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Abstract—This paper describes a method for optimal schedul- K Last time step in week;
ing of hydropower systems for a profit maximizing, price-taking T Number of weeks in planning horizon;
and risk neutral producer selling energy and capacity to seprate Ng Number of energy price clusters;

and sequentially cleared markets. The method is based on a
combination of stochastic dynamic programming (SDP) and
stochastic dual dynamic programming (SDDP), and treats infiw

to reservoirs and prices for energy and capacity as stochast C. Sochastic Variables

N¢ Number of reserve capacity price clusters.

variables.
The proposed method is applied in a case study for a Norwe- T, Sum weekly inflow to reservoih, in Mm?;
gian watercourse, quantifying the expected changes in sctieles At Vector of prices in week, in €/ MWh:

and water values when going from an energy-only market to a \E
p

joint treatment of energy and reserve capacity markets. Weekly average energy price for price nade

in €/ MWh;
_ Index Terms—Hydroelectric power generation, Power genera-  \C Weekly average reserve capacity price for price
tion economics, Linear programming, Stochastic processes nodep, in €/|\/|W;
NOMENCLATURE o )
A Index Sets D. Decision Variables
H Set of hydropower reservoirs/stations; Optt1 Future expected profit for price node and
Sh Set of discharge segments for station B(..) \évﬁgkvﬁamé’ f:Jnnftion ire:
K Set of time steps within the week; T .
K, Set of time steps associated with bldgk €Lh Ge_nerated electricity in time stépfor station
B Set of reservation blocks within the week; h, in MWh’. . . :
L Set of cuts for price nodg and weekt; Co,t+1 Sold capacity for block in weeki+1, in MW,
Q‘; Set of reservoirs upstream reservbir ’ Tkh Allocated capacity in time step for stationh,
in MW;
B. Paramet Vkh Volume in time stegk for reservoirh, in Mm3;
T "f ers . o _ . ab.. Discharge in time steg through statiom: at
pres, prn Max./Min. capacity in statiorh, in MW; segments, in Mm3;
Ve vimintMax./Min. limit for reservoirh, in Mm?; a, Spillage in time stepk from reservoirh, in
Rpra® Max. capacity reservation for statiégn in MW, Mm3:
Th Duration of time stepk, in hours; qap, Bypass in time stepk from reservoirh, in
Tk Relative duration of time step, fraction; Mm3:
T Total duration of reservation blodk in hours; 4, Artificial water supply to reservoih, in Mm?;
4 Energy price scaling coefficient for time step X, Vector of decision variables for week
k; 7, Vector of state variables for week
o Capacity price scaling coefficient for bloék
Mhs Energy equivalent for statioh and discharge |. INTRODUCTION
segments, in MWh/Mm?3; o o .
n Factor limiting the use of spinning reserves: The future Nordic electricity system W_|II see stronger con-
0 Cost of artificial water, in€/Mm?: nections to the_ European system,_and include a _Iarger share
Tohe Coefficient for reservoir level for price noge of renewe_lble, intermittent generatlon than what is th(_a case
reservoirh and cut/, in €/Mm3: today. This development will e.g. be driven by the building
Lipbe Coefficient for capacity sales for price nogle of new overseas cables, _epvwonmental targgts set by the
block b and cut/, in €/MW: Europegn Union .and .deC|S|ons on down.scallng of nuclear
Byt Right-hand side for price nodeand cuts, in  9eneration capacity. Tlghter market c_:oupll_ngs and_lr_lcereas
= contributions from intermittent generation will call foffieient

and reliable arrangements for balancing services. In the lo
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In these periods it is important and costly for the systemontinuously approximated in the SDDP scheme. Note that the
operator to procure sufficient amounts of spinning reservpsce process can also be described by means of a scenario tre
to ensure stable operation of the system. Conversely, in #ied combined with the SDDP method, as described in [14].
high-load period (winter) the system operator needs toypec  Approaches incorporating treatment of balancing markets
sufficient up-regulation reserves to handle potential tfalts  in medium-term hydropower scheduling methods seems to be
in intermittent generation. scarce. A detailed simulator allowing operational schiedul

On the road towards an integrated European electricity a hydropower system in day-ahead and real-time markets
market, regulators and system operators aim at estaldishimas presented in [15], relying on water values computed in
harmonized and economically efficient markets for balagicira separate and less detailed procedure. Some authors have
services [1]. For hydropower producers in the Nordic marketecomposed the scheduling problem into intra- and integest
the importance of the different types of market productgoblems, as first suggested in [16] and further discussed
may change significantly from what they are familiar within [17]. In this scheme the inter-stage problem will takeecafr
Today, the producers primarily benefit from selling energhe longer-term and strategic decisions, e.g. how muchrwate
in the day-ahead (spot) market. However, the flexibility db use in a given week, while intra-stage decisions conden t
hydropower enables active contribution in balancing miarkedetailed operation using a much finer time-resolution. Base
as well, which in turn will challenge the way hydropowepn this scheme [18] proposed a method for stochastic medium-
systems traditionally are operated and scheduled. Theehderm hydropower scheduling considering participation athb
between utilizing the hydropower for electricity genesator the spot and secondary reserve markets. Inter-stage @egisi
as reserve capacity will impact the strategic evaluatiod anegarding operation of seasonal reservoirs are found byflise
scheduling of resources. That is, the consideration ofiplelt SDP, and the shorter term intra-stage decisions, e.gecktat
markets will impact the way thevater values are calculated, sales of spinning reserves, are found by solving a mulgesta
and the scheduling tools and methods need to take this imbixed-integer problem. This type of method will realistiga
account. capture short-term uncertainty by allowing stochasticant

Numerous solution strategies have been applied to teeage modeling. On the other hand, the approach depends
hydropower scheduling problem, see e.g. [2] for a thorougim the assumption that inter-stage initial states and ess
review. Stochastic dynamic programming (SDP) has proveddannot depend on realization of intra-stage uncertaintythe
be well suited for systems with relatively few reservoirat b use of SDP limits the number of reservoirs that can be indude
will suffer from extreme computation times when considgrinin the inter-stage part within reasonable computation tife
realistic multi-reservoir systems. In order to avoid theseuof different and more uniform method for incorporating salés o
dimensionality limiting the use of SDP, an approach known &pinning reserves in a medium-term hydropower scheduling
stochastic dual dynamic programming (SDDP) was presenteddel was presented in [19]. It extends the hybrid SDP/SDDP
in [3]. Unlike SDP, there is no need to fully discretize thalgorithm in [13] by allowing co-optimized sales of energyda
state variables with the SDDP algorithm. SDDP is a samplingeserve capacity, treating the capacity price as detestigni
based variant of multi-stage Benders decomposition, whaere The novel contributions of this paper regard improvements
outer approximation of a concave future expected profitfunof the model presented in [19] to more realistically address
tion is constructed iteratively for each time-stage by addi stochasticity, decision sequences and operational Gontsr
Benders cuts. Thus, the overall optimization problem can keen in the multi-market scheduling. Firstly, the price elasl
decomposed into small linear programming (LP) problemspdated to allow stochastic reserve capacity prices. Siyon
one for each decision stage, that can be solved indepepdempacity sale is allowed the week ahead of operation, under
Currently, SDDP seems to be the state-of-the-art method foncertain energy prices and inflows. Although many power
solving the long- and medium-term scheduling problem imarkets around the world are designed for co-optimizecetrad
regions where hydropower is the dominant technology fof energy and reserve capacity [20], the sequential detisio
generating electricity, see e.g. [4] and [5]. Recent redearsequence is more realistic in the Nordic market. It is elateat
related to the SDDP algorithm has e.g. focused on conveegehow sales of reserve capacity enters as state variable®in th
properties [6], parallel processing and computationafquer decomposed problem structure and are included in the Ben-
mance [7], strategic bidding [8], risk aversion [9], emissi ders cuts. Finally, linear constraints are added to disupir
constraints [10] and integration of pumped-storage andiwinlelivery of reserve capacity while running stations belbwiit
power [11]. minimum power output, and to ensure that there is enough

In a liberalized market, hydropower producers will typigal water in the reservoirs to deliver the committed up-regoitat
act as price-takers trying to optimize the utilization ofdhy reserves.
reservoirs to maximize their expected profit. For this pgggo  The proposed method is applied in a case study where
a hybrid method combining the SDP and SDDP methods wiee optimal schedule for a Norwegian watercourse is found
presented in [12] and [13]. The basic idea is to combirmnsidering participation in both the day-ahead and reserv
the strengths of the SDP and the SDDP methods to retampacity markets.
the convexity of the problem while dealing with the curse The paper is outlined as follows. First, a brief description
of dimensionality. In this hybrid method, the energy pricef the reserve capacity markets in Norway is provided in
forecasts are treated as discrete Markov chains through SBEction Il. Subsequently, a basic mathematical descriptio
Other state variables, such as reservoir levels and inflaves, of the hydropower scheduling problem and the combined



SDP/SDDP algorithm is provided in Section Ill, emphasizing. Model Overview
on the new featgres. The case s_tudy is.presented in Section IVstgchastic medium-term hydropower scheduling models are
Finally, conclusions are drawn in Section V. typically used for generation scheduling and to provideuinp
to short-term scheduling, and will normally take a schedyli
[Il. MARKETS FORRESERVECAPACITY horizon of 1-3 years. Three stochastic variables are cersit

In the Nordic system, the transmission system operatdisthe presented model; the weekly inflow to each reservair an
(TSOs) are responsible for matching supply and demand tBe weekly average energy and reserve capacity prices: Deci
electricity in real time. In order to ensure this balance®8©s sion stages are weekly; that is, realizations of the stdithas
need to be able to acquire balancing services, both in tefmsvgriables are known at the beginning of each week and for
capacity and energy. The Norwegian TSO (Statnett) acquit&gt entire week.
primary, secondary and tertiary reserves through marksedd ~ For a given week a vectorX; is defined, comprising all
approaches using the marginal pricing principle [21]. Iis thdecision variables for that week. Associated wXh there
section the sequences and the basic properties of the saribua price vector\; comprising all prices for that week. It is
reserve markets in Norway are summarized. assumed that all costs and relationships are linear or\pisee

In Table | the different energy and reserve capacity markdtgear and convex. The overall objective is then to find an
and their clearing is organized in a time-sequence, inidigat Operating strategy to obtain:
the decision stages that a producer needs to relate to. blee ta T
shows the type of service, market name (explained below), T
the time period and the discrete time intervals for which the max {Z A X+ q)(ZT)} (@)
markets are cleared. o ] )

Momentary imbalances between production and demandrhe expectatlon is to be taken over the stO(_:hastlc variables
will firstly be regulated by use of primary reserves, oftefi€ function® estimates the value of state variables at the
referred to as frequency-controlled reserves for normal opnd Of the study period. The classification of state var&ble
eration (FCR-N). FCR-N contributes to both upward an@ill be discussed in Section I1I-D. .
downward regulation in the frequency band 49.90-50.10 Hz.Since water left in a reservoir at the end of a week is
Such reserves are currently assured by the droop settimgin §r1ied over to the next week, the water balances for the
turbine governors for generators exceeding 10 MVA. That {€Servoirs are coupled across decision stages, making the
generators that do not participate in the primary reserwieta OPtimization problem a dynamic one. Thus, the problem in (1)
will still participate in the primary regulation. In 2008 thoa 1S @ Multi-stage stochastic optimization problem, whictyma
weekly and a daily primary reserve market were establisheb€ efficiently solved by decomposition techniques [22].

If imbalances last for minutes, the secondary regulatien re The overall optimization problem is solved by a combina-
serves will take over, releasing the primary regulatiomress tion of SDDP and SDP, using an approach which is close
so that these are available in case of new imbalances. I&hth?t described in [13]. By using dynamic programming
arrangement for secondary reserves was initiated in NomvayPrinciples and representing the future expected profittfans
2008, and later on led to the introduction of a system servi€¥ hyperplanes orcuts, the problem is decomposed into
known as automatic frequency restoration reserves (FRR-Wgekly subproblems with given values of inflows, energy and
in 2013. reserve capacity prices. The algorithm builds an operating

I frequency deviations still persist after activation dfjects Strategy (represented by cuts) iteratively, by repeatedé
in the primary and secondary markets, the manual frequer@jd backward iterations through the sequence of weekly
regulation reserves (FRR-M) will be activated by the TSFUbproblems. The formulation of the decomposed weekly
The TSOs in the Nordic market have different arrangemerffBlimization problem is described in detail in Section DIl-
for securing that sufficient amounts of reserve energy wfind the overall solution method is outlined in Section IlI-E
be bid into the FRR-M market. The Norwegian regulating _Regarding_ the re_presentation of stochastic variables, the
power option market (RKOM) was established in 2000 for thidfice model is described in Section IlI-B. Ir_nflows are sardple
purpose. Both generators and consumers can bid to RKOfPM & lag-1 autoregressive model both in the forward and
but currently only for up-regulation. The accepted regatat backward iteration of the SDDP part of the algorithm, see
offers for a given period receive an option payment. e.g. [23] for further details.

The structure shown in Table | shows that reserve capacity
is generally traded the week before actual operation amat®@efB. Price Modeling
the decisions on energy trade. This market design differs fr
the co-optimization of energy and reserves described 20§.

t=1

Normally, the weekly average energy price will show a
significant serial correlation. This seems also to be the cas
for the weekly average reserve capacity prices, although th
correlation will depend on the type of market being congder

The objective of the scheduling is to maximize the expectdd this work we treat both prices as stochastic and present a
profit from sales to both the spot and the reserve capacisice model capturing both the serial and cross correlation
markets. It is assumed that the hydropower producer is a ristween the two price processes. Due to the serial cooelati
neutral price-taker in both markets. it is necessary to include the price state in the system state

IIl. M ODEL DESCRIPTION



TABLE |
TIME-SEQUENCE FOR THE DIFFERENT ENERGY AND RESERVE CAPACITY MARK'S IN NORWAY.

s | £ | 8 L2
sl g 88323 |55
S| E | £ | & 3 8 | 2|2
Type Market Period Resolution | Commaodity 10:00 | 12:00 | 12:00 | 12:00 | 18:00
Tertiary RKOM season Winter Season Capacity v’
Secondary FRR-A Week Block Capacity v’
Primary | FCR-N week | Weekend Block Capacity v’
Tertiary | RKOM week Week Block Capacity v’
Primary | FCR-N week | Weekday Block Capacity v’
Day-ahead ELsPOT Day Hour Energy v’
Primary FCR-N day Day Hour Capacity v’
Intraday ELBAS Continuous Hour Energy v’
Tertiary FRR-M Hour Hour Energy v’
description. As discussed in [13], a price state will vielat
the convexity requirement of the SDDP algorithm. The price _
processes are therefore modeled as a Markov chain using e PY )
discrete states (price nodes), and embedded in the SDDP _ )]
algorithm as in ordinary dynamic programming. Note that ® pis(®) /.
the combined SDDP/SDP algorithm generally requires the i 1 ‘
stochastic processes being modelled in the SDP part to be VLA e O
independent of those modelled in the SDDP part. Thus, the ’ :
weekly price processes are assumed independent of the.inflow ‘ \i . /4
In our experience, for a regional system (e.g. a single water o \' @
course within a price zone) it is difficult to find a significant A A \\.
correlation between local inflow during a week and the averag
spot price for the same week. A\ ® @
The method in [24] is used to establish the Markov model ' ¢ §
based on a set of energy and capacity price scenarios. First, G - T

scenarios from the two price processes are sorted indilydua
into Ng energy andN¢ reserve capacity price clusters folrig, 1. lllustration of the price model.
each stage, and average cluster prigési € Ng and\{,i €
N¢ are found. A price node contains a pair of energy and
capacity price clusters, as illustrated in Fig. 1, whereeri
nodei in staget — 1 comprises cluster pricesf and)\S'. The
transition probabilityp;; in going from a node in weekt — 1
to nodej in weekt is computed by finding the ratio between
the number of scenarios belonging to both nédendj and .., ; _ week £
those belonging to node

For each week a maximum number®f; x N¢ price nodes Fig. 2. lllustration of decision stages within a given week
and (N x N¢)? transition probabilities shall be identified.
Proper model identification requires a large number of seena
ios. Such scenarios can e.g. be obtained from a fundament%t the beginning Of each Weak the energy price is known

Ch.t

long-term scheduling model. for that week. Provided the capacity obligations Vb € B
from the week before, and realization of all stochastic-vari
C. Decision Stages and Capacity Sales ables, plans for electricity generation and capacity res&Em

The intra-week time resolution is illustrated in Fig. 2. Eaccan be decided per station in week
week ¢ is divided into time step& in which energy can be Capacity sales link any two consecutive weeks as in a two-
sold and schedules for individual power plants are made. stage stochastic problem. In the first decision stage reptes

Capacity is sold in blocks, where one bloékcan cover ing weekt — 1, capacity sales is done based on a discretized
multiple time steps, e.g. hours 0-8 on all weekdays. Thprobability distribution of energy price and inflows for vkele
capacityc, ; sold in one block should be a joint decision foiSubsequently, in the second decision stage representialy we
all time steps belonging to that block. Moreover, it is asesdm ¢, the energy price and inflows are known, and the system
that the reserve capacity market is cleared the week befomeration for each time step within weekt is found, given
actual operation (week— 1), as illustrated in Fig. 2. the capacity obligation from week— 1.



D. Decomposed Weekly Decision Problem The water balance equation for a specific reseroand

In this section the decomposed weekly decision probleff€ Stepk is formulated in (3). An auxiliary variable is
is formulated. Details on how it fits in to the combinedntroduced in (3) ifk = 1 allowing the model to artificially
SDDP/SDP algorithm are outlined in Section IlI-E. supply water to the reservoir at a high cgstThis variable

The decomposed problem is formulated as an LP probld# needed to ensure that the stochastic model has complete
described by (2)-(12). For a given weekthe realization fécourse. Water dls_charge through the _statlon is modelad us
of weekly inflows I,,, the average energy pridef and the One variable per discharge segment in (4). These segments

average capacity DriCECtH for weekt + 1 are known. The will be used in decreasing order according to their energy

p7 . . .
amount of energy sold to the spot market and capacity to tR@uivalenty,,, provided that),, decreases with.

reserve market is optimized for the whole water course, aind i Th€ capacity amount,; was sold in week — 1 and enters
is assumed that there are no demand obligations. Note thatif OPtimization problem as an obligation in weekn (5).

brevity of mathematical formulation, the week index is onljNOté that capacity obligatiom, ; is tied to the entire water-
used to indicate the next week-{ 1) and the scenario index COUrse: Electricity generatian, in (4) and capacity allocation

is only included to indicate prices and price node assauiati”+» N (6)-(7) are determined per station. Allocated capacity
of sets and parameters. should be spinning and symmetric. The spinning requirement

is taken care of in (6), ensuring that a station cannot offer
more reserve capacity than what is already spinning. EqQn. (7

C c ENE, ensures that the generation capacity sold in the two markets
max{ Z;Tbgb’t“)\p’tﬂcb’tﬂ N ];C};fk Ay in does not exceed the station’s installed capacity.
Eqn. (8) ensures that there is enough water in the reservoir
Z Qwh + g +1} (2) to deliver up-regulation reserves at the lowest efficiengcy
her for the entire time period in question. In the case of primary

and secondary regulation reserves, this constraint may see
conservative, as the activation of these reserves will pahs
several consecutive hours.

The profit obtained for the current week is balanced against

D s . B _ ~ the future expected profit,.; for the given price node

Jg;(z qk]erqk]Jqu]) vk-1n + Teln Yk, R (3) p. This variable is constrained by cuts in (9). The cuts
should relate to all state variables, i.e. decision andhstsiic
variables that define the system state passed on to the sub-

D S B
Vkh + Z Qihs + Qkn + dh — Wh—
sESH

sES;

Ckn = Y Mhsins =0 Vk, h (4)  sequent week. In the presented model, the state variat®es ar
5€Sh Ziv1 = [Vi,chir1,In, AZ, AC]. The construction of cuts is
described in Section IlI-E3. These cuts are built and stored
Z Thh = Cbt Vb, k€ Ky (5) for each week and price node in a €gf; in each backward
heH iteration of the algorithm.
1 Being a linear model, one cannot guarantee operation above
Wk = ek < 0 vk, h ®)  the station’s minimum outpuP™". To do so one would
1 s have to use binary variables, which conflicts with the con-
Tkh + e < Py Vk, h @) vexity requirement of the SDDP algorithm. By introducing
T min the parametery, in (6), as estimated in (13), the model
R 2 Vich vk, h ®) i discouraged from operating below the station’s minimum
output for the purpose of delivering reserves.
Qp t+1 — Z TphtVkh— Zupbecb,tﬂ < Bpe, — max{ﬂ, 1.0} (13)
heH beB Rpax

k=K leLyy (®)  consider as an example a station wig* of 50 MW and
maximum reserve deliverig;*** of 33 MW. Letting~, = 32

according to (13)yx, cannot reach it's maximum value before

Vi < gy, < Ve vk, h (10) the station produces at least 50 MW. Note that costs asedciat

0< cposr < Z fri Vb (11) with starting and stppping stations are noF considered im th
e work, but could be included as described in [11].

0 < 1 < RO Yk, h (12) All variables have non-negativity constraints. The reaerv

tion variablery;, is of special interest in this study; it is
The objective (2) is to maximize the profit from both mareonstrained as shown in (12). The valueftjf** should be set
kets, subject to constraints (3-12). Energy and capacitepr by the modeler to realistically represent the amount ofriese
corresponding to a specific time step or block, respectivelgquired by the TSO, and will depend on the type of reserves
are found by scaling the weekly average values by pre-definigeing considered. In case of primary reserves, the capacity
expected profiles. sold to the primary reserve market cannot exceed the pHysica



limit dictated by the droop settings in the turbine govemorp and weekt in (16), where the starred variables represent the
as described in [19]. state passed from weekio ¢ + 1.
Note that the presented formulation requires the reseoves t
be symmetric and spinning. This requirement is easily exax .
to adapt to reserve markets with different requirementg, e. ‘Pt T Z Tpin (Vpikht = Vpiscn,e)

by adding separate variables for up and down regulation and hen
omitting (6). - Zumb (cpibtr1 — ;ib7t+1) < Qpit1 (16)
beB

After separating variables and parameters and averaging
coefficients over all inflow realizations, the cut takes tbnf

A hybrid SDP/SDDP approach is applied to decompose ti¢(9) and is stored in set of cuis, ;.
overall optimization problem. Repeated forward and backwa |t should be noted that inflow is also a state variable due
iterations through the sequence of weekly subproblems agethe time coupling in the autoregressive inflow model. As
carried out as briefly described below, see e.g. [13], [28] fhflow is not a decision variable, its contribution to the cut

further details. will enter the right-hand side in (9), as described in [23].
1) Forward lteration: A set of scenarios are sampled for

the stochastic var_iables. Weekly inflows are sampled from a IV. CASE STUDY
lag-1 autoregressive model, and weekly average energy and o
reserve capacity prices are sampled based on the conditidraCase Description
transition probabilities in the discrete Markov chain. For A computer model was established implementing the pro-
given scenario, the decomposed problem described by 2)-(posed method. The model was tested on a Norwegian water-
is solved for a week. Subsequently, the simulated stateeat tfourse comprising 7 hydropower reservoirs with correspond
end of the week is passed forward as an initial state for tke néng power stations, with a total capacity of 986 MW. An
week. The forward simulation gives an updated set of stdteistration of the topology and technical characteristis
trajectories and an expected profit for the sampled scenariprovided in Fig. 3. For each reservoir shown in the figure the
which serves as the lower bound. average annual inflow and storage capacity are stated, toth i
2) Backward Iteration: Cuts at the end of the planningMm?®. Each power station is identified with a number and its
horizon T can be obtained from a pre-defined final valu#stalled capacity in MW. Stations 4 and 5 have a minimum
function ®. For each state trajectory obtained in the forwargroduction limit of 70 and 50 MW, respectively. The cost of
simulation one starts from the state at the end of wBek1, artificial water (o) was set to 10-€/Mm?3.
and for each realization of stochastic variables one coegput A scheduling horizon of 2 years was applied with weekly
the optimal operation for week. From the sensitivities of the decision stages. Each week was divided into 21 time steps and
objective function to the initial state values, new cutsha t capacity sales were arranged in 3 blocks covering weekdays
end of weeKl'—1 are obtained, and the process is repeated f@ight, day and evening), and 3 blocks covering weekends
weekT — 1, and so on. The upper bound is obtained from tH@ight, day and evening). This definition of blocks is in line
solution of the first-week problem. Convergence can forynalwith the current market design for the Norwegian weekly
be declared when the upper bound is within a predefinpdmary reserve market and the secondary reserve market, as
confidence interval of the lower bound. discussed in Section Il. Each station is allowed to commit
3) Constructing Cuts: Due to the time-couplings in equa-a2 maximum of 10 % of its installed capacity to the reserve
tions (3) and (5), the decision variables, ; for k = K market. Decisions regarding sales of energy are done fdr eac
andc, .11 for b € B will enter the decomposed optimizationtime step, whereas decisions on sales of capacity are dene pe
problem in weekt + 1, and must therefore be considered akgserve block
state variables. Thus, these variables should enter teefut A set of cuts of type (9) was used to ensure that state
profit function which is represented by cuts of type (9).  variables at the end of the scheduling horizon were valuated
In the first time step in a given weekt 1 in the backward These cuts were obtained as a result of a few initial model
iteration for a given inflow sampleand price node, the two runs, and the same set of cuts was used for all simulated.cases

equations (3) and (5) can be formulated as in (14) and (1Y) alternative approach would be to run the model with a

respectively. Dual values associated with constraintsttier longer scheduling horizon so that the results for the twarye
given sample are in parentheses. period are less dependent on valuation of state variablggeat

end of the scheduling horizon.
Energy and reserve capacity price scenarios was obtained
Upikh,t+1 + ( : ) = from the EMPS model, which is a fundamental hydrothermal
vint + Tilings1  (mpin) k=1,Yh (14) market model [25]. The EMPS model was run on a system
description of the Nordic power system, using 80 historical
Z Tpikh,t+1 = Cbt+1 (piv) k€ Ky, ¥ (15) inflow years, and with reserve capacity constraints perepric
her zone. We extracted 80 price scenarios from the simulation,
The dual values are together with the obtained objectiemd from these scenarios a discrete price model comprising
valued,, ++1 used to create cut for inflow sampleprice node 9 price nodes per stage (3 energy and 3 capacity price

E. Solution Strategy



145 896 TABLE II

406 1240 SIMULATED CASES AND EXPECTED PROFITS
[© 6] [D120] Modeling feature Profit [V €]
Case Markets | Volume req. | Total [ From capacity
A Energy only - 278.2 0.0
58 26 B Energy and Capacity - 281.1 31
231 50 C | Energy and Capacity 7 280.9 2.9
[® 20] [®330] A =s0aw
\ \
75 11
170 344
o
8
|@ 40 | |® 400| Py =70 MW
., Storage [Mm?® x|
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Fig. 3. Watercourse topology and technical data. % Nl
[
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. . ge . . ™
clusters) was identified by following the approach discdsse
. . . . (0]
in Section IlI-B. Note that the number of scenarios is small 5 g |
. . . .o o
compared to the number of price nodes being identified. For &
this reason we slightly adjusted transition probabilities @ |
ensure that the transition probability matrix was ergodis, @
described in [26], chapter 3.3. ‘ ‘ ‘ ‘ ‘
The lag-1 autoregressive inflow model was fitted using a 20 30 40 50 60
single inflow series comprising 80 historical years, and the Iteration no.

model error was sampled from a normal distribution.
A total of 200 scenarios of inflow and price were re-samplegy. 4. Convergence properties of the algorithm applied aseCC.
in each forward iteration, and 12 discrete inflow error terms
were sampled at each stage in the backward iterations in the
SDDP-part of the algorithmin our experience, this number ofincreases, but the sampling uncertainty in the lower bosnd i
discrete inflow error terms should be sufficient to represieat significant. By increasing the number of scenarios being re-
stochasticity in inflow in this contexiRecall that the inflow sampled in every iteration from 200 to 400 we observed a
model is considered independent of the price levels. Thegef slightly faster stabilization of the upper bound and lesa-sa
the same inflow error samples are used for each price nodglirig uncertainty in the lower bound, but the corresponding
a given stage in the backward iterations. A maximum numbstrategy did not impact the results being presented in the
of 60 iterations were allowed. The model was implementddllowing much.
in C++, using the dual simplex algorithm from the Gurobi The expected profits obtained from a final forward simu-
6.0 library [27]. All tests were carried out on an Intel Corgation using 1000 sampled scenarios are shown in Table II.
i7-4940MX processor with 3.30 GHz and 32 GB RAM. AThese numbers are adjusted for the deviations between final
single run required in the range of 55-60 hours, depending gnd initial reservoir levels. As expected, when introdgdine
the simulated case. Although not exploited in this work, thepportunity to sell capacity in cases B and C, the total profit
algorithm is well suited for parallel processing, see €7§. [ increases compared to the energy-only case A. Furthermore,
Three cases were defined as listed in Table Il. Case the additional volume constraint in case C results in a 8iigh
serves as a reference case considering the energy market alver expected profit than in case B. This constraint will
This case was constructed by setting the upper bound on gifnarily impact the operation of smaller reservoirs, siash
capacity sales variable to zero for all time blocks over the no. 4 and 5 in Fig. 3. However, since these have large upstream
entire time horizon. Cases B and C both consider sequentigéervoirs and the model does not consider time delays in the
sales to the capacity and energy markets, but they différén twater course, the impact of the volume constraint is gelyeral
treatment of (8). Unlike case B, case C includes the volung@derestimated.
requirement in (8), and the solution from case C will thus A significant part of the profit from capacity sales in cases
guarantee that there is sufficient amounts of water behiad §_.c is obtained without changing the generation schedule
turbines to support activation of the reserves. compared to what would be found for case A in the same
state. All hydropower stations have their best efficiendgle
B. Results the maximum generation level. Thus, when operated at the bes
The convergence characteristic of the algorithm is shown éfficiency, the stations will have room for both up- and down
Fig. 4. The cost gap gradually closes as the iteration numbegulation. However, as will be clear when looking into more
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Fig. 5. Expected reservoir trajectories for reservoir 7cases A and C during Fig. 6. Duration curves for generation in station 5 for cadesnd C.
the first year.

detailed results, the generation schedules for case A aubca
B-C are significantly different, indicating that constrasir{6) — casec
and/or (7) are frequently binding. In summary, the comeris 3 :
presented in Table Il is not only sensitive to the energy and
capacity prices, but also certain system characteristicls as
efficiency curves and reservoir volumes.

For the remainder of the result presentation we compare
cases A and C, since case B only differs marginally from case
C.

Fig. 5 shows the expected reservoir trajectories for rederv
7 for cases A and C for the first year. Due to sales of reserve
capacity, case C follows a slightly higher trajectory thase
A until spring flood (around week no. 20). Furthermore, water
is used more aggressively to keep downstream generators &
spinning during the low-load season in case C, giving a lower
trajectory in autumn and early winter. Similar patterns ever 0 10 20 30 40 50 60
observed for the other large reservoirs (reservoir numbgr 1 Reservoir level [Mm]

3 and 6).

Fig. 6 shows the duration curves for generation in statidrig- 7. Water values as functions of the filling in week 20 feservoir 3 for
5 for cases A and C. This station has an installed capacf§?®s A @nd € for a given price node.
of 330 MW, a minimum output of 50 MW, and is allowed

to deliver at most 33 MW of reserve capacity. The impact 9fye|s 1o their corresponding expected values obtainesh fro
considering the sales of reserve capacity is evident in &ig. case A. In this case study the water values generally seems to
the station is operated a significant portion of the time a 29, |ower for cases B and C than in case A, as indicated by
MW and 50 MW output in case C. Note that the modellingiq 7 which is due to the impact of withholding capacity for
in (6) encourages the station to run at its minimum outpyf,_requlation in periods where one in case A would generate
(50 MW) rather than 33 MW for the purpose of deliveringy maximum capacity. However, if prices where different one
Spinning reserves. could end up with higher water values in cases B and C due to

The expected water values at a given time stage and sysi@@ additional use of water caused by the spinning requineme
state can be found as the coefficient 6f the binding cut

for that stage and state. Fig. 7 shows how the expected water
values for week 20 differs between cases A and C for reservoir
3 for a given price node. These values are plotted as a functio A new method suitable for solving the medium-term hy-
of the filling in reservoir 3, while fixing all other reservoirdropower scheduling problem for a profit maximizing and

Water value [103 Euro/MmS]

V. CONCLUSIONS



price-taking producer considering both the markets forgne

and reserve capacity was presented. The method is based on
a hybrid SDP/SDDP algorithm, treating inflow and prices for
energy and reserve capacity as stochastic variables. kr ord2]
to reflect decision stages seen in the Nordic power markets,

the method allows allocating resources sequentiallyjnsgll
reserve capacity prior to energy.

Traditionally, medium-term hydropower scheduling models

only consider the energy market. This work demonstratets t

a market for reserve capacity can be introduced as an egtensi
of a previously presented scheduling model. By capturirg th
impact of an additional market on the water values, improv%]

end-value settings can be provided to more detailed shaort-t
scheduling tools and simulators.

The method was tested on a Norwegian watercourse c&lnﬁ—]
sidering sales to the spot and the spinning reserve markets.
Emphasis was put on quantifying the expected changes[ifA
schedules and water values when going from an energy-only
market to a joint treatment of energy and reserve capaciiyg]

markets.
The error introduced when linearizing all relationships d
pends on the case and system being studied. Although

purpose of the proposed method is not to provide accurate

commitment schedules, the linearization error may signi
cantly impact expected profits and system operation foatert

systems. This error will normally be more pronounced whé#ll

considering sales of spinning reserve capacity in additton

energy. Thus, further work should focus on validating the- pr[23]
posed method against a method that allows integer variables

and thus allows a more detailed system representation.
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