
  

  

Abstract—In mathematical optimization uncertainty is 

expressed through scenarios. auto-regressive integrated moving 

average (ARIMA) is one of the known practice to generate 

scenarios. This paper is about scenario generation using 

multivariate data: electrical power demand, wind power 

generation and energy market price. An ARIMA model along 

with Copula is implemented for scenario generation. The results 

are presented and discussed. 

 
Index Terms—Multivariate scenario generation, ARIMA, 

Copula, Stochastic programming  

 

I. INTRODUCTION 

This work is about scenario generation using copula. 

Scenario generation is an important part of stochastic 

programming. The generated scenarios however should 

retain the original statistical properties of the data. Auto 

regressive inter grated moving average (ARIMA) has been 

used extensively in literature [1] to generate scenarios. One 

of the drawbacks of ARIMA is the applicability to 

multivariate distributions. To overcome this Copula is used to 

generate scenarios as presented here [2], [3]. A regular vine 

copula and the goodness of fit measures are discussed here 

[4]. A Bayes theory-based copula is presented here. [5]. A 

comprehensive study of various copula models with real 

world data is presented here [6]. A multivariate copula-based 

forecasting method is explained here [7].  

Multivariate copula is gaining more importance due to the 

nature and availability of data and relations among them. In 

this paper wind, demand and price data are considered as the 

multivariate data. Copula is used to generate multivariate 

distributions. These are sampled using ARIMA and the 

results are presented. The rest of the paper is organized in 

four sections: scenario generation, computational 

experiments, discussion and conclusion. 

 

II. SCENARIO GENERATION  

This section describes the mathematical model for the 

scenario generation using copula. This section is further 

divided into two subsections: ARIMA model and copula. The 

former presents a multivariate ARIMA formulation 

considering three variables. The later states the copula to 

sample the residuals. 
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A. ARIMA Model 

The ARIMA Model is a widely used model for modeling 

[8]. We use the model, to capture the time series behavior of 

the series. 

The authors consider the statistically correlated scenarios 

because the stochastic variables: wind, demand, and price are 

co-related. Thus, formulating the ARIMA (ϕ, φ)  a 

quasi-contemporaneous stochastic process price (𝑦𝑠,𝑡
𝑎 )  and 

wind (𝑦𝑠,𝑡
𝑐 ) as in 1(a-c). The residuals εt,s

a , εt,s
b , εt,s

c  are 

statistically dependent. Thus, the dependency structure of the 

stochastic processes can be stated as 𝜀{𝜀𝑡,𝑠
𝑎 ⋅ 𝜀𝑡−𝑗,𝑠

𝑏 ⋅ 𝜀𝑡−𝑗,𝑠
𝑐 } ≠

0 . 𝜀𝑠
𝑎, 𝜀𝑠

𝑏 , 𝜀𝑠
𝑐  are the series of errors simulated to produce 

residual cross-correlogram of stochastic process. In 1(d) the 

error correlation between stochastic process a & b, a & c are 

presented and finally reduced to a product of an orthogonal 

matrix B and identity matrix 𝜓(𝐸[𝜓 ⋅ 𝜓𝑇] = 𝐼). The cross 

correlation between 𝜀𝑡,𝑠
𝑎  and 𝜀𝑡,𝑠

𝑏  can be represented through 

variance-covariance matrix G. G is essentially a positive 

semi-definite and symmetric matrix. This matrix is further 

decomposed using Cholesky decomposition (𝐺 = 𝐿𝐿𝑇) 
[9]-[11]. L is the upper triangular matrix that is also the 

orthogonal matrix (𝐵 = 𝐿). 
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B. Copula 

The residuals of the ARIMA Model are fitted to a Copula 

Model to capture time varying dependence of the data. The 

authors use for this purpose R-vine copulas introduced by 

Bedford and Cooke (2001b, 2002).  

The general theory for copulas is Skalars Theorem (1959), 

based on this Theorem, Skalar shows that a every 

multivariate distribution can be written as a multivariate 

copula function. Equation (2) shows Skalars Theorem 

applied to a three-dimensional dataset.  

Following Skalar (1959) this density function is uniquely 
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represented by the following form, if it is continuous. 

 

𝐹(𝑎, 𝑏, 𝑐) = 𝐶(𝐹𝑎(𝑎), 𝐹𝑏(𝑏), 𝐹𝑐(𝑐))               (2) 

 

Joe (1996) makes this theorem usable for Vine Copulas, 

since he showed that Skalars Theorem can be decomposed to 

bivariate copulas. For a multivariate distribution with three 

variables it thus follows that this decomposition can uniquely 

identify the density function. 

 

𝑓(𝑎|𝑏, 𝑐) = 𝑐𝑎𝑐|𝑏 (𝐹𝑎|𝑏(𝑎|𝑏), 𝐹𝑐|𝑏(𝑐|𝑏)) 𝑓(𝑎|𝑏)   (3) 

 

where 

𝑓(𝑎|𝑏) = 𝑐𝑎𝑏(𝐹𝑎(𝑎), 𝐹𝑏(𝑏))𝑓𝑎(𝑎) 

The R-vine (regular vine) model is chosen to model the 

multivariate dependence in this empirical application. 

Fitting multivariate data to a copula is a challenging task, 

since commonly used copula models, like the normal copula, 

the t copula or the gumbel copula are either symmetric or 

have only one parameter to estimate the entire copula, which 

decreases the flexibility of the distribution. Bivariate copulas 

have a wider variety of choices, thus Kurowicka and Cooke 

(2006) developed the R-vine copula models that fit multiple 

bivariate copulas to the multivariate dataset and are thus able 

to capture the dependence structure of the multivariate 

dataset.  The modeling scheme is based on a decomposition 

of a multivariate density into a cascade of pair copula (Aas et 

al. p.1). R-vine's are represented by a hierarchical tree 

structure, where the first tree is estimated by n-1 bivariate 

copula and the second by n-2 conditional on a single variable. 

For a three-dimensional dataset two copula need to be 

estimated directly and one conditional copula. To estimate 

the R-vine, Dissmann et al. (2012) developed a sequential 

search approach, they first estimate the family and 

parameters of the first tree via the AIC criterion. Then they 

use this result to estimate the second tree. Additionally, they 

employ a maximum spanning tree algorithm to choose an 

appropriate edge weight. This paper implements their method 

and estimation technique, in order to take advantage of the 

benefits of the diversity of bivariate copula. 

C. ARIMA Forecasting Using Copula 

The approach used in this paper is reminiscent of the 

Copula GARCH model, introduced by Jondenau and 

Rockinger (2006). First the ARIMA model is estimated, with 

the standardized residuals of the ARIMA model the R-vine 

copula model is estimated. The R-vine Model is then 

estimated using the remaining errors terms from the ARIMA 

model to capture dependencies between the variables that the 

time series model ARIMA cannot capture. The Copula model 

is fitted to uniform [0,1] margins. Afterwards following 

Dissmann et al. (2012) we simulate from the copula model 

and transform the thereby obtained data using the not 

standardized residuals from the empirical ARIMA model as 

an empirical density function. To model the time series 

behavior, the simulation result is obtained using the sampled 

residuals and the fitted ARIMA model. 

 

III. IMPLEMENTATION 

In the following we present the implementation of our 

method, this simulation is conducted on the logarithm of 

wind, price and demand variables for 100 times. The scripts 

are written in R statistics programming language. 

We estimate missing data, via linear interpolation for 

single missing values. For wind we estimate the last month 

via an ARIMA forecast due to the unaccounted data for 

December. The ARIMA model is fitted based on the 

conditional sum of squares to find the starting values. 

Following that maximum likelihood to find the optimal 

parameter estimates with respect to the AIC criterion. 

We use the residuals and standardize them to fit an R-Vine 

Copula onto the residuals. The tree structure is determined 

via pair-copula families and estimated sequentially. For the 

model families the AIC criterion is used, parameter values 

are estimated using maximum likelihood estimation. 

Following [12] methods we simulate the uniform estimates 

from the R-Vine Copula model. 

We transform the uniform values using the trimmed 

empirical quantile distribution of our residuals into simulated 

observations. 

We enter the simulated estimates into the ARIMA model 

and obtain the results after taking the exponential function of 

the values. 

 

IV. COMPUTATIONAL EXPERIMENTS 

The provided sample is hourly data for the year 2017, with 

the Price in \euro/MWh, Wind in MWH and Demand in 

MWH. The data contains two missing observations, they are 

interpolated, additionally the last 263 observations for Wind 

data are missing, in order to model this data an ARIMA 

model is fitted on the observed sample and the 263 missing 

values are estimated. The approach used is close to the 

GARCH Copula estimation, in place for a ARMA 

(p,q)-GARCH model and ARIMA model is used, since the 

data is unlikely heteroskedastic and it is unnecessary to 

model GARCH effects for this time series. This method 

enables us to fit the a copula approach easily to the data and 

to model the time series behavior. 

First the data is fitted to an ARIMA model, that is 

optimally chosen based on the AIC criterion. The ARIMA 

process is required to be stationary and seasonal, this is 

necessary because of the limited amount of data, we are 

forecasting a year using only a year of data, trends cannot be 

captured reliably. It might be a substantial increase in wind 

production, but it is not clear if it is due to a windy year or 

additional wind farms, that would increase next year's 

production as well. The seasonality is assumed because of the 

nature of the data, wind is seasonal, as well as the demand, 

the price is seasonal as well. To ensure positivity of the data, 

we are fitting the natural logarithm of the data and transform 

them for analysis later. To minimize extreme observations in 

our data set, considering the large time frame we are trying to 

model, we trim the residuals at 3% (we remove the 3% lowest 

and the 3% highest values). With this value we have a near 

normal kurtosis, before the kurtosis for the price and the wind 

reached over 40. To ensure that our results remain robust for 

different cutoff values, we used multiple values, the results 
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are not inconsistent, the variation of the data increases as 

expected. 

The estimated coefficients of the ARIMA model are 

presented in Table I, the standard errors for the coefficients 

are low and the model fit seems to be reasonable. In order to 

model serial dependence, the innovations need to be modeled, 

in order to model them we are standardizing the residuals and 

transforming them into uniform [0,1] margins. The best 

R-Vine copula model is chosen by optimizing the bi-variate 

copula models and choosing the best fit with the AIC 

criterion. We sample the residuals from the trimmed series, 

we draw them based on their assigned uniform [0,1] margins 

provided by the random sampling from the copula. In the next 

step we find the best R-Vine Copula using maximum 

likelihood estimation and the AIC criterion. Simulations are 

conducted from this R-Vine structure. The result are uniform 

[0,1] simulation results of correlated seasonal innovations for 

wind, price and demand. To transform the uniform margins 

into realistic values, we use the quantiles of the trimmed 

residual series. 

Using this series and the ARIMA model the simulation is 

conducted using the simulated innovations. The exponent of 

this result is combined with the new series to generate the 

plots (a)-(c), left from the red line is the original series and 

right from it the simulated series. The model clearly 

outperforms an ARIMA model with standard normal errors, 

that is not capturing any correlation between demand, wind 

and price, that the copula innovations are able to capture. 

In table two the estimated ARIMA coefficients are shown, 

the best ARIMA Model is chosen according to its Aikaike 

estimation criteria. The model is assumed to be seasonal and 

we allow for models with non-zero mean. In order to achieve 

a positive simulation, we add the absolute minimum to the 

series, this does not change the character of the time series 

modeled but ensures consistent positive values. 

 

 
Fig. 1. Original data and generated scenarios for (a) wind power (MW/H) (b) 

demand (MW/H) (c) price (e) followed by subsequent distributions 

V. DISCUSSIONS AND CONCLUSION 

Table one shows the kendall correlation of the empirical 

sample. Demand and price is positively correlated as well as 

demand and wind, we see a small negative relationship 

between wind and price, likely because the wind barely has 

influence on the price, outside of extremely windy 

circumstances. From the correlations themselves we cannot 

make conclusions about the endogeneity. Surprising is the 

large correlation between demand and wind and the lack 

thereof in terms of prices. But maybe when it is windy it is 

more likely cloudy, thus more energy is consumed for heat 

and light. 

The proposed model with copulas can model dependencies, 

this benefit can be seen in table one, this table displays the 

range of the kendall correlation for all simulations. The range 

is wide, but it is reasonably close to the sample and is 

capturing a large portion of the observed sample correlation. 

The coefficients cannot be the same, because there is likely a 

higher correlation for extreme observations, which we omit 

for the simulation in order to receive more realistic 

simulations. 

 
TABLE I: DATA CORRELATION 

correlation sample 

 Demand Price Wind 

Demand 1   

Price 0.4 1  

Wind 0.2 -0.07 1 

correlation simulation 

Demand 1   

Price 0.14-0.31 1  

Wind 0.08-0.30 0-0.14 1 

 

Table two shows the estimated ARIMA coefficients, since 

we required the model to be stationary, a mean is always 

estimated. This is reasonable here, because we attempt to 

forecast a year of data, because we just have a sample of 

one-year length, assuming there is a trend in the wind 

production would be likely overfitting the model in sample. 

The model is fitted on logarithms, to ensure positive values 

after the simulation. Below the values the standard errors are 

displayed. 

 
TABLE II: ARIMA COEFFICIENTS 

 
 

The Fig. 1 shows each time series, on the left side of the 

vertical line is the original time series, on the right side the 

simulation. The time series is standardized to 1 and for the 

simulation we trim the values at 3%, this reduces the kurtosis 

of the residuals substantially and thus produces more reliable 

simulations over such a long-time frame. We tried different 

ranges and it produces still reasonable results. The 

histograms display that the sample properties are conserved, 
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we can see more outliers, because we have more observations 

in 100 simulations. The histograms show that the distribution 

of the year in sample and the simulations is reasonably close. 

The model is able to capture correlation structures in the 

data that traditional approaches, like an ARIMA simulation 

with standard normal errors are not able to capture. 

In this paper multivariate scenario generation based on 

three variables: demand, wind and price is presented. In the 

proposed multivariate scenario generation technique ARIMA 

is used for forecasting and copula for adjusting the residuals. 

The tail adjustment of the distribution and the impact is also 

discussed. In future works a comparative analysis of different 

statistical scenario generation technique for multivariate data 

would be conducted.  
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