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Optimal Medium-Term Hydropower Scheduling
Considering Energy and Reserve Capacity Markets

Arild Helseth,Member, IEEE, Marte Fodstad and Birger Mo

Abstract—This paper describes a method for optimal schedul-
ing of hydropower systems for a profit maximizing, price-taking
and risk neutral producer selling energy and capacity to separate
and sequentially cleared markets. The method is based on a
combination of stochastic dynamic programming (SDP) and
stochastic dual dynamic programming (SDDP), and treats inflow
to reservoirs and prices for energy and capacity as stochastic
variables.

The proposed method is applied in a case study for a Norwe-
gian watercourse, quantifying the expected changes in schedules
and water values when going from an energy-only market to a
joint treatment of energy and reserve capacity markets.

Index Terms—Hydroelectric power generation, Power genera-
tion economics, Linear programming, Stochastic processes.

NOMENCLATURE

A. Index Sets

H Set of hydropower reservoirs/stations;
Sh Set of discharge segments for stationh;
K Set of time steps within the week;
Kb Set of time steps associated with blockb;
B Set of reservation blocks within the week;
Lp,t Set of cuts for price nodep and weekt;
Ωh Set of reservoirs upstream reservoirh.

B. Parameters

Pmax
h ,Pmin

h Max./Min. capacity in stationh, in MW;
V max
kh , Vmin

kh Max./Min. limit for reservoirh, in Mm3;
Rmax

h Max. capacity reservation for stationh, in MW;
τk Duration of time stepk, in hours;
τ̃k Relative duration of time stepk, fraction;
τb Total duration of reservation blockb, in hours;
ζEk Energy price scaling coefficient for time step

k;
ζCb Capacity price scaling coefficient for blockb;
ηhs Energy equivalent for stationh and discharge

segments, in MWh/Mm3;
γh Factor limiting the use of spinning reserves;
ϕ Cost of artificial water, ine/Mm3;
πphℓ Coefficient for reservoir level for price nodep,

reservoirh and cutℓ, in e/Mm3;
µpbℓ Coefficient for capacity sales for price nodep,

block b and cutℓ, in e/MW;
βpℓ Right-hand side for price nodep and cutℓ, in

e;
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K Last time step in week;
T Number of weeks in planning horizon;
NE Number of energy price clusters;
NC Number of reserve capacity price clusters.

C. Stochastic Variables

Ih Sum weekly inflow to reservoirh, in Mm3;
λt Vector of prices in weekt, in e/MWh;
λE
p Weekly average energy price for price nodep,

in e/MWh;
λC
p Weekly average reserve capacity price for price

nodep, in e/MW;

D. Decision Variables

αp,t+1 Future expected profit for price nodep and
week t+ 1, in e;

Φ(. . .) End value function, ine;
ekh Generated electricity in time stepk for station

h, in MWh;
cb,t+1 Sold capacity for blockb in weekt+1, in MW;
rkh Allocated capacity in time stepk for stationh,

in MW;
vkh Volume in time stepk for reservoirh, in Mm3;
qDkhs Discharge in time stepk through stationh at

segments, in Mm3;
qSkh Spillage in time stepk from reservoirh, in

Mm3;
qBkh Bypass in time stepk from reservoirh, in

Mm3;
wh Artificial water supply to reservoirh, in Mm3;
Xt Vector of decision variables for weekt;
Zt Vector of state variables for weekt.

I. I NTRODUCTION

The future Nordic electricity system will see stronger con-
nections to the European system, and include a larger share
of renewable, intermittent generation than what is the case
today. This development will e.g. be driven by the building
of new overseas cables, environmental targets set by the
European Union and decisions on downscaling of nuclear
generation capacity. Tighter market couplings and increased
contributions from intermittent generation will call for efficient
and reliable arrangements for balancing services. In the low-
load (summer) period of the year a significant share of the
large reservoir power stations will not be in operation, so that
non-dispatchable intermittent generation will cover the load.
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In these periods it is important and costly for the system
operator to procure sufficient amounts of spinning reserves
to ensure stable operation of the system. Conversely, in the
high-load period (winter) the system operator needs to procure
sufficient up-regulation reserves to handle potential shortfalls
in intermittent generation.

On the road towards an integrated European electricity
market, regulators and system operators aim at establishing
harmonized and economically efficient markets for balancing
services [1]. For hydropower producers in the Nordic market,
the importance of the different types of market products
may change significantly from what they are familiar with.
Today, the producers primarily benefit from selling energy
in the day-ahead (spot) market. However, the flexibility of
hydropower enables active contribution in balancing markets
as well, which in turn will challenge the way hydropower
systems traditionally are operated and scheduled. The choice
between utilizing the hydropower for electricity generation or
as reserve capacity will impact the strategic evaluation and
scheduling of resources. That is, the consideration of multiple
markets will impact the way thewater values are calculated,
and the scheduling tools and methods need to take this into
account.

Numerous solution strategies have been applied to the
hydropower scheduling problem, see e.g. [2] for a thorough
review. Stochastic dynamic programming (SDP) has proved to
be well suited for systems with relatively few reservoirs, but
will suffer from extreme computation times when considering
realistic multi-reservoir systems. In order to avoid the curse of
dimensionality limiting the use of SDP, an approach known as
stochastic dual dynamic programming (SDDP) was presented
in [3]. Unlike SDP, there is no need to fully discretize the
state variables with the SDDP algorithm. SDDP is a sampling-
based variant of multi-stage Benders decomposition, wherean
outer approximation of a concave future expected profit func-
tion is constructed iteratively for each time-stage by adding
Benders cuts. Thus, the overall optimization problem can be
decomposed into small linear programming (LP) problems,
one for each decision stage, that can be solved independently.
Currently, SDDP seems to be the state-of-the-art method for
solving the long- and medium-term scheduling problem in
regions where hydropower is the dominant technology for
generating electricity, see e.g. [4] and [5]. Recent research
related to the SDDP algorithm has e.g. focused on convergence
properties [6], parallel processing and computational perfor-
mance [7], strategic bidding [8], risk aversion [9], emission
constraints [10] and integration of pumped-storage and wind
power [11].

In a liberalized market, hydropower producers will typically
act as price-takers trying to optimize the utilization of hydro
reservoirs to maximize their expected profit. For this purpose,
a hybrid method combining the SDP and SDDP methods was
presented in [12] and [13]. The basic idea is to combine
the strengths of the SDP and the SDDP methods to retain
the convexity of the problem while dealing with the curse
of dimensionality. In this hybrid method, the energy price
forecasts are treated as discrete Markov chains through SDP.
Other state variables, such as reservoir levels and inflows,are

continuously approximated in the SDDP scheme. Note that the
price process can also be described by means of a scenario tree
and combined with the SDDP method, as described in [14].

Approaches incorporating treatment of balancing markets
in medium-term hydropower scheduling methods seems to be
scarce. A detailed simulator allowing operational scheduling
of a hydropower system in day-ahead and real-time markets
was presented in [15], relying on water values computed in
a separate and less detailed procedure. Some authors have
decomposed the scheduling problem into intra- and inter-stage
problems, as first suggested in [16] and further discussed
in [17]. In this scheme the inter-stage problem will take care of
the longer-term and strategic decisions, e.g. how much water
to use in a given week, while intra-stage decisions concern the
detailed operation using a much finer time-resolution. Based
on this scheme [18] proposed a method for stochastic medium-
term hydropower scheduling considering participation in both
the spot and secondary reserve markets. Inter-stage decisions
regarding operation of seasonal reservoirs are found by useof
SDP, and the shorter term intra-stage decisions, e.g. related to
sales of spinning reserves, are found by solving a multi-stage
mixed-integer problem. This type of method will realistically
capture short-term uncertainty by allowing stochastic intra-
stage modeling. On the other hand, the approach depends
on the assumption that inter-stage initial states and decisions
cannot depend on realization of intra-stage uncertainty, and the
use of SDP limits the number of reservoirs that can be included
in the inter-stage part within reasonable computation time. A
different and more uniform method for incorporating sales of
spinning reserves in a medium-term hydropower scheduling
model was presented in [19]. It extends the hybrid SDP/SDDP
algorithm in [13] by allowing co-optimized sales of energy and
reserve capacity, treating the capacity price as deterministic.

The novel contributions of this paper regard improvements
of the model presented in [19] to more realistically address
stochasticity, decision sequences and operational constraints
seen in the multi-market scheduling. Firstly, the price model is
updated to allow stochastic reserve capacity prices. Secondly,
capacity sale is allowed the week ahead of operation, under
uncertain energy prices and inflows. Although many power
markets around the world are designed for co-optimized trade
of energy and reserve capacity [20], the sequential decision
sequence is more realistic in the Nordic market. It is elaborated
how sales of reserve capacity enters as state variables in the
decomposed problem structure and are included in the Ben-
ders cuts. Finally, linear constraints are added to discourage
delivery of reserve capacity while running stations below their
minimum power output, and to ensure that there is enough
water in the reservoirs to deliver the committed up-regulation
reserves.

The proposed method is applied in a case study where
the optimal schedule for a Norwegian watercourse is found
considering participation in both the day-ahead and reserve
capacity markets.

The paper is outlined as follows. First, a brief description
of the reserve capacity markets in Norway is provided in
Section II. Subsequently, a basic mathematical description
of the hydropower scheduling problem and the combined
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SDP/SDDP algorithm is provided in Section III, emphasizing
on the new features. The case study is presented in Section IV.
Finally, conclusions are drawn in Section V.

II. M ARKETS FORRESERVECAPACITY

In the Nordic system, the transmission system operators
(TSOs) are responsible for matching supply and demand of
electricity in real time. In order to ensure this balance theTSOs
need to be able to acquire balancing services, both in terms of
capacity and energy. The Norwegian TSO (Statnett) acquires
primary, secondary and tertiary reserves through market-based
approaches using the marginal pricing principle [21]. In this
section the sequences and the basic properties of the various
reserve markets in Norway are summarized.

In Table I the different energy and reserve capacity markets
and their clearing is organized in a time-sequence, indicating
the decision stages that a producer needs to relate to. The table
shows the type of service, market name (explained below),
the time period and the discrete time intervals for which the
markets are cleared.

Momentary imbalances between production and demand
will firstly be regulated by use of primary reserves, often
referred to as frequency-controlled reserves for normal op-
eration (FCR-N). FCR-N contributes to both upward and
downward regulation in the frequency band 49.90-50.10 Hz.
Such reserves are currently assured by the droop setting in the
turbine governors for generators exceeding 10 MVA. That is,
generators that do not participate in the primary reserve market
will still participate in the primary regulation. In 2008 both a
weekly and a daily primary reserve market were established.

If imbalances last for minutes, the secondary regulation re-
serves will take over, releasing the primary regulation reserves
so that these are available in case of new imbalances. An
arrangement for secondary reserves was initiated in Norwayin
2008, and later on led to the introduction of a system service
known as automatic frequency restoration reserves (FRR-A)
in 2013.

If frequency deviations still persist after activation of objects
in the primary and secondary markets, the manual frequency
regulation reserves (FRR-M) will be activated by the TSO.
The TSOs in the Nordic market have different arrangements
for securing that sufficient amounts of reserve energy will
be bid into the FRR-M market. The Norwegian regulating
power option market (RKOM) was established in 2000 for this
purpose. Both generators and consumers can bid to RKOM,
but currently only for up-regulation. The accepted regulation
offers for a given period receive an option payment.

The structure shown in Table I shows that reserve capacity
is generally traded the week before actual operation and before
the decisions on energy trade. This market design differs from
the co-optimization of energy and reserves described e.g. [20].

III. M ODEL DESCRIPTION

The objective of the scheduling is to maximize the expected
profit from sales to both the spot and the reserve capacity
markets. It is assumed that the hydropower producer is a risk
neutral price-taker in both markets.

A. Model Overview

Stochastic medium-term hydropower scheduling models are
typically used for generation scheduling and to provide input
to short-term scheduling, and will normally take a scheduling
horizon of 1-3 years. Three stochastic variables are considered
in the presented model; the weekly inflow to each reservoir and
the weekly average energy and reserve capacity prices. Deci-
sion stages are weekly; that is, realizations of the stochastic
variables are known at the beginning of each week and for
that entire week.

For a given weekt a vectorXt is defined, comprising all
decision variables for that week. Associated withXt there
is a price vectorλt comprising all prices for that week. It is
assumed that all costs and relationships are linear or piecewise
linear and convex. The overall objective is then to find an
operating strategy to obtain:

maxE

{

T
∑

t=1

λ
⊺

tXt +Φ(ZT )

}

(1)

The expectation is to be taken over the stochastic variables.
The functionΦ estimates the value of state variablesZT at the
end of the study period. The classification of state variables
will be discussed in Section III-D.

Since water left in a reservoir at the end of a week is
carried over to the next week, the water balances for the
reservoirs are coupled across decision stages, making the
optimization problem a dynamic one. Thus, the problem in (1)
is a multi-stage stochastic optimization problem, which may
be efficiently solved by decomposition techniques [22].

The overall optimization problem is solved by a combina-
tion of SDDP and SDP, using an approach which is close
to that described in [13]. By using dynamic programming
principles and representing the future expected profit functions
by hyperplanes orcuts, the problem is decomposed into
weekly subproblems with given values of inflows, energy and
reserve capacity prices. The algorithm builds an operating
strategy (represented by cuts) iteratively, by repeated forward
and backward iterations through the sequence of weekly
subproblems. The formulation of the decomposed weekly
optimization problem is described in detail in Section III-D
and the overall solution method is outlined in Section III-E.

Regarding the representation of stochastic variables, the
price model is described in Section III-B. Inflows are sampled
from a lag-1 autoregressive model both in the forward and
backward iteration of the SDDP part of the algorithm, see
e.g. [23] for further details.

B. Price Modeling

Normally, the weekly average energy price will show a
significant serial correlation. This seems also to be the case
for the weekly average reserve capacity prices, although the
correlation will depend on the type of market being considered.
In this work we treat both prices as stochastic and present a
price model capturing both the serial and cross correlation
between the two price processes. Due to the serial correlation
it is necessary to include the price state in the system state
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TABLE I
T IME-SEQUENCE FOR THE DIFFERENT ENERGY AND RESERVE CAPACITY MARKETS IN NORWAY.
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Type Market Period Resolution Commodity 10:00 12:00 12:00 12:00 18:00
Tertiary RKOM season Winter Season Capacity

Secondary FRR-A Week Block Capacity
Primary FCR-N week Weekend Block Capacity
Tertiary RKOM week Week Block Capacity
Primary FCR-N week Weekday Block Capacity

Day-ahead ELSPOT Day Hour Energy
Primary FCR-N day Day Hour Capacity
Intraday ELBAS Continuous Hour Energy
Tertiary FRR-M Hour Hour Energy

description. As discussed in [13], a price state will violate
the convexity requirement of the SDDP algorithm. The price
processes are therefore modeled as a Markov chain using
discrete states (price nodes), and embedded in the SDDP
algorithm as in ordinary dynamic programming. Note that
the combined SDDP/SDP algorithm generally requires the
stochastic processes being modelled in the SDP part to be
independent of those modelled in the SDDP part. Thus, the
weekly price processes are assumed independent of the inflow.
In our experience, for a regional system (e.g. a single water-
course within a price zone) it is difficult to find a significant
correlation between local inflow during a week and the average
spot price for the same week.

The method in [24] is used to establish the Markov model
based on a set of energy and capacity price scenarios. First,
scenarios from the two price processes are sorted individually
into NE energy andNC reserve capacity price clusters for
each stage, and average cluster pricesλE

i , i ∈ NE andλC
i , i ∈

NC are found. A price node contains a pair of energy and
capacity price clusters, as illustrated in Fig. 1, where price
nodei in staget−1 comprises cluster pricesλE

2 andλC
2 . The

transition probabilityρij in going from a nodei in weekt−1
to nodej in weekt is computed by finding the ratio between
the number of scenarios belonging to both nodei and j and
those belonging to nodei.

For each week a maximum number ofNE×NC price nodes
and (NE × NC)

2 transition probabilities shall be identified.
Proper model identification requires a large number of scenar-
ios. Such scenarios can e.g. be obtained from a fundamental
long-term scheduling model.

C. Decision Stages and Capacity Sales

The intra-week time resolution is illustrated in Fig. 2. Each
week t is divided into time stepsk in which energy can be
sold and schedules for individual power plants are made.

Capacity is sold in blocks, where one blockb can cover
multiple time steps, e.g. hours 0-8 on all weekdays. The
capacitycb,t sold in one block should be a joint decision for
all time steps belonging to that block. Moreover, it is assumed
that the reserve capacity market is cleared the week before
actual operation (weekt− 1), as illustrated in Fig. 2.

Fig. 1. Illustration of the price model.

Fig. 2. Illustration of decision stages within a given weekt.

At the beginning of each weekt, the energy price is known
for that week. Provided the capacity obligationscb,t∀b ∈ B

from the week before, and realization of all stochastic vari-
ables, plans for electricity generation and capacity reservation
can be decided per station in weekt.

Capacity sales link any two consecutive weeks as in a two-
stage stochastic problem. In the first decision stage represent-
ing weekt− 1, capacity sales is done based on a discretized
probability distribution of energy price and inflows for week t.
Subsequently, in the second decision stage representing week
t, the energy price and inflows are known, and the system
operation for each time stepk within week t is found, given
the capacity obligation from weekt− 1.
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D. Decomposed Weekly Decision Problem

In this section the decomposed weekly decision problem
is formulated. Details on how it fits in to the combined
SDDP/SDP algorithm are outlined in Section III-E.

The decomposed problem is formulated as an LP problem
described by (2)-(12). For a given weekt the realization
of weekly inflows Ih, the average energy priceλE

p and the
average capacity priceλC

p,t+1 for week t+ 1 are known. The
amount of energy sold to the spot market and capacity to the
reserve market is optimized for the whole water course, and it
is assumed that there are no demand obligations. Note that for
brevity of mathematical formulation, the week index is only
used to indicate the next week (t+ 1) and the scenario index
is only included to indicate prices and price node association
of sets and parameters.

max

{

∑

b∈B

τbζ
C
b,t+1λ

C
p,t+1cb,t+1 +

∑

k∈K

∑

h∈H

ζEk λE
p ekh−

∑

h∈H

ϕwh + αp,t+1

}

(2)

vkh +
∑

s∈Sh

qDkhs + qSkh + qBkh − wh−

∑

j∈Ωh

(

∑

s∈Sj

qDkjs + qSkj + qBkj

)

= vk−1,h + τ̃kIh ∀k, h (3)

ekh −
∑

s∈Sh

ηhsq
D
khs = 0 ∀k, h (4)

∑

h∈H

rkh = cb,t ∀b, k ∈ Kb (5)

γhrkh −
1

τk
ekh ≤ 0 ∀k, h (6)

rkh +
1

τk
ekh ≤ Pmax

h ∀k, h (7)

vkh −
τk

ηhS
rkh ≥ V min

kh ∀k, h (8)

αp,t+1 −
∑

h∈H

πphℓvkh−
∑

b∈B

µpbℓcb,t+1 ≤ βpℓ,

k = K, ℓ ∈ Lp,t (9)

Vmin
kh ≤ vkh ≤ V max

kh ∀k, h (10)

0 ≤ cb,t+1 ≤
∑

h∈H

Rmax
h ∀b (11)

0 ≤ rkh ≤ Rmax
h ∀k, h (12)

The objective (2) is to maximize the profit from both mar-
kets, subject to constraints (3-12). Energy and capacity prices
corresponding to a specific time step or block, respectively,
are found by scaling the weekly average values by pre-defined
expected profiles.

The water balance equation for a specific reservoirh and
time stepk is formulated in (3). An auxiliary variablew is
introduced in (3) ifk = 1 allowing the model to artificially
supply water to the reservoir at a high costϕ. This variable
is needed to ensure that the stochastic model has complete
recourse. Water discharge through the station is modeled using
one variable per discharge segment in (4). These segments
will be used in decreasing order according to their energy
equivalentηhs, provided thatηhs decreases withs.

The capacity amountcb,t was sold in weekt− 1 and enters
the optimization problem as an obligation in weekt in (5).
Note that capacity obligationcb,t is tied to the entire water-
course. Electricity generationekh in (4) and capacity allocation
rkh in (6)-(7) are determined per station. Allocated capacity
should be spinning and symmetric. The spinning requirement
is taken care of in (6), ensuring that a station cannot offer
more reserve capacity than what is already spinning. Eqn. (7)
ensures that the generation capacity sold in the two markets
does not exceed the station’s installed capacity.

Eqn. (8) ensures that there is enough water in the reservoir
to deliver up-regulation reserves at the lowest efficiencyηhS
for the entire time period in question. In the case of primary
and secondary regulation reserves, this constraint may seem
conservative, as the activation of these reserves will not span
several consecutive hours.

The profit obtained for the current week is balanced against
the future expected profitαp,t+1 for the given price node
p. This variable is constrained by cuts in (9). The cuts
should relate to all state variables, i.e. decision and stochastic
variables that define the system state passed on to the sub-
sequent week. In the presented model, the state variables are
Zt+1 = [vK , cb,t+1, Ih, λ

E , λC ]. The construction of cuts is
described in Section III-E3. These cuts are built and stored
for each week and price node in a setLp,t in each backward
iteration of the algorithm.

Being a linear model, one cannot guarantee operation above
the station’s minimum outputPmin

h . To do so one would
have to use binary variables, which conflicts with the con-
vexity requirement of the SDDP algorithm. By introducing
the parameterγh in (6), as estimated in (13), the model
is discouraged from operating below the station’s minimum
output for the purpose of delivering reserves.

γh = max

{

Pmin
h

Rmax
h

, 1.0

}

(13)

Consider as an example a station withPmin
h of 50 MW and

maximum reserve deliveryRmax
h of 33 MW. Lettingγh = 50

33

according to (13),rkh cannot reach it’s maximum value before
the station produces at least 50 MW. Note that costs associated
with starting and stopping stations are not considered in this
work, but could be included as described in [11].

All variables have non-negativity constraints. The reserva-
tion variable rkh is of special interest in this study; it is
constrained as shown in (12). The value ofRmax

h should be set
by the modeler to realistically represent the amount of reserves
required by the TSO, and will depend on the type of reserves
being considered. In case of primary reserves, the capacity
sold to the primary reserve market cannot exceed the physical
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limit dictated by the droop settings in the turbine governors,
as described in [19].

Note that the presented formulation requires the reserves to
be symmetric and spinning. This requirement is easily relaxed
to adapt to reserve markets with different requirements, e.g.
by adding separate variables for up and down regulation and
omitting (6).

E. Solution Strategy

A hybrid SDP/SDDP approach is applied to decompose the
overall optimization problem. Repeated forward and backward
iterations through the sequence of weekly subproblems are
carried out as briefly described below, see e.g. [13], [23] for
further details.

1) Forward Iteration: A set of scenarios are sampled for
the stochastic variables. Weekly inflows are sampled from a
lag-1 autoregressive model, and weekly average energy and
reserve capacity prices are sampled based on the conditional
transition probabilities in the discrete Markov chain. Fora
given scenario, the decomposed problem described by (2)-(12)
is solved for a week. Subsequently, the simulated state at the
end of the week is passed forward as an initial state for the next
week. The forward simulation gives an updated set of state
trajectories and an expected profit for the sampled scenarios,
which serves as the lower bound.

2) Backward Iteration: Cuts at the end of the planning
horizon T can be obtained from a pre-defined final value
functionΦ. For each state trajectory obtained in the forward
simulation one starts from the state at the end of weekT − 1,
and for each realization of stochastic variables one computes
the optimal operation for weekT . From the sensitivities of the
objective function to the initial state values, new cuts at the
end of weekT−1 are obtained, and the process is repeated for
weekT − 1, and so on. The upper bound is obtained from the
solution of the first-week problem. Convergence can formally
be declared when the upper bound is within a predefined
confidence interval of the lower bound.

3) Constructing Cuts: Due to the time-couplings in equa-
tions (3) and (5), the decision variablesvkh,t for k = K

and cb,t+1 for b ∈ B will enter the decomposed optimization
problem in weekt + 1, and must therefore be considered as
state variables. Thus, these variables should enter the future
profit function which is represented by cuts of type (9).

In the first time step in a given weekt+1 in the backward
iteration for a given inflow samplei and price nodep, the two
equations (3) and (5) can be formulated as in (14) and (15),
respectively. Dual values associated with constraints forthe
given sample are in parentheses.

vpikh,t+1 +
(

· · ·
)

=

vKh,t + τ̃kIih,t+1

(

πpih

)

k = 1, ∀h (14)
∑

h∈H

rpikh,t+1 = cb,t+1

(

µpib

)

k ∈ Kb, ∀b (15)

The dual values are together with the obtained objective
valueα̂p,t+1 used to create cut for inflow samplei, price node

p and weekt in (16), where the starred variables represent the
state passed from weekt to t+ 1.

αp,t+1 −
∑

h∈H

πpih

(

vpiKh,t − v∗piKh,t

)

−
∑

b∈B

µpib

(

cpib,t+1 − c∗pib,t+1

)

≤ α̂p,t+1 (16)

After separating variables and parameters and averaging
coefficients over all inflow realizations, the cut takes the form
in (9) and is stored in set of cutsLp,t.

It should be noted that inflow is also a state variable due
to the time coupling in the autoregressive inflow model. As
inflow is not a decision variable, its contribution to the cut
will enter the right-hand side in (9), as described in [23].

IV. CASE STUDY

A. Case Description

A computer model was established implementing the pro-
posed method. The model was tested on a Norwegian water-
course comprising 7 hydropower reservoirs with correspond-
ing power stations, with a total capacity of 986 MW. An
illustration of the topology and technical characteristics is
provided in Fig. 3. For each reservoir shown in the figure the
average annual inflow and storage capacity are stated, both in
Mm3. Each power station is identified with a number and its
installed capacity in MW. Stations 4 and 5 have a minimum
production limit of 70 and 50 MW, respectively. The cost of
artificial water (ϕ) was set to 106 e/Mm3.

A scheduling horizon of 2 years was applied with weekly
decision stages. Each week was divided into 21 time steps and
capacity sales were arranged in 3 blocks covering weekdays
(night, day and evening), and 3 blocks covering weekends
(night, day and evening). This definition of blocks is in line
with the current market design for the Norwegian weekly
primary reserve market and the secondary reserve market, as
discussed in Section II. Each station is allowed to commit
a maximum of 10 % of its installed capacity to the reserve
market. Decisions regarding sales of energy are done for each
time step, whereas decisions on sales of capacity are done per
reserve block

A set of cuts of type (9) was used to ensure that state
variables at the end of the scheduling horizon were valuated.
These cuts were obtained as a result of a few initial model
runs, and the same set of cuts was used for all simulated cases.
An alternative approach would be to run the model with a
longer scheduling horizon so that the results for the two-year
period are less dependent on valuation of state variables atthe
end of the scheduling horizon.

Energy and reserve capacity price scenarios was obtained
from the EMPS model, which is a fundamental hydrothermal
market model [25]. The EMPS model was run on a system
description of the Nordic power system, using 80 historical
inflow years, and with reserve capacity constraints per price
zone. We extracted 80 price scenarios from the simulation,
and from these scenarios a discrete price model comprising
9 price nodes per stage (3 energy and 3 capacity price
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Fig. 3. Watercourse topology and technical data.

clusters) was identified by following the approach discussed
in Section III-B. Note that the number of scenarios is small
compared to the number of price nodes being identified. For
this reason we slightly adjusted transition probabilitiesto
ensure that the transition probability matrix was ergodic,as
described in [26], chapter 3.3.

The lag-1 autoregressive inflow model was fitted using a
single inflow series comprising 80 historical years, and the
model error was sampled from a normal distribution.

A total of 200 scenarios of inflow and price were re-sampled
in each forward iteration, and 12 discrete inflow error terms
weresampled at each stage in the backward iterations in the
SDDP-part of the algorithm.In our experience, this number of
discrete inflow error terms should be sufficient to representthe
stochasticity in inflow in this context. Recall that the inflow
model is considered independent of the price levels. Therefore
the same inflow error samples are used for each price node at
a given stage in the backward iterations. A maximum number
of 60 iterations were allowed. The model was implemented
in C++, using the dual simplex algorithm from the Gurobi
6.0 library [27]. All tests were carried out on an Intel Core
i7-4940MX processor with 3.30 GHz and 32 GB RAM. A
single run required in the range of 55-60 hours, depending on
the simulated case. Although not exploited in this work, the
algorithm is well suited for parallel processing, see e.g. [7].

Three cases were defined as listed in Table II. Case A
serves as a reference case considering the energy market only.
This case was constructed by setting the upper bound on the
capacity sales variable (cb) to zero for all time blocks over the
entire time horizon. Cases B and C both consider sequential
sales to the capacity and energy markets, but they differ in the
treatment of (8). Unlike case B, case C includes the volume
requirement in (8), and the solution from case C will thus
guarantee that there is sufficient amounts of water behind the
turbines to support activation of the reserves.

B. Results

The convergence characteristic of the algorithm is shown in
Fig. 4. The cost gap gradually closes as the iteration number

TABLE II
SIMULATED CASES AND EXPECTED PROFITS.

Modeling feature Profit [M e]
Case Markets Volume req. Total From capacity

A Energy only - 278.2 0.0
B Energy and Capacity - 281.1 3.1
C Energy and Capacity X 280.9 2.9
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Fig. 4. Convergence properties of the algorithm applied to Case C.

increases, but the sampling uncertainty in the lower bound is
significant. By increasing the number of scenarios being re-
sampled in every iteration from 200 to 400 we observed a
slightly faster stabilization of the upper bound and less sam-
pling uncertainty in the lower bound, but the corresponding
strategy did not impact the results being presented in the
following much.

The expected profits obtained from a final forward simu-
lation using 1000 sampled scenarios are shown in Table II.
These numbers are adjusted for the deviations between final
and initial reservoir levels. As expected, when introducing the
opportunity to sell capacity in cases B and C, the total profit
increases compared to the energy-only case A. Furthermore,
the additional volume constraint in case C results in a slightly
lower expected profit than in case B. This constraint will
primarily impact the operation of smaller reservoirs, suchas
no. 4 and 5 in Fig. 3. However, since these have large upstream
reservoirs and the model does not consider time delays in the
water course, the impact of the volume constraint is generally
underestimated.

A significant part of the profit from capacity sales in cases
B-C is obtained without changing the generation schedule
compared to what would be found for case A in the same
state. All hydropower stations have their best efficiency below
the maximum generation level. Thus, when operated at the best
efficiency, the stations will have room for both up- and down
regulation. However, as will be clear when looking into more
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Fig. 5. Expected reservoir trajectories for reservoir 7 forcases A and C during
the first year.

detailed results, the generation schedules for case A and cases
B-C are significantly different, indicating that constraints (6)
and/or (7) are frequently binding. In summary, the comparison
presented in Table II is not only sensitive to the energy and
capacity prices, but also certain system characteristics such as
efficiency curves and reservoir volumes.

For the remainder of the result presentation we compare
cases A and C, since case B only differs marginally from case
C.

Fig. 5 shows the expected reservoir trajectories for reservoir
7 for cases A and C for the first year. Due to sales of reserve
capacity, case C follows a slightly higher trajectory than case
A until spring flood (around week no. 20). Furthermore, water
is used more aggressively to keep downstream generators
spinning during the low-load season in case C, giving a lower
trajectory in autumn and early winter. Similar patterns were
observed for the other large reservoirs (reservoir number 1, 2,
3 and 6).

Fig. 6 shows the duration curves for generation in station
5 for cases A and C. This station has an installed capacity
of 330 MW, a minimum output of 50 MW, and is allowed
to deliver at most 33 MW of reserve capacity. The impact of
considering the sales of reserve capacity is evident in Fig.6;
the station is operated a significant portion of the time at 297
MW and 50 MW output in case C. Note that the modelling
in (6) encourages the station to run at its minimum output
(50 MW) rather than 33 MW for the purpose of delivering
spinning reserves.

The expected water values at a given time stage and system
state can be found as the coefficients (π) of the binding cut
for that stage and state. Fig. 7 shows how the expected water
values for week 20 differs between cases A and C for reservoir
3 for a given price node. These values are plotted as a function
of the filling in reservoir 3, while fixing all other reservoir
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Fig. 6. Duration curves for generation in station 5 for casesA and C.
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Fig. 7. Water values as functions of the filling in week 20 for reservoir 3 for
cases A and C for a given price node.

levels to their corresponding expected values obtained from
case A. In this case study the water values generally seems to
be lower for cases B and C than in case A, as indicated by
Fig. 7, which is due to the impact of withholding capacity for
up-regulation in periods where one in case A would generate
at maximum capacity. However, if prices where different one
could end up with higher water values in cases B and C due to
the additional use of water caused by the spinning requirement.

V. CONCLUSIONS

A new method suitable for solving the medium-term hy-
dropower scheduling problem for a profit maximizing and
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price-taking producer considering both the markets for energy
and reserve capacity was presented. The method is based on
a hybrid SDP/SDDP algorithm, treating inflow and prices for
energy and reserve capacity as stochastic variables. In order
to reflect decision stages seen in the Nordic power markets,
the method allows allocating resources sequentially, selling
reserve capacity prior to energy.

Traditionally, medium-term hydropower scheduling models
only consider the energy market. This work demonstrates that
a market for reserve capacity can be introduced as an extension
of a previously presented scheduling model. By capturing the
impact of an additional market on the water values, improved
end-value settings can be provided to more detailed short-term
scheduling tools and simulators.

The method was tested on a Norwegian watercourse con-
sidering sales to the spot and the spinning reserve markets.
Emphasis was put on quantifying the expected changes in
schedules and water values when going from an energy-only
market to a joint treatment of energy and reserve capacity
markets.

The error introduced when linearizing all relationships de-
pends on the case and system being studied. Although the
purpose of the proposed method is not to provide accurate
commitment schedules, the linearization error may signifi-
cantly impact expected profits and system operation for certain
systems. This error will normally be more pronounced when
considering sales of spinning reserve capacity in additionto
energy. Thus, further work should focus on validating the pro-
posed method against a method that allows integer variables
and thus allows a more detailed system representation.
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