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Abstract. Heat recovery in ventilation is essential to reduce energy use and thus mitigate 
greenhouse gas emissions from the building sector. Heat recovery efficiency of at least 80 % in 
new buildings is required according to Norwegian standards. However, measurements show that 
the real heat recovery efficiency during operation is commonly 10-20 % lower. Measuring heat 
recovery efficiency in buildings is challenging, mainly due to difficulties measuring airflow rates 
close to the air handling unit (AHU). This study assesses the following duct airflow measurement 
techniques and equipment: pressure differential, velocity traversal technique, ultrasound and 
tracer gas. The pressure differential method can provide accurate flow rates and thus it is used 
as the reference measurement. However, it is not suitable for duct flow measurements due to its 
high pressure penalty and long straight duct requirement. Velocity traverse and tracer gas 
methods introduce less disturbance to the flow. Nevertheless, both methods require intensive 
labour work and cannot track quick changes of the airflow with time. The application of 
ultrasound to measure airflow is relatively novel and it can automatically measure constant and 
fluctuating airflows with low pressure drop and acceptable accuracy when the proper installation 
and minimum straight duct are provided.  

1.  Introduction 
Heating, ventilation and air-conditioning (HVAC) systems play a vital role in achieving the desired 
indoor environment. Energy use for HVAC in the building sector accounts for a large proportion of the 
total energy use in most countries around the world. Heat recovery is employed as an efficient manner 
to reduce energy use in ventilation systems and thus mitigate greenhouse gas emissions from the 
building sector. Heat recovery effectiveness higher than 80 % is needed to meet the requirements in 
Norwegian building regulations for new buildings [1]. To be precise, an efficiency ≥80 % is required 
using the "energy measure" calculation method in Ref [1], although there is no minimum demand in the 
"energy frame" calculation method, an efficiency ≥80 % is commonly used and probably required in 
practice [2]. However, field measurements have shown that the actual heat recovery efficiency during 
operation is commonly 10-30 % lower than the expected efficiency. For extreme cases with improper 
installation, an efficiency as low as 10 % has been measured [3].  

The thermal efficiency for heat exchangers can be calculated from equation (1) [4],  
 

𝜂𝜂T =
𝑚𝑚 ̇ 𝑐𝑐𝑝𝑝

(�̇�𝑚 𝑐𝑐𝑝𝑝)min
𝜃𝜃2 − 𝜃𝜃1
𝜃𝜃3 − 𝜃𝜃1

 1) 
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Where ṁ is the mass flow rate, 𝑐𝑐𝑝𝑝 is the specific heat capacity of air, the subscript min is the minimum 
value of the supply and exhaust side, θ1 is the air temperature before the heat exchanger on the supply 
side, θ2 is the air temperature after the heat exchanger on the supply side and θ3 is the air temperature 
before the heat exchanger on the extract side. 

The thermal efficiency varies as a result of the quality of the installation, system control and operating 
conditions associated with balanced or unbalanced airflow rates, condensation and frost formation in 
the heat recovery. Energy calculations with constant and overestimated thermal efficiency may lead to 
an underestimation of building heating demands [5]. The indoor thermal comfort will additionally be 
degraded by the possible cold draught problem due to under dimensioned heating coil. The discrepancy 
between expected and real performance is worth further investigation through field measurements. 
Through field airflow measurements, one can additionally identify malfunctions and improvement 
potential for the heat recovery, as well as leakages and recirculation. 

To determine the field efficiency of heat recovery in buildings, measurements of air temperatures, 
relative humidity and airflows in the ducts connected to the air handling unit (AHU) are needed. In 
addition, several measuring points at the same cross-section are required to account for non-homogenous 
distribution of air temperatures, humidity and velocities in the ducts [6]. However, measuring heat 
recovery efficiency in buildings is challenging, mainly due to difficulties measuring accurate airflow 
rates close to the AHU. The equipment for measuring duct airflow rates normally requires minimum 
distances of straight duct up-and-downstream the measurement point to ensure fully developed velocity 
profiles. In most buildings, space around the AHU and ducts is insufficient to perform measurements in 
this manner. There is also a lack of standards for field measurements of heat recovery efficiency, as 
most measurement recommendations are defined for lab conditions. In practice, lab standards are 
difficult to follow as real systems have bends or devices disturbing the flow, making it difficult to find 
and access straight duct sections close to the AHU [6]. Consequently, measurement complexity 
increases in the field, and the accuracy is reduced due to more measuring points needed to account for 
the developing velocity profiles. 

There are very few studies on the real efficiency of heat recovery through field measurements. Heide 
[7] collected examples with deviations up to 37 % compared to the rated efficiency for Norwegian 
residential buildings. Lassen et al. [8] refer to several studies in Norway, Switzerland and Sweden with 
10-20 % lower efficiency. A study with field tests of 20 centralized and 60 decentralized ventilation 
systems found significantly lower heat recovery efficiencies for all units, with 65 % ±24 % for 
centralized systems and 70 % ±17 % for decentralized systems [9]. For this study, tracer gas was used 
in addition to thermal wires to determine the air temperature. Only one of the studies measured an 
efficiency higher than specified, with 77 % when 75 % was specified [10]. The study also pointed out 
challenges of performing in situ measurements in occupied buildings, such as uncontrollable boundary 
conditions and placing the sensors where they do not disturb the occupants. A common finding from the 
reviewed literature is the difficulty of measuring airflow rates with acceptable uncertainty. The provided 
measurement uncertainties of the temperature efficiency ranged from ±8 to ±24 %, which are higher 
than the typical uncertainties (±5 %) for laboratory testing [6]. Methods and protocols for rating and 
testing the real performance of the heat recovery for existing buildings are needed. The most significant 
barrier is the ability to measure duct airflow rates close enough to the AHU with an acceptable accuracy, 
which is assessed in this paper. 

2.  Methods 
The focus of this study is to assess various measurement techniques and available measuring equipment 
to measure duct airflow rates with acceptable accuracy. During the project, researchers, equipment 
suppliers and contractors in this field were contacted asking for advice regarding measurement 
protocols. A selection of currently available methods and devices are tested through laboratory 
experiments at the Department of Energy and Process Engineering at NTNU in Trondheim. Field duct 
airflow measurements in real buildings are also performed. To compare the different equipment, they 
are tested in the same setup in the lab. The lab setup represents similar conditions as can be found for 
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AHU in buildings, but in order to have the same boundary conditions, the tests are done in the lab and 
not in the field. The velocity traversal method was tested in the field, but unfortunately, it was not 
possible to validate the results. Further details about the techniques, measuring equipment, relevant 
standards for measurements and the performed experiments can be found in [11]. 

3.  Measurement techniques 
Four different measurement techniques are presented and compared. 

3.1.  Pressure differential through an orifice plate 
The pressure differential method with an orifice plate is widely used in laboratories to determine and 
monitor airflows. When a fluid passes through a reduction of the open area in a pipeline, it causes a 
static pressure drop. Based on Bernoulli's equation, the flow rate can be calculated using the measured 
static pressure difference before and after the orifice plate. Flow conditions should be constant or only 
varying slightly and slowly with time. The orifice plate must be mounted according to specified 
minimum straight duct lengths without disturbances or branch connections both upstream and 
downstream. Although highly accurate, this method introduces an additional pressure loss and has low 
sensitivity at very low airflow rates [12]. This method is mostly used in laboratories, due to the extra 
pressure loss and large intervention to ventilation systems in buildings. The airflow rate and 
corresponding uncertainties are calculated according to NS-EN ISO 5167-1 and NS-EN ISO 5167-2. 

3.2.  Velocity traversal method 
By measuring the velocity at multiple designated positions over the cross-section of a duct, one can 
obtain the area-averaged velocity. The number of measuring points and accuracy is decided based on 
the flow regime, the duct diameter and velocity profile in the duct. Turbulence caused by bends, fans, 
branching and limited straight ductwork increases the inaccuracy and thus it may require more 
measuring points. Minimum straight duct length, the number of measurement points and other criteria 
for using velocity traversal method is specified in NS-EN 16211:2015. One significant weakness of the 
method is that it cannot capture the quick airflow variations with one set of measurements. The measured 
airflows are assumed constant within the measurement time. The sensor probe will also interfere with 
the velocity profile, further decreasing the measurement accuracy. The method is intuitive, but traversing 
the sensor needs to be conducted manually, thus requiring time-consuming labour. The measurement 
uncertainty is high for very low velocities and developing flows. 

For this project, two different types of TSI anemometers were used, VelociCalc 8388 and VelociCalc 
9565-P. These are hot-film anemometers with extendable measurement probes. VelociCalc 9565-P 
measures air velocity, temperature and relative humidity simultaneously. A drawback of this device is 
that the placement of the sensors requires that at least 75 mm of the probe is in the flow [13]. 

3.3.  Ultrasonic measurements 
Ultrasonic devices are based on the Doppler effect [14]. Through ultrasonic measurements, one can 
monitor both constant and time-dependent airflows at a wide range of air velocities as it responses 
linearly to flow velocity change. This is especially beneficial at low air velocities, and so the technique 
is emerging for use in VAV dampers in new buildings aiming for low energy use for fans [15, 16]. 
Another major benefit is that there is no additional pressure loss. 

Lindab UltraLink FTMU is tested to measure airflow and temperature. Measurements are logged 
automatically and exported to a computer using Modbus. UltraLink also has requirements regarding 
minimum straight duct lengths. Its uncertainty also depends on the orientation of the device relative to 
disturbances as referred in the datasheet [17]. Another drawback is that the product is currently only 
available for relatively small duct sizes (Ø100-Ø315). 
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3.4.  Tracer gas method 
Tracer gas dilution techniques are well-known for assessing airflow rates and air distributions within 
buildings and ventilation systems. With the tracer gas method, the air is "marked" with one or more 
tracer gases, and then the concentrations are measured at various positions. By interpreting the evolution 
of tracer concentrations, it is possible to calculate airflow rates, ventilation efficiency, the age of air and 
leakage flow rates [18]. However, tracer gas measurements are difficult to perform in the field, as it 
requires specific knowledge for setting up the measurements and analysing the concentrations. The key 
factor for successful tracer gas method is the good mixing of the tracer and the air, which tends to be 
difficult to achieve in the ductwork where there is very limited space. 

For this project, carbon dioxide (CO2) and nitrous oxide (N2O) are used as tracer gases, and 
Lumasense photoacoustic gas monitor is used for analysis of the tracer concentrations, the same device 
as used by [9]. Due to its background concentration, CO₂ is not ideal for analysis but was chosen for its 
low global warming potential and low price relative to other gases. 

3.5.  Comparison of measurement techniques and equipment 
The selected measurement techniques and equipment used in the project are compared in table 1. The 
VelociCalc is the only one able to measure velocity, temperature and relative humidity, while tracer gas 
can determine parasitic airflows (like for example leakages in rotary heat exchangers). However, for 
determining the annual heat recovery efficiency, the UltraLink has a significant advantage due to its 
automatic logging. For the other methods, intensive manual labour is required for the measurement if 
the annual performance of the system is monitored. In addition, demand-controlled ventilation is 
becoming increasingly popular, and fluctuating airflows can be tracked by the ultrasonic measurement. 

Table 1 Comparison of the selected measurement techniques and equipment used in the project. 

Airflow measurement method Velocity traverse Ultrasound Pressure 
differential 

Tracer gas 

Selected measuring 
equipment in this project 

VelociCalc 9565-P 
[13] 

Lindab UltraLink 
[17] 

Orifice plate, TT 
series manometer 

CO2 and N₂O tracer gases, 
Lumasense photoacoustic 
gas monitor 

Velocity Range 0-50 m/s 0.2-15 m/s Reynolds number 
≤5000 

NA 

Uncertainty ±3 % of reading or 
±0.015 m/s, whichever 
is greater 

±5 % of reading or 
±Xa l/s, whichever is 
greater 

Depends on the flow 
rate, orifice plate, 
etc.  

Uncertainty mainly 
depends on the mixing 
level 

Resolution  0.01 m/s NA NA NA 
Temperature Range -10 to 60 °C -10 to 50 °C NA NA 

Uncertainty ±0.3 °C ±1.0 °C NA NA 
Resolution 0.1 °C NA NA NA 

Relative 
humidity  

Range 5 to 95 % RH NA NA NA 
Uncertainty ± 3 % RH 
Resolution 0.1 % RH 

Automatic 
logging 

 Yes (in 1 point) Yes Depends on the 
micromanometer and 
the logger 

For tracer concentration, 
yes 

Duct size  Ø25 to Ø12700 Ø100-Ø315 Ø50-Ø1000 [19] Any size 
Strengths  Easy to implement and 

understand 
Accurate, intuitive, 
low uncertainty for 
low air velocity, no 
flow interference 

Accurate Able to determine the 
main and parasitic 
airflows at the same time, 
relatively accurate 

Drawbacks  High measurement 
uncertainty for varying 
flow conditions, 
requires manual labour 

Could be difficult to 
install in existing 
ducts, not available 
for large duct sizes 

Creates extra 
pressure loss, 
not suitable for field 
tests 

Need good mixing, which 
is almost impossible in 
AHU, and specialized 
knowledge to calculate the 
airflows 

Costs  Low equipment cost 
and medium/high 
labour work depending 
on measurement points 

Low equipment cost 
and low labour work 

Low equipment cost 
and low labour work 

Very high equipment cost 
and high labour work 

a X equals the distance in dm, for instance Ø100 => 1 l/s and Ø200 => 2 l/s. 
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4.  Lab experiments 
Measurements have been performed with the above techniques and the main results are briefly presented 
here. More detailed information can be found in the project report [11]. 

4.1.  Comparison between velocity traversal, ultrasonic measurements and pressure differential 
For this experiment, the orifice plate is mounted according to straight duct requirements and used as a 
reference for testing Lindab UltraLink FTMU and VelociCalc 8388. The test rig is shown in figure 1 
and measurements are performed on the same straight duct section (Ø200) but at different distances 
from the bend. Measurements are performed with four different setups with varying distances to the 
bend, and with five different airflow rates for each setup. Note that the tested setups are mostly outside 
producers and standards recommendations for distances relative to disturbances, as we want to evaluate 
the UltraLink and VelociCalc in conditions similar as to what can be found in the field. This paper only 
presents the setup with the shortest distance from the bend to the devices: 0.05 m to VelociCalc, 0.12 m 
to UltraLink and 4.00 m to orifice plate (see image to the right in figure 1). For the UltraLink, the 
measurement uncertainty is affected by the orientation of the flow sensors relative to disturbances. 
Consequently, the UltraLink is tested at different orientations. For the velocity traverse method, five 
measuring points are used, positioned according to NS-EN 16211:2015. 
 

  
Figure 1 Left: Picture of the lab setup for testing Lindab UltraLink and VelociCalc 8388 and compare with 

calculated airflow rates found with the orifice plate. Right: setup used for the presented measurement results. 

The results from the measurements are presented in table 2. The terms used for UltraLink orientation; 
side, inner radius and outer radius, refer to the placement of the first flow sensor on the device relative 
to the bend. Due to the very short distance from the bend, the airflow is highly turbulent and unevenly 
distributed over the cross-section of the duct, making it very difficult to achieve accurate measurements. 
An average deviation of 6.6 % when the UltraLink is oriented towards the side is observed. The 
deviations for the other orientations are significantly higher, with -22.8 % and -16.5 % for the inner and 
outer radius respectively. The results with the VelociCalc have an agreement with reference values from 
the orifice plate, with mean deviations between 3.8 % and 6.3 %.  
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Table 2 Measurement results with calculated flow rate over orifice plate, measured values for UltraLink and 
VelociCalc and deviations compared to the calculated value over the orifice plate. 

UltraLink 
orientation Measurement # 1 2 3 4 5 

Avg. error 
compared 

to orifice plate 

Standard 
deviation 

 
Calc. flow rate from orifice plate 
[m³/h] 59.9 132.1 204.8 277.9 351.4 -  

Side UltraLink [m³/h] 62 141 222 298 376 -  

 VelociCalc 8388 [m³/h] 64.3 143.4 218.6 293.5 363.3 -  

 Deviation UltraLink 3.5% 6.7% 8.4% 7.2% 7.0% 6.6% 1.8% 

 Deviation VelociCalc 8388 7.4% 8.6% 6.7% 5.6% 3.4% 6.3% 2.0% 

 
Calc. flow rate from orifice plate 
[m³/h] 59.9 132.1 204.8 277.9 351.4 -  

Inner radius UltraLink [m³/h] 48 98 156 215 275 -  

 VelociCalc 8388 [m³/h] 64.1 144.3 215.5 285.0 361.3 -  

 Deviation UltraLink 
-

19.9% 
-

25.8% 
-

23.8% 
-

22.6% 
-

21.7% -22.8% 2.2% 

 Deviation VelociCalc 8388 7.0% 9.3% 5.2% 2.6% 2.8% 5.4% 2.8% 

 
Calc. flow rate from orifice plate 
[m³/h] 59.9 132.1 204.8 277.9 350.9 -  

Outer radius UltraLink [m³/h] 50 109 171 233 295 -  

 VelociCalc 8388 [m³/h] 62.5 143.0 212.0 279.3 358.6 -  

 Deviation UltraLink 
-

16.5% 
-

17.5% 
-

16.5% 
-

16.2% 
-

15.9% -16.5% 0.6% 

 Deviation VelociCalc 8388 4.4% 8.3% 3.5% 0.5% 2.2% 3.8% 2.9% 

Based on our measurements, including those not presented here, the UltraLink achieves the best 
accuracy when oriented towards the side when the distance from a bend is shorter than recommended. 
In general, measurements with the VelociCalc are more accurate than with the UltraLink, especially 
when the UltraLink is oriented towards the inner or outer radius relative to the bend. Aside from the 
setup in table 2, the orientation towards the inner radius was more accurate than towards the outer radius. 
Note that results may differ for other disturbances. The deviations for the VelociCalc are highest for low 
airflow rates, albeit still acceptable, and in the same range as the deviations found with the UltraLink 
oriented towards the side. However, for higher airflow rates, the VelociCalc is more accurate, and so 
the optimal choice of measurement equipment is also dependent on the range and frequency of variation 
of the airflow rate to be measured. However, the measurement accuracy of the ultrasonic device oriented 
towards the side is acceptable without additional pressure loss and interference on the velocity profile. 
Considering automatic logging, the ultrasonic airflow measurement technique is thus considered a 
superior alternative to both the velocity traversal and pressure differential techniques for field 
measurements, if it is properly installed. 

4.2.  Tracer gas measurements 
The aim of this experiment is to investigate the feasibility and complexity of using the tracer gas 
technique to determine the main and parasitic airflow (leakage) rates in an AHU. Figure 2 shows a 
principle sketch of the system including tracer gas dosing and sampling spots. The test rig has the same 
AHU illustrated in figure 1. A LabView program is used to control the supply and extract airflows and 
rotary speed of the heat wheel, which are kept constant during each test scenario. The ductwork 
connected to the heat wheel has a dimension of Ø500, and balance between supply and exhaust airflows 
are verified using Testo 420 flow hood. Multiple tests are performed, including tests with two tracer 
gases (CO₂ and N₂O) to determine the airflows in different ducts at the same time. However, as these 
two gases have some overlapping wavelength adsorption intervals, the tracer concentration results 
obtained from the experiments are unreasonable due to the lack of cross-compensation for wave 
adsorption. Besides the test with two tracer gases, the airflow measurement with the single tracer gas 
test (CO₂) is also conducted. The single tracer gas must be applied sequentially for different ducts, with 
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sufficient time in between to eliminate the influence from the last test. For this case, the time interval is 
24 hours and the injection rate of CO₂ is constant at 4 l/min. To achieve sufficient mixing, the gas is 
injected through multiple holes in two tubes positioned perpendicular to the cross-section of the duct. 
Leakages through the ducts between the dosage point and the AHU, as well as external leakage through 
the AHU box, are considered negligible compared to the recirculation flow rates. 

 
Figure 2 Principle sketch of the lab setup for tracer gas tests, with ducts, injection 

points in blue and measuring points in red. 

Monitoring of the tracer gas concentrations is performed by infrared spectroscopy with the 
Lumasense photoacoustic gas monitor. The air is pumped into the tracer gas measurement chamber from 
the sampling points. The main and parasitic airflow rates can be determined with measured CO₂ 
concentrations and the injection tracer rate using tracer mass conservation. For a rotational speed of 10 
rpm, the supply and extract recirculation rates for the tested AHU with rotary heat wheel are 15.2 % and 
9.3 % respectively. At 20 rpm, the corresponding values are 14.3 % and 17.0 %. The extract air 
recirculation increases at the higher rotational speed (20 rpm), and thus more polluted air is introduced 
into the supply air. This may degrade the performance of the heat recovery and reduce indoor air quality. 
Another interesting finding is that a test with a long straight duct attached in the supply side (i.e. 
unbalanced static pressures between supply and extract), led to a large fraction of supply air penetrating 
to the exhaust side. This caused malfunction of the heat wheel and indicates that balanced duct resistance 
and balanced static pressure in the extract and supply sides should be pursued in practice to avoid large 
leakages in rotary heat recovery units. 

To conclude, the single tracer gas method is able to present the main and parasitic airflows in the 
AHU. Good mixing between the tracer and airflow is, however, a big challenge, even when multiple 
injections are used. In addition to the challenges of achieving sufficient mixing of the tracer with the 
airflow in AHU in practical systems, the tracer gas technique is in general more difficult to perform than 
the other techniques. When using multiple tracer gases, the cross-compensation function of adsorption 
spectrums for different tracers should be activated in the gas analyser to reduce the interference between 
various tracer gases.  

5.  Conclusion 
In order to reveal the field heat recovery efficiency, accurate measurements on duct airflow close to 

the AHU is needed. The available measuring techniques presented in this paper can be categorized as 
the pressure differential, velocity traversal, ultrasonic and tracer gas methods according to the 
measurement principle. All the equipment presented in this study requires minimum straight duct 
lengths to perform good measurements. On the other hand, the requirement for the available ductwork 
to place the sensor and provide sufficient straight length is rarely met in real buildings. 

The orifice plate with pressure differential method could provide accurate airflow measurements, 
however, it causes high extra pressure loss and requires long straight duct. The orifice plate is not 
considered suitable for field duct airflow measurement and long-term monitoring due to its difficulty of 
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connection with existing ductwork and high pressure penalty. The velocity traverse and tracer gas 
methods have less interference with the airflows. The velocity traverse method is intuitive and easy to 
be performed. The tracer gas method is of specialization to be implemented and the analysis of the tracer 
gas result is relatively complicated. Both methods require intensive labour. The ultrasound method, as 
an emerging technique for airflow measurement, is able to measure the flow rates with low cost, no 
disturbance to the airflow and acceptable accuracy when the proper installation is provided. The 
measurements with UltraLink is slightly worse than the velocity traverse method with VelociCalc 8388 
in terms of measurement accuracy. However, UltraLink is more automatic and need almost no extra 
labour once it is installed in the ductwork. The ultrasonic method is recommended as the most promising 
solution for duct airflow measurement if more options on device dimension are available with its 
development in the market. Additionally, the clamp-on ultrasonic equipment, which is typically used 
for liquid flow, would be recommended to be further developed and transferred to airflow application. 
The clamp-on solution will avoid the duct connection and could be applied to both existing and new 
systems without any disturbance for the airflow. A measuring uncertainty within ±3 % for airflow rate 
in the duct close to the heat recovery is pursued in order to obtain accurate heat recovery efficiency.  
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