture of spatio-temporal
changes. Action recognition of salmon is valuable in relation to managing and optimizing many aquaculture
operations today such as feeding, as one of the most costly operations in aquaculture. Inspired by these appli-
cation domains and research challenges we introduce a deep video classification network for action recognition
of salmon from underwater videos. We propose a Dual-Stream Recurrent Network (DSRN) to automatically
capture the spatio-temporal behavior of salmon during swimming. The DSRN combines the spatial and motion-
temporal information through the use of a spatial network, a 3D-convolutional motion network and a LSTM
recurrent classification network. The DSRN shows an accuracy that is suitable for industrial use in prediction of
salmon behavior with a prediction accuracy of 80%, validated on the task of predicting Feeding and NonFeeding
behavior in salmon at a real fish farm during production. Our results show that the DSRN architecture has high
potential in feeding action recognition for salmon in aquaculture and for applications domains lacking distinct
poses and with dynamic spatio-temporal changes.

1. Introduction

Feeding is an important part of the salmon breeding process. The
feed is approximated to account for over half of the total fish farming
costs in Norway (Fiskeridirektoratet, 2016). Therefore big financial
gains can be made by optimizing the feeding process. Additionally,
environmental gains from a reduction in feed spillage is also a pro-
mising outcome from an optimized feeding process. Traditional feeding
processes are labor-intensive processes requiring manual observation
and maneuvering of cameras within breeding cages. They rely on
human expertise and the feeding schedule is largely dependent on the
feeder responsible for the current feeding process. The use of automatic
non-intrusive video-based methods has the potential to reduce the need
for human labor and increase the welfare of salmon in breeding cages
through more stable feeding cycles across all sites and improved feeding
schedules based on the fish behavior. By using fish behavior rather than
the amount of feed falling to the bottom of the cage as an indicator for
when to stop the feeding process, the system can stop the feeding
process at a more appropriate time. This can result in a reduced

environmental impact and reduced feed costs as less feed is wasted.
Deep Learning is a sub-field in machine learning that has shown

great promise in many forms of data analysis recently. Deep learning is
the use of deep neural networks that use multiple processing layers to
learn representations of data with multiple levels of abstraction (LeCun
et al., 2015). These methods have shown remarkable improvements in
speech recognition, image recognition and machine translation. Re-
cently, deep learning has also been applied to agriculture in applica-
tions from classification of weeds to fruits counting (Kamilaris and
Prenafeta-Boldú, 2018). The aquaculture industry has also seen the
benefits from such methods through the use of deep learning and
Support Vector Machines (SVMs) for segmentation of blood defects in
cod fillet (Misimi et al., 2017).

In this work, we present an approach applicable to perform auto-
matic action recognition in fish using deep learning, as shown in Fig. 1.
Our approach is motivated by approaches from human action re-
cognition, but modified for the new domain. The fish action recognition
domain differs from the human action recognition domain in several
fundamental ways. The human domain includes a vast variety of
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surroundings from outdoor river rafting to indoor keyboard typing. This
makes many of the actions immediately recognizable purely on the
basis of their surroundings. Conversely, the fish domain is limited to
underwater video from within a breeding cage at sea. Thus the sur-
roundings in the fish videos are very similar, radically increasing the
demand for robust action recognition capabilities. Underwater videos
also introduce several other challenges. For example, when light hits
the surface of the ocean it is reflected off the surface, while the light
that does penetrate is refracted. This results in dimmer scenes with
more uniform color distributions. Water also scatters and absorbs dif-
ferent wavelengths of light due to particles in the water, resulting in
different shades of color based on the depth of the camera. These factors
may be further enhanced by the surrounding weather. Direct sunlight
produces very different lighting conditions than overcast weather. This
is evident not only in the shades of color and amount of light in the
scene but also in the amount of light reflected off the fish themselves. As
more direct sunlight is present in the scene, more light is also specularly
reflected off the fish, producing very bright areas in the frames as seen
in Fig. 2. Another important aspect in the human action recognition
domain is that human activities often can be classified purely based on
discriminate poses of the subject. This has been utilized in Deep
Learning approaches through the use of discriminative action poses to
supplement videos during training (Ma et al., 2017). Fish, on the other
hand, might not possess such defining poses. They are also often oc-
cluded by other fish, thus it might not be possible to discern whether
fish are feeding or not, based on their pose alone. Action Recognition in

fish is therefore much more dependent on the motion of the fish and
how it changes through time. Additionally, fish often act together in a
school, thus the behavior and pose of the school might be just as in-
dicative of fish actions as individual fish behavior.

To account for these factors our approach relies heavily on motion
from the salmons’ movement temporal changes. Our approach consists
of a 2D-convolutional spatial network and a 3D-convolutional motion
network which act as spatial and motion feature extractors for a
memory network which handles time-series data. Our full architecture
is named a Dual-Stream Recurrent Network and can be seen in Fig. 3.
We validate the DSRN using a data set consisting of underwater video of
salmon, where the aim is to separate videos of Feeding salmon from
videos of NonFeeding salmon. These videos are captured during feeding
and non-feeding times at a real production fish farm, to create realistic
Feeding and NonFeeding video data. We compare the DSRN to the
performance of a regular CNN and a CNN combined with a LSTM and
find that the DSRN accurately classifies 80% of the test videos, out-
performing the other networks by a significant margin.

Contributions:

1. We propose a novel concept for the application of Action
Recognition to salmon feeding behavior.

2. We collect a new data set of underwater video of salmon for Action
Recognition from a real-world breeding facility.

3. We propose a general model for Action Recognition in situations

Fig. 1. An overview of the full prediction pipeline. The video is collected from
within a breeding cage. Optical flow and spatial frames are generated before
being fed into the Dual-Stream Recurrent Network, which performs prediction.
An in-depth explanation is available in Fig. 3.

Fig. 2. Lighting conditions in the underwater video can vary based on many factors, such as weather, particles in the water and light diffraction. This produces higher
demands on robust action recognition models with increased motion processing capabilities.

Fig. 3. The Dual-Stream Recurrent Network - DSRN. The spatial network takes
single video frames as input and transforms them into feature vectors. 20 of
these vectors are then averaged to create one high-level feature vector. The
motion network takes a volume of 20 optical flow fields and transform them
into a single high-level feature vector. 20 high-level feature vectors from each
of the two networks are then concatenated to produce a sequence of 20 input
vectors for the LSTM classification network. The LSTM classification network
then produces a single classification for the entire sequence using a sigmoid
activated unit.
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with a lack of distinct poses.
4. We propose a preprocessing strategy for underwater video con-

taining specular reflections.
5. We introduce a new projection shortcut and show that it improves

model performance over the architectures from (He et al., 2016a;
Hara et al., 2017).

2. Related work

2.1. Human action recognition

Practice and theories for performing Human Action Recognition
have been studied for many years (Poppe, 2010; Ali and Shah, 2010; Ji
et al., 2013). This task involves processing videos and labeling them,
using action labels. Early work explored several approaches for Human
action recognition, including Unimodal Methods, Stochastic Methods
and Rule-Based Methods (Vrigkas et al., 2015). However, recent ad-
vances in Deep Learning has led to the use of Deep Learning as a core
methodology when developing action recognition approaches.
Simonyan and Zisserman (2014a) train Convolutional Neural Networks
(CNNs) as feature extractors before a final classification layer in their
approach. The papers (Donahue et al., 2017; Yue-Hei Ng et al., 2015;
Xu et al., 2016) improve upon this approach by adding Recurrent
Neural Networks (RNNs) on top of CNNs for sequence handling. These
Deep Learning approaches present the common approaches in human
action recognition in recent years, with most of the approaches scoring
well above 80% on the UCF-101 Action Recognition data set (Soomro
et al., 2012). These methods have also been supplemented by the use of
images with distinct poses, which also resulted in an increase in per-
formance (Ma et al., 2017).

2.2. Animal action recognition

Automatic animal action recognition is a very recent field of study.
With the advent of small wearable high-precision sensors such as gy-
roscopes and accelerometers in combination with video analysis tools
such as deep learning, these methods promise to increase our under-
standing of animals and improve animal welfare through correct in-
terventions. Peng et al. (2019) are able to classify cattle behavior by
analyzing sensor data from IMU sensors using a Long Short-Term
Memory (LSTM) RNN. They use sensor outputs from IMU’s producing 3-
axis accelerometer data, 3-axis gyroscope data and 3-axis magnet-
ometer data. The 9-axis data is analyzed using a LSTM-RNN to produce
a classification of the behavior. They find that they are accurately able
to classify 8 types of behavior using an LSTM-RNN with a window size
of 64 (3.2s). Yang et al. (2018) used a CNN to detect regions in images
constituting pigs and their heads. They then develop an algorithm that
is able to determine whether the pigs are feeding or not, based on the
overlapping of the classified head region of each pig and the designated
feeding zone. They are accurately able to classify pig feeding behavior
from both still images and continuous video using this algorithm. Zhou
et al. (2017) use near-infrared imaging to quantify variations in fish
feeding behavior from a laboratory fish tank. They enhance images to a
binary image and discard reflective frames using a Support Vector
Machine (SVM) and a Gray-Level Gradient Co-Occurrence Matrix. They
use fish centroids as a vertex in Delaunay Triangulation and use these
results to calculate and quantify the flocking index fish feeding beha-
vior (FIFFB). They find that they can accurately quantify and analyze
variations in fish feeding behavior using the FIFFB.

2.3. Deep residual learning

The depth of neural network architectures is crucially important to
their performance, however, deeper networks are harder to train due to
degradation. In (He et al., 2016a), the concept of Residual Learning
through Identity Mappings by Shortcuts is introduced. He et al. (2016a)

create residual building blocks consisting of stacked convolutional
layers. The output of the final convolutional layer in the block is then
added to an identity mapping from the beginning of the block, creating
an alternative route for the gradient to flow. They show that their re-
sidual networks outperform traditional CNNs with a significant margin
on multiple classification tasks. They also show that they are able to
build significantly deeper network architectures while still needing
fewer trainable parameters than the traditional deep CNNs, thus redu-
cing the need for computing power.

2.4. 3D-convolutional neural networks

Previous explorations of 3D-CNNs for action recognition already
exist (Ji et al., 2013). However, this network is very shallow when
compared to the recent 2D-CNNs (He et al., 2016a; Simonyan and
Zisserman, 2014b). It is, therefore, reasonable to assume that the full
potential of 3D-convolutions are not being utilized in these archi-
tectures. In (Hara et al., 2017), significantly deeper 3D-CNNs were
explored for human action recognition in video. They trained their
networks using 16 frame RGB video clips as input and showed an in-
crease in performance compared to the architecture described by Ji
et al. (2013). However, they do not explore the use of optical flow as
was shown to increase performance in Varol et al. (2018).

2.5. Two-stream 3D-convolutional networks

2D-CNNs have shown significant performance gains in the field of
image recognition and classification. They have also been used in video
classification tasks, often supplemented by recurrent networks, with
encouraging results. Xin et al. (2016) introduce an adaptive recurrent-
convolutional hybrid network (ARCH) for Action Recognition tasks.
The architecture consists of a Temporal-Spatial-Fusion CNN (TSF-CNN)
which consists of a spatial CNN, a temporal CNN and a fusion network.
The spatial CNN is structured similar to LeNet (LeCun et al., 1995) and
takes the RGB video frames as input. The temporal CNN uses 3D-con-
volution to capture temporal data from optical flow input. Finally, the
Fusion network fuses the two CNNs through a two-layer fully connected
network. They implement a highly-distributed approach, where they
train 10 parallel TSF-CNNs for 10 time-steps and input the scores of
these networks into a sequence network, consisting of a RNN. When
comparing the temporal ARCH to ARCH without the temporal CNN,
they show that the temporal CNN significantly improves performance.

Our DSRN separates itself from the work in Xin et al. (2016) by
using significantly deeper networks both in our 2D-CNN and 3D-CNN,
giving our model a much higher capability of rich internal re-
presentations. We also only train one 2D-CNN and one 3D-CNN,
showing that robust action recognition is possible on limited hardware.
We also expand on the work in He et al. (2016b) by using a 3D-con-
volutional approach to their residual learning networks. Further, in-
stead of using × ×1 1 1 convolutions with a stride of 2 for the projec-
tion shortcuts in our downsampling layers, we introduce the use of

× ×2 2 2 pooling layers with a stride of 2. We show that this improves
performance in our 3D-residual network while introducing no extra
trainable parameters. We train deeper 3D-CNNs than those presented in
Ji et al. (2013) and explore the effects of using optical flow instead of
the RGB approach presented in Hara et al. (2017). Finally, we validate
our approach on a data set consisting of underwater video of salmon.
This data set is collected from a real facility during production, separ-
ating it from Zhou et al. (2017). The subjects in these videos might not
possess the distinct poses explored in Ma et al. (2017) and we would
therefore expect to rely more heavily on the model’s ability to process
motion and temporal features.

3. Dual-stream recurrent network

The Dual-Stream Recurrent Network architecture introduces a
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network that combines the deep hierarchical visual feature extractor
properties of 2D-CNNs and the temporal translation feature extractions
of 3D-CNNs. It combines this with a network that can learn to under-
stand the temporal dynamics of sequential data to produce a powerful
and robust model for action recognition.

3.1. Spatial network

The spatial network consists of a 2D-CNN, which takes a single
video frame as visual input and transforms it into a fixed length feature
vector, ϕt through the use of hierarchically stacked convolutional- and
densely connected layers. We use the popular VGG-16 architecture
(Simonyan and Zisserman, 2014b) as a starting point and modify it,
using batch normalization layers between every dense layer. To account
for the challenging conditions from underwater video, we also in-
troduce a new preprocessing strategy. This strategy involves gray-
scaling of images, equalizing the histograms, normalizing and zero-
centering our data and removing specular reflections and dark areas
from the frames by zeroing out all pixels above or below a threshold
value. By first zero-centering and normalizing the data before per-
forming the thresholding step, we force most of the image data to lie
well within the fixed threshold value. Thus, only very bright or very
dark areas are zeroed out by the thresholding step. The results from our
preprocessing technique can be seen in Fig. 4.

3.2. Motion network

Previous experiments were done with two-stream architectures,
using a 2D-convolutional motion network taking single optical flow
fields as input. This gave little notable performance gains when com-
pared to a single spatial network. We hypothesize this was due to the
fact that the 2D-convolutions were only capable of analyzing a single
optical flow field at the time. This limits the amount of motion in-
formation it could process to what is contained within that single op-
tical flow field. Further experiments using optical flow fields generated
from video frames with several frames apart yielded similar results. 3D-
convolutions were therefore explored to improve the amount of motion
information we could process in the DSRN motion feature extractor. For
the 3D-convolutional motion network, we expanded on the archi-
tectures proposed by He et al. in He et al. (2016b), by increasing the
dimensionality of the convolutional layers from 2D-convolutions to 3D-
convolutions. This produces 3D-residual blocks. A 3D-residual block
consists of an identity skip connection and two × ×3 3 3 3D-convolu-
tional layers as seen in Fig. 6. For this purpose, we use the pre-activated
modification from He et al. (2016a). This enables us to train very deep
3D-CNNs, without suffering from the drastic increase in trainable

parameters usually encountered with this dimensional increase. The
network takes a volume of optical flow fields, ot, of size s as input
< … >o o o, , , s0 1 and transforms it to a single fixed-length feature vector
θT . In our motion network we use 34 layers and exchange the ×1 1
convolution downsampling layers for max pooling layers. We also use a
volume size of =s 20 for our input to give the network enough tem-
poral motion information to process. An example video frame and its
resulting optical flow field is shown in Fig. 5. The motion network is
shown in Fig. 7. In Section 5.4 we present an ablation study of our
motion network done on the validation data set to evaluate the effect of
our modifications compared to a straight forward dimension increased
Residual Network.

Optical Flow. Optical Flow is a pattern illustrating the motion of
image objects between two or more consecutive frames. These motions
are usually caused by the movement of the objects in the frame, but can
also be caused by the movement of the camera. Optical Flow requires
that the pixel intensities of an object stay the same in frames following
each other. It also assumes that pixels in very close proximity to each
other have a similar motion trajectory.

A pixel P x y t( , , )0 0 0 in frame 0 has moved a distance dx dy( , ) in
frame 1, taken after dt time, resulting in Eq. (1)

= + + +P x y t P x dx y dy t dt( , , ) ( , , )1 1 1 0 0 0 (1)

A Taylor series approximation and a removal of the common terms,
followed by a division by dt gives us Eq. (2)

+ + =f u f v f 0x y t (2)

where f f u, ,x y and v are given by Eq. (3). We see that fx and fy are the
image gradients and that ft is the gradient along the time dimension.

= =

= =

f f

u v

;

;

x
δf
δx y

δf
δy

dx
dt

dy
dt (3)

There are several methods to calculate u and v, but a common one,
also used in this study, is Gunnar Farnebäck’s algorithm (Farnebäck,
2003). This algorithm produces a 2-channel array of Optical Flow
vectors u v( , ) with magnitude and direction as shown in Fig. 5.

3.3. Memory network

The final classification is performed by a memory network which
consists of a 256-cell LSTM recurrent network. The inputs sequences
were generated by concatenating the feature vectors from layer fc7 in
the spatial network and the Global AvgPool layer in the motion net-
work. To account for the fact that the motion network uses 20 flow
fields to produce a single vector θT , we average 20 feature vectors from

Fig. 4. The preprocessing technique grayscales the image, equalizes the histogram, zero-centers and normalizes the image and removes specular reflections and dark
areas by setting pixels above or below a certain threshold to 0.
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the 2D-CNN to produce a fixed-size average vector =
+ + ⋯ +ϕT

ϕ ϕ ϕ
20

0 1 19

for the 2D-CNN. The input to the recurrent network is batch-normalized
and transformed to a single classification output, using a single sigmoid
activated, densely connected unit. A classification in the range [0.0, 0.5)
is read as NonFeeding and a classification in the range [0.5, 1.0] is read

as Feeding. An overview of the Dual-Stream Recurrent network is seen
in Fig. 3.

3.4. DSRN implementation details

Since action recognition tasks are more complex than standard
image recognition tasks, training networks for these tasks is also more
difficult. Our data set is significantly smaller than the ImageNet data set
(Deng et al., 2009), but only contains two possible classes, thus en-
suring that the number of examples for each class is sufficient to expect
training to converge. We use TensorFlow™ (Abadi et al., 2015) with the
TFLearn library (Damien et al., 2016a) for our network implementa-
tions. We used a hardware set up consisting of two Intel Xeon 10 core
processors and a single Nvidia GTX1080 GPU for training. The DSRN
was trained using a network-by-network approach, meaning that each
of the networks used in the complete model was trained individually,
using its own classification layer. This was done because each model
required the full hardware we had available during training.

For the spatial network we pre-trained the model using a publicly
available VGG16 model (Damien et al., 2016b; Simonyan and
Zisserman, 2014b) and then fine-tuned the parameters to our data set.
We used stochastic gradient descent with a mini-batch size of 20 and a
learning rate of −10 4 . The network was trained for 16 K iterations.

The DSRN motion network consists of a truly deep 3D-Residual
Network, described in detail in Section 3.2. This network was trained
using a 3D volume of stacked optical flow fields using the Farnebäck
optical flow algorithm (Farnebäck, 2003) using the OpenCV im-
plementation. We trained the network from scratch on our data set and
used a similar training procedure as was used for the spatial network.
We used a mini-batch size of 10 and a learning rate of −10 3 and the
training was stopped after 13 K iterations.

The recurrent network was trained using sequences of concatenated
feature vectors generated from both the spatial and the motion net-
work. We used 20 feature vectors from the motion network per se-
quence, resulting in a total of 400 video frames per sequence. The
network was trained using a mini-batch size of 20 sequence vectors and
a learning rate −10 3. Training was stopped after 2 K iterations.

4. Experimental setup

4.1. Evaluation protocol

We compare the DSRN to a spatial baseline model consisting of only
the spatial network from the DSRN and a spatial recurrent network
(SRN) consisting of the same spatial network as our spatial baseline, but
with a 256-cell LSTM sequence classifier on top These networks were
chosen to evaluate the value of motion information in our DSRN. We

Fig. 5. The optical flow field resulting from the video. Green indicates leftward motion, Red indicates rightward motion and Blue indicates downward motion. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. A unit in the 3D-Residual Neural Networks. This is the 3D-Convolutional
equivalent to the original 2D-residual unit, presented in He et al. (2016a) with
the pre-activation modifications from He et al. (2016b).

Fig. 7. 3D-Residual Network. It takes an input 3D volume, consisting of 20
consecutive stacked Optical Flow fields. The volume is downsampled using

× ×2 2 2 MaxPoolings and maintains temporal dimension deeper in the net-
work through a temporal stride of 1 in the first convolutional and pooling
layers.
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introduce four performance measures with which we can compare the
three architectures (PM1-PM4). The main measure of performance for
all networks is PM2 - Video Action Recognition Accuracy. For the
evaluation, we also report the Action Snippets performances for higher
granularity in the results. Here, Action Snippets refers to the number of
frames needed for a single classification to be made by the given ar-
chitecture. Thus, the Action Snippet lengths vary between architectures
and an overview of Action Snippet lengths are given for each archi-
tecture in Table 1. We use a total of four performance measures in our
testing:

PM1: Individual Video Action Recognition accuracy. This measure
gives a single binary classification for the entire duration of the video,
where 1 means correctly classified and 0 means incorrectly classified.
The predicted class for the video is calculated using the majority of the
network predictions for that video. If the number of predictions is the
same for both classes, we say the video is incorrectly classified.

PM2: Average Video Action Recognition accuracy for the entire test
set. This measure gives the total percentage of correctly classified vi-
deos using Video Action Recondition accuracy. This is the main per-
formance measure.

PM3: Average Action Snippet accuracy within individual videos. A
video might consist of several Action Snippets, depending on the ar-
chitecture, as seen in Table 1. This measure gives the average accuracy
for all the Action Snippets within one video.

PM4: Average Action Snippet Action Recognition accuracy over the
entire test set. This measure gives the average accuracy over the entire
test data set using Action Snippets.

Thus a PM1 score of 1 with a PM3 score of 51% suggests that the
model has misclassified a significant portion of the video, whereas a
PM1 score of 1 and a PM3 score of 100% suggests that the model
correctly classified the entire video. In a similar manner, a PM2 score
50% with a PM4 score of 53% indicates that the model is only able to
correctly classify 50% of all videos, but 53% of all action snippets,
showing that some misclassified videos contain correctly classified ac-
tion snippets.

4.2. Data set

The data set consists of videos collected in the northern part of
Norway, in November of 2016. They were collected from a salmon
farming site using a standardized procedure to produce a consistent and
representative data set. The camera was mounted looking inward to-
wards the center of the cage during both Feeding and NonFeeding vi-
deos and captured at intervals of 2000, 5000 and 20,000 frames. The
total data set consists of 76 videos, taken at a resolution of 224×224
pixels with RGB color channels and at 24 frames per second. The videos
were labeled according to the feeding times, provided by the feeding
operator at the farming facility. Each video contains either Feeding or
NonFeeding action and there is no overlap between the actions within
videos. We note that lighting conditions and turbidity are important
factors impacting the quality of the videos, however as this is not within
the scope of this study, we will not explore this further.

Data Set split. When splitting the original data set into training,
validation and test sets, we split the videos based on dates. This ensures
that all videos from a particular date are only present in one of the three
subsets. The reasoning behind this split was twofold. First, the

conditions for a particular day might enable the model to overfit on
other factors than the behavior of the fish, such as how the camera
moves or the light conditions for that day. Splitting on dates avoids this.
Second, splitting the data set based on dates gives the best re-
presentation of the performance that can be expected if the model is
deployed on a breeding site and starts receiving new video data. The
training and validation data sets consist of a 50%/ 50% split of Feeding
and NonFeeding videos. The data set split is shown in Table 2.

Test Data Set. The test data set consists of 20 videos ranging from
2000 to 20000 frames per video. Videos 0–10 are Feeding videos while
videos 11–19 are NonFeeding videos. The distribution of videos and
frames is shown in Table 3.

5. Results and discussion

5.1. Spatial baseline

We first measure the performance of the spatial baseline model to
establish a baseline. From the results, given in Table 4, it is clear that
the major part of the network performance comes from its ability to
correctly classify NonFeeding videos (videos 11–19). Only one of the
NonFeeding videos is wrongly classified, while six of the Feeding videos
are wrongly classified. This indicates that Feeding behavior is harder to
recognize than NonFeeding behaviour. This is also apparent in PM3,
where we see that the accuracies are much higher for NonFeeding vi-
deos than they are for Feeding videos. In Fig. 8 we see the same ten-
dency as the loss is much higher and variable for the Feeding section of
the loss curve than it is for the NonFeeding section.

5.2. Spatial Recurrent Network (SRN)

Having evaluated the Spatial network and established a baseline, we
now turn to the SRN. This network treats videos as sequences of image
frames and is, therefore, more capable of learning from temporal
transitions than the purely spatial baseline model. It uses 20 frames per
prediction, resulting in a prediction for every 0.83 s of video. From the
results in Table 4, we see that the inclusion of a recurrent network
notably increases performance compared to the baseline. We also note
that this increase in performance is exclusively due to the improved
ability to correctly classify Feeding videos. In fact, the performance on
NonFeeding videos is actually decreased from an average of 90.1%, in
the baseline, to 89.1% in the SRN, using PM3. This indicates that ac-
curate classification of Feeding behavior is highly dependent on tem-
poral features in a way that NonFeeding behavior is not. Form Fig. 8 it
is clear that more temporal information increases classification con-
fidence for the SRN compared to the Spatial Baseline, as is indicated by

Table 1
The table shows the different Action Snippet lengths for the
three evaluated networks.

Network Action Snippet length

Spatial Baseline 1
SRN 20
DSRN 400

Table 2
The table shows the three data set splits with their respective amounts of frames
and the percentage of the total amount of data.

Subset # frames data set fraction

Training 326768 64.51%
Validation 85760 16.93%
Test 94000 18.56%
Total 506528 100.00%

Table 3
The distribution of the number of videos and number of frames in the testing
data set.

Label # of videos # of frames Fraction

Feeding 11 43K 45.7%
NonFeeding 9 51K 54.3%
Total 20 94K 100.0%
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the lower loss during correct classification. This increased ”self-con-
fidence” is also apparent when the model misclassifies action snippets
as is seen by the large spikes in the loss during misclassification. The
model remains confident in its classification, but since it is wrong the
loss is very large.

5.3. DSRN

Finally, we evaluate the complete Dual-Stream Recurrent Network.
This model combines a spatial network and a motion, 3D-convolutional,
network as feature extractors for a 256-cell LSTM classification net-
work. Through the use of both a spatial network and a motion network,
this model is capable of interpreting temporal changes in both spatial-
and motion-features. It uses a total of 400 video frames per prediction,
resulting in a prediction for every 16.7 s of video. From the results in
Table 4 we see a significant increase in performance compared to the

baseline network. We again note that this performance gain comes
exclusively from the ability to classify Feeding videos. Compared to the
baseline, the DSRN classifies 4 more Feeding videos correctly, resulting
in a final accuracy of 80.0%. Compared to the SRN, we see the same
tendencies. The inclusion of motion features through 3D-convolutions
and optical flow fields results in an increase in performance, largely due
to increased capabilities to classify Feeding videos. In Fig. 8 we also see
a further increase in model confidence, with lower loss curves for
correct classifications and higher loss for wrong classifications. This not
only further strengthens the evidence for the usefulness of temporal and
motion information in video Action Recognition, but also indicates that
the spatial and motion networks are complementary to each other. We
also note that the DSRN compiles significantly more temporal in-
formation, per prediction, than the other models. This indicates the
usefulness of temporal information for salmon video classification. The
DSRN outperforms all other models on our data set with a significant
margin, providing evidence for the benefits of deep 3D-CNNs and in-
creased temporal information processing.

5.4. Motion network ablation study

Using the validation data set, we performed an ablation study of our
motion network. This was done to evaluate the impact of our different
modifications from a straight dimension increase to residual networks,
as was done in Hara et al. (2017).

Network Depths. The depth of CNNs have been of significant im-
portance for their performance in image recognition tasks. In
(Simonyan and Zisserman, 2014b), Simonyan et al. showed that deeper
networks resulted in better performance. We, therefore, explore two
different network depths. The validation results for these are shown in
Table 5. We vary depths from 18- and 34-layers. The results show that

Table 4
A comparison of the test results between the spatial baseline, the Spatial Recurrent Network (SRN) and the Dual-Stream Recurrent Network (DSRN) using the four
performance measures. It is apparent that the DSRN outperforms both the spatial baseline and the SRN with a significant margin. This also becomes apparent from
PM3, where the DSRN significantly improves upon the performance of the other networks on the Feeding videos (0–10).

Baseline: SRN: DSRN:

Video # PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4

0 0 49.0% 1 97.0% 1 100.0%
1 1 65.1% 1 74.0% 1 100.0%
2 0 2.3% 0 0.6% 1 100.0%
3 0 0.0% 0 0.0% 0 0.0%
4 1 71.9% 1 76.4% 1 100.0%
5 1 90.0% 1 100.0% 1 100.0%
6 1 95.1% 1 100.0% 1 100.0%
7 1 71.8% 1 99.6% 1 100.0%
8 0 11.6% 0 16.4% 0 16.7%
9 0 65.0% 32.6% 65.5% 1 75.0% 91.2% 75.3% 1 80.0% 100.0% 82.5%
10 0 9.1% 0 44.0% 1 91.7%
11 1 99.9% 1 100.0% 0 50.0%
12 1 100.0% 1 100.0% 1 100.0%
13 1 100.0% 1 100.0% 1 100.0%
14 0 12.6% 0 3.2% 0 0.0%
15 1 99.6% 1 100.0% 1 100.0%
16 1 100.0% 1 100.0% 1 100.0%
17 1 99.3% 1 100.0% 1 100.0%
18 1 99.6% 1 98.8% 1 91.7%
19 1 100.0% 1 100.0% 1 100.0%

Fig. 8. The loss curves for the three architectures on the testing data set. The
DSRN is very consistent through all action snippets, indicated by the flat curve.
The low loss indicates that the DSRN is very “confident” in its prediction. The
high spikes indicate that this is also the case even when the DSRN wrongly
classifies action snippets.

Table 5
The average of validation accuracies for the
different network depths.

Depth Accuracy

18-layer 77.2%
34-layer 80.7%
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the 34-layer architecture produces the best results.
3D Input Volume Sizes. Experiments with 3D-convolutions have

shown that increasing the temporal information processed by a model,
through using more video frames, can lead to an increase in perfor-
mance (Ji et al., 2013). We, therefore, compare 3D-Residual networks
trained using 3D volumes of different sizes. The results are seen in
Table 6 and show that increasing the number of optical flow fields used
in the volume, from 10 to 20 leads to a performance increase.

Projection Shortcuts. In (He et al., 2016a), He et al. found that pro-
jection shortcuts, using ×1 1 convolutions with a stride of 2 in down-
sampling blocks, improved performance when compared to regular
downsampled identity shortcuts. Since pooling layers with a kernel size
of ×2 2 consider a larger region of the input than ×1 1 convolutions,
we explore two pooling options to the ×1 1 convolutions. Pooling
layers do not introduce any new trainable parameters in a network, and
will, therefore, result in a decrease in the number of network para-
meters, compared to ×1 1 convolutions. We compare the two different
pooling approaches to the original convolution approach in our motion
network:

Type A: × ×2 2 2 MaxPool-layer with stride × ×2 2 2.
Type B: × ×2 2 2 AvgPool-layer with stride × ×2 2 2.
Type C: × ×1 1 1 Conv-layer with stride × ×2 2 2.

The results are presented in Table 7 and show that the use of pooling
layers significantly increase the model’s performance compared to
convolutional projection shortcuts.

5.5. Discussion

Since both the SRN and DSRN use several frames to produce a
prediction, as seen in Table 1, the number of predictions made for a
given video ranges from 100–1000 for the SRN and 5–50 for the DSRN.
This results in almost categorical results in many videos as the number
of predictions per video decreases, but as we showed in Fig. 8 the DSRN
is very confident in its predictions. This is apparent by the low loss
curves for correct classifications and high loss curves for the wrong
classifications. This indicates that the model is indeed very certain
when it gets 100.0% on a given video and is not only ”hedging its bets”
by producing predictions near the 0.5 mark.

In Table 4 we showed that more temporal information is closely
correlated to an increase in classification performance. In Section 5.3
we also show that this increase in performance is due to an increased
ability to classify feeding videos. We, therefore, hypothesize that
feeding videos are harder to classify because of the much higher var-
iance in swimming patterns during feeding. During Feeding the salmon

will break out of the school in order to follow sinking pellets, resulting
in different swimming patterns than during Non-Feeding. This might
seem ”confusing” to the models at first glance, but given more temporal
data, the SRN and DSRN can make more and more sense of the swim-
ming patterns, resulting in a Feeding classification.

In Section 4.2 we mention that our training, validation and test data
are split on dates to give a representative performance of our model,
given new data. However, this split also increases the challenge for our
models. Traditionally machine learning data sets are split in a way to
make the training data representative of the validation and test data.
Otherwise, the models might learn features that are not present in one
of the splits, thus negatively affecting model performance. By splitting
our data on dates instead of within dates, we completely remove all
information from those dates from our training data. Since salmon
behavior could be affected by conditions only present within these
dates, we risk degrading our models’ performance due to a lack of ex-
posure to such conditions. However, as seen in Table 4, our prediction
results are satisfactory, despite the challenging data set split. We
therefore conclude that the robustness to noise in our DSRN is very
good, which indicates that the DSRN is well suited to general action
recognition tasks.

Despite our positive results, there are some potential weaknesses to
our approach. First, our DSRN was trained in a step-wise manner,
meaning that each sub-network in the model was trained isolated from
the other sub-networks. Since this training regime only allows each sub-
network to learn important features during its own training, there is a
very high likelihood that DSRN performance could be increased by
training the full model in a final end-to-end fine-tuning. This would
allow the gradient to flow through all the sub-networks, which could
make the features produced by the spatial and motion networks even
more usable for the memory network. Second, our data set is relatively
small and only contains videos from a single cage at one fish farming
facility. This means that the model might be overfitted to our specific
cage and the fish and conditions within it, since it has not seen any
other examples. This could mean that our model will perform much
worse in a new cage, even at the same facility, due to different condi-
tions and fish. However, this is mitigated by our data set split and the
preprocessing strategy used for the spatial network. Since we split on
dates and not within dates, our results are reported on never-before-
seen conditions, thus we see that the DSRN generalizes well to changing
conditions which suggests that the model itself is robust to such
changes. A larger data set, from different cages and facilities would still
be an important contribution to further prove the robustness of our
approach. Third, the preprocessing strategy used for the spatial network
was chosen to reduce the impact of differing lighting conditions and
noise. We note that since the images are both zero-centered and nor-
malized, most of the pixel data will lie well within the used threshold.
However, a dynamical thresholding approach could further improve the
preprocessing strategy and could be an interesting future direction for
this work.

6. Conclusion

In this paper, we proposed the DSRN architecture for spatial tem-
poral salmon action recognition for applications with a lack of distinct
poses and dynamic spatio-temporal changes during motion. This ar-
chitecture is validated on a data set of underwater salmon videos and
resulted in a prediction accuracy on the test data set of (80.0%) which
beats the baseline architectures by a large margin, as seen in Table 4.
The underwater video salmon data set is in many ways more challen-
ging than the data sets used for human action recognition due to
challenging light conditions, turbidity, the lack of discriminative poses,
dynamic and undiscriminating motion patterns. Through the use of
very deep 2D- and 3D-CNNs, together with a LSTM, our model com-
bines spatio-temporal and motion features to perform action recogni-
tion with an accuracy that is relevant for industrial use. The

Table 6
The average of validation accuracies for the two input
volume sizes. The dimensions correspond to:

× ×num frames frame height frame width_ _ _ .

Input dimensions Accuracy

× ×10 224 224 80.7%
× ×20 224 224 81.4%

Table 7
The average of validation accuracies for the three down-
sampling strategies.

DS strategy Accuracy

× ×20 224 224 Type A 83.3%
× ×20 224 224 Type B 83.2%
× ×20 224 224 Type C 81.4%
× ×10 224 224 Type C 80.7%
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performance of the DSRN indicates that the inclusion of motion features
through the use of optical flow and a 3D-convolutional motion network
provides a real benefit and that temporal processing of both spatial- and
motion-features results in increased performance in video classification.
Our findings demonstrate a robust model for feeding action recognition
in salmon aquaculture which can be used for better management and
optimization of feeding operations in aquaculture, since feeding is the
most costly salmon farming operation. The architecture is also applic-
able to similar domains, such as livestock or animal action recognition,
where the lack of distinct poses requires a higher reliance on motion for
prediction and recognition.

For future work we aim to demonstrate the approach in large scale
across several net cages and localities in Norway to capture the seasonal
variations in both salmon behaviour and environmental conditions.
With the recent advances in CNNs, it would be interesting to consider
newer CNNs as both spatial and motion feature extractors.
Transformers have been shown to outperform recurrent neural net-
works on many sequence tasks (Vaswani et al., 2017). It would,
therefore, also be interesting to explore a model using a transformer
instead of a recurrent network as the memory network. Finally it would
be interesting to explore end-to-end trainable implementations of the
DSRN to jointly optimize all components of the DSRN as this could
further improve performance through improved gradient calculations
for the entire architecture.
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