A Comprehensive Char-Particle Gasification Model Adequate for Entrained-Flow and Fluidized-Bed Gasifiers

<table>
<thead>
<tr>
<th>Journal</th>
<th>Energy & Fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>ef-2016-021487.R1</td>
</tr>
<tr>
<td>Manuscript Type</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors</td>
<td>Tilghman, Matthew; Stanford University, Mechanical Engineering Department Haugen, Nils Erland L.; SINTEF Energy Research, Mitchell, Reginald; Stanford University, Mechanical Engineering Dept.</td>
</tr>
</tbody>
</table>

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.
A Comprehensive Char-Particle Gasification Model Adequate for Entrained-Flow and Fluidized-Bed Gasifiers

Matthew B. Tilghman¹, Nils Erland L. Haugen² and Reginald E. Mitchell¹,*

¹High Temperature Gasdynamics Laboratory, Mechanical Engineering Department, Stanford University, Stanford, CA 94305

²SINTEF Energy Research, 7465 Trondheim, Norway

ABSTRACT: A robust, single-particle gasification model is presented that is capable of predicting char particle behavior in environments established in typical fluidized bed and entrained flow gasifiers. It employs a heterogeneous reaction mechanism that describes char reactivity to CO₂, H₂O and O₂ in the presence of H₂ and CO, gases that inhibit char reactivity. An effectiveness factor-Thiele modulus (η-φ) approach is used to determine overall conversion rates when species concentration gradients exist inside particles, which occur at high particle temperatures when chemical reaction rates and mass transport rates through particle pores become competitive. In the approach taken, a η-φ relation is determined for each reactive gas (CO₂, H₂O and O₂) and deviations from first-order behavior are correlated with the concentrations of the inhibitors (CO and H₂). A mean effectiveness factor is defined based on the individual species effectiveness factors and used in a mode of conversion model that governs the variations in particle size and apparent density during char conversion. In this paper, the pertinent model equations are presented, with focus on the effectiveness factor-Thiele moduli relations. The model is shown to be useful in identifying rate-limiting processes during char conversion in gaseous environments varying in temperature and composition. It serves as a tool that can be used to help design efficient coal-fired and biomass-fired entrained flow and fluidized bed gasifiers as well as combustors.

Keywords: gasification; coal char, biomass char, char reactivity
1. INTRODUCTION

Kinetic parameters that describe intrinsic char reactivity are usually derived under conditions where mass transport effects are insignificant so that variations in char mass loss rates can be attributed solely to the effects of chemical reactions.1-8 Such conditions occur at low temperatures, where the rates of mass transport via diffusion through particle pores are fast compared to chemical reaction rates. When conversion rates are limited by reaction rates alone, mass diffusion timescales are much shorter than chemical reaction timescales and therefore, the reactive gases completely penetrate the particles – concentrations inside particles are uniform at the levels existing at the outer surfaces of particles. At higher temperatures, kinetic and diffusion timescales become more similar and as a result, gradients in the reactive gas concentrations are established inside particles. This causes the conversion rates inside particles to vary with radius, the conversion rates being highest near the peripheries of particles where the reactive gas concentrations are highest.

Concentration gradients can also develop inside particles under conditions when gasification rates are inhibited by H\textsubscript{2} and CO. The concentrations of these species can vary within the particle due to the competition between the chemical reactions that produce and consume these species and their rates of diffusion through particle pores. Account must be made for the combined effects of chemical reaction and mass transport of both the reactive gases and the gases that inhibit reaction rates in order to accurately predict char particle mass loss rates during gasification. With a detailed heterogeneous reaction mechanism, accounting for the combined effects requires a direct numerical simulation (DNS) of the char conversion process employing a model that describes the effects of species diffusion through particle pores with chemical reaction along pore walls. We have developed such a DNS code, which uses a heterogeneous reaction mechanism that describes the intrinsic chemical reactivity of char to O\textsubscript{2} and accounts for both Knudsen and bulk diffusion of oxygen through randomly oriented particle pores and for Stefan flow.9 Since this initial work, the DNS code has been modified to include a heterogeneous...
reaction mechanism that describes char reactivity to O_2, CO_2 and H_2O so as to permit its use in steam
gasification environments. The global, overall reactions that the mechanism kinetically describes are:

\[C + H_2O \leftrightarrow CO + H_2, \ C + CO_2 \leftrightarrow 2\ CO \text{ and } C + (1-\alpha/2)\ O_2 \leftrightarrow \alpha CO + (1-\alpha)\ CO_2, \text{ where } \alpha \text{ depends on } \]
temperature.

In this paper, we use the results of DNS using the modified code to derive effectiveness factors,
defined as the ratio of actual particle gasification rates (which reflect the consequences of reactive gas
concentration gradients inside particles) to maximum possible particle conversion rates (which would
occur if reactive gas concentrations inside particles were uniform at the levels existing at the particle
periphery) for each reactive gas. The effectiveness factors are correlated with the species Thiele moduli,
permitting the use of the detailed reaction mechanism for characterizing the effects of chemical reaction
in the high temperature environments typical of fluidized bed and entrained flow gasifiers and combustors
without the need to perform a time-consuming, calculation-intensive, direct numerical simulation to
predict particle mass loss. When a distribution of particle sizes is considered, such time-consuming
calculations would have to be performed for each particle size in order to predict overall mass loss. To
circumvent the need for the DNS calculations, a char particle gasification model10 has been developed
that employs a mean particle effectiveness factor, a mode of conversion submodel11 that governs
variations in particle size and apparent density with mass loss, and a specific surface area evolution
submodel that correlates specific surface area with char conversion. This approach greatly simplifies
modeling gasification behavior at high particle temperatures when both particle size and apparent density
vary during char conversion due to concentration gradients existing inside particles. The model facilitates
the development of robust CFD codes for prediction of the performance of advanced entrained flow and
fluidized bed gasifiers. These CFD codes will include the fluid dynamic and heat and mass transport
effects that govern gas temperatures and species concentrations at the outer surfaces of particles. The
char particle gasification model permits the prediction of particle mass loss rates and off-gas composition

\[\text{3} \]
as well as variations in particle size and apparent density, depending on the properties of the gaseous environment existing around the particle.

The details of the char particle gasification model, which is applicable to particles in the pulverized fuel size range as well as to larger particles in the size range appropriate for fluidized beds, were presented in a previous publication. In this prior work, the heterogeneous reaction mechanism only described char reactivity to O_2 and CO_2 and a simple first-order relation was used in the determination of the effectiveness factors. These limitations are eliminated in the work presented here. In this modification of our char particle gasification model, char reactivity to H_2O is included and the effectiveness factor relations employed deviate from the first-order relations, taking into account the inhibiting effects of H_2 and CO on char gasification rates.

2. THEORETICAL DEVELOPMENT

In the intrinsic chemical reactivity model developed, the effectiveness factor (η) is used to determine the overall particle conversion rate due to chemical reaction when a concentration gradient exists inside a particle. The approach of Thiele is taken, wherein the effectiveness factor is related to the Thiele modulus, ϕ, a dimensionless parameter that gives a relative measure of the char conversion rate to the diffusion rate of reactive gas inside the particle. In our approach, a Thiele modulus is defined for each reactive gas, as follows:

$$
\phi_{H_2O} = r_p \frac{R_{H_2O,ex}}{c_{H_2O,ex}D_{H_2O,eff}} \quad \phi_{CO_2} = r_p \frac{R_{CO_2,ex}}{c_{CO_2,ex}D_{CO_2,eff}} \quad \phi_{O_2} = r_p \frac{R_{O_2,ex}}{c_{O_2,ex}D_{O_2,eff}}
$$

In the expressions, r_p is the particle radius; $R_{i,ex}$ and $C_{i,ex}$ are the intrinsic chemical reactivity to species i and concentration of species i, respectively, both evaluated at the particle’s outer surface; $D_{i,eff}$ is the effective diffusion coefficient for species i through the particle’s pores; and ρ_C and S_{gC} are the apparent density and mass-specific surface area, respectively, of the char particle. Note that the Thiele moduli can
be calculated without knowing the reactive gas distributions inside the particle, only the concentrations at the outer surface of the particle.

2.1 Determination of effectiveness factor-Thiele modulus relationships. In order to determine the relationship between the effectiveness factor and the Thiele modulus for each reactive gas (the $\eta_i - \phi_i$ relationships), a direct numerical simulation (DNS) of a char particle exposed to reactive gas i was performed to determine the concentration gradient established inside the particle and the overall particle conversion rate consistent with the concentration gradient for selected ambient conditions (selected temperatures and reactive gas concentrations). Gas temperatures and reactive gas concentrations were varied over a range that yielded conditions in which chemical kinetics limited particle conversion rates (effectiveness factors of unity) to conditions in which the transport of reactive gas to the outer surfaces of particles limited particle conversion rates (very small values of the effectiveness factor). Since over the temperature range of interest small particles (less than about 50 μm) have kinetics-limited conversion rates and large particles (greater than about 200 μm) have diffusion-limited conversion rates, simulations were made for particles having diameters of nominally 100 μm in order to obtain the information needed to determine the Thiele modulus-effectiveness factor relationships. At each condition, the effectiveness factor η_i was calculated as the ratio of the overall reaction rate of reactive gas i to its maximum possible reaction rate inside the particle, the maximum possible reaction rate being the overall reaction rate calculated assuming that the concentration of reactive gas i is uniform throughout the particle at the value existing at the outer surface of the particle:

$$\eta_i = \frac{\text{Actual overall reaction rate of reactant species } i}{\text{Maximum possible reaction rate of reactant species } i} = \frac{\hat{R}_i}{\hat{R}_{\max,i}} \quad (2)$$

In the DNS, the differential equations that govern the transport of the reactive gases inside the char particle were simultaneously integrated, yielding the species concentration profiles inside the particle. The governing species differential equation is given below.
In this equation, $D_{i,\text{eff}}$ is the effective diffusion coefficient of species i, reflecting the combined effects of Knudsen and bulk diffusion through the pores in the char, and $RR_{i,\text{hetero}}$ and $RR_{i,\text{gas phase}}$ are overall heterogeneous and homogeneous reaction rates for species i, respectively, the final term denoting the summation over all reactions, RR_{all}, both heterogeneous and homogenous reactions. The left-hand-side of this equation accounts for accumulation and mass transport effects and the right-hand-side accounts for chemical reaction effects, including the impact of Stefan flow (represented by the final term in the equation), the convective flux induced at the particle surface when there is mole change upon reaction.

The effective diffusion coefficient is determined via Eq. (4), where D_i is the bulk diffusion coefficient for species i (calculated as species i diffusing into a gas mixture), and $D_{i,K,\text{eff}}$ is the effective Knudsen diffusion coefficient for species i, determined via Eq. (5). In Eq. (5), r_p is the pore radius, θ is the particle porosity, τ is the tortuosity factor (taken as 3), R is the universal gas constant, T is the temperature, and M_i is the molar mass of species i.

$$\frac{1}{D_{i,\text{eff}}} = \frac{1}{D_i} + \frac{1}{D_{i,K,\text{eff}}}; \quad D_{i,K,\text{eff}} = \frac{2r_p\theta}{3\tau} \frac{8RT}{\pi M_i}$$

(4,5)

The pore radius r_p is determined via Eq. (6), where srf is the surface roughness factor (taken as 2).

$$r_p = \frac{2 \, srf \, \theta}{\rho_c S_{gc}}$$

(6)

Solution to the set of coupled equations formed when Eq. (3) is written for each species yields the species concentration profiles inside the particle. The $RR_{i,\text{gas phase}}$ term in Eq. (3) is calculated using GRI-Mech 3.013 and the $RR_{i,\text{hetero}}$ term is calculated using the heterogeneous reaction mechanism presented in Table 1 along with expressions for the net reaction rates (\dot{R}_k, in mol m$^{-2}$ s$^{-1}$), in terms of site fractions.
Table 1: Reaction mechanism for carbonaceous solids exposed to H$_2$O, CO$_2$ and O$_2$ \(^{8,14}\)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reaction rate (mol/m2-s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.1</td>
<td>$2C_i + H_2O \Leftrightarrow C(OH) + C(H)$</td>
</tr>
<tr>
<td>R.2</td>
<td>$C(OH) + C_i \Leftrightarrow C(O) + C(H)$</td>
</tr>
<tr>
<td>R.3</td>
<td>$C(H) + C(H) \Leftrightarrow H_2 + 2C_i$</td>
</tr>
<tr>
<td>R.4</td>
<td>$C(O) + C_i \rightarrow CO + C_i$</td>
</tr>
<tr>
<td>R.5</td>
<td>$C(OH) + C_i \Leftrightarrow HCO + C_i$</td>
</tr>
<tr>
<td>R.6</td>
<td>$C_b + C_i + C(H) + H_2O \Leftrightarrow CH_2 + C(O) + C_i$</td>
</tr>
<tr>
<td>R.7</td>
<td>$C_i + C_i + C(H) + H_2 \Leftrightarrow CH_3 + 2C_i$</td>
</tr>
<tr>
<td>R.8</td>
<td>$C_i + C(H) + CO \rightarrow HCO + 2C_i$</td>
</tr>
<tr>
<td>R.9</td>
<td>$C(H) + C(H) \rightarrow CH_2 + C_i$</td>
</tr>
<tr>
<td>R.10</td>
<td>$CO_2 + C_i \Leftrightarrow C(O) + CO$</td>
</tr>
<tr>
<td>R.11</td>
<td>$C_b + CO_2 + C(O) \rightarrow 2CO + C(O)$</td>
</tr>
<tr>
<td>R.12</td>
<td>$CO + C_i \Leftrightarrow C(CO)$</td>
</tr>
<tr>
<td>R.13</td>
<td>$CO + C(CO) \rightarrow CO_2 + C_i + C_b$</td>
</tr>
<tr>
<td>R.14</td>
<td>$2C_i + O_2 \rightarrow C(O) + CO$</td>
</tr>
<tr>
<td>R.15</td>
<td>$2C_i + O_2 \rightarrow C_2(O_2)$</td>
</tr>
<tr>
<td>R.16</td>
<td>$C_i + C_b + C(O) + O_2 \rightarrow CO_2 + C(O) + C_i$</td>
</tr>
<tr>
<td>R.17</td>
<td>$C_i + C_b + O_2 \rightarrow CO_2 + 2CO$</td>
</tr>
<tr>
<td>R.18</td>
<td>$C_b + C_2(O_2) \rightarrow CO_2 + 2C_i$</td>
</tr>
</tbody>
</table>

This reaction mechanism, developed by Tilghman and Mitchell, \(^{8,14}\) accurately describes the intrinsic chemical reactivities of several coal and biomass chars to CO$_2$, H$_2$O and O$_2$. In the mechanism, C(X$_i$) denotes an adsorbed species (i.e., a carbon site filled with an adsorbed species X$_i$), C$_f$ denotes a free carbon site (i.e., a carbon site available for adsorption), and C$_b$ denotes a bulk carbon site (an underlying site that will be exposed upon desorption of a carbon atom from the carbonaceous matrix). The activity of a bulk carbon site is taken to be unity. The adsorbed complex C$_3$(O$_2$) (see reactions R.15 and R.18) represents two adjacent adsorbed oxygen atoms (i.e., oxygen atoms adsorbed onto adjacent carbon sites). Whereas the adsorbed complex C(O) is representative of carbonyl-type and ether-type complexes that desorb to yield CO (via reaction R.4), the adsorbed complex C$_2$(O$_2$) is representative of lactone-type and
acid anhydride-type complexes that desorb to yield CO$_2$ (via reaction R.18). In the reaction rate
equations shown in Table 1, the concentrations of gas-phase species (e.g., [CO$_2$], [H$_2$O], [O$_2$], and [H$_2$])
are expressed in mol/m3, and the forward reaction rate coefficients for reaction k (k_{f}) are expressed in
Arrhenius form: $k_{f} = A_{k} \exp(-E_{k}/RT)$. The reverse reaction rate coefficients (k_{r}) are calculated from the
forward reaction rate coefficients and the equilibrium constant for the reaction, using the energies of
formation and absolute entropies for the adsorbed species determined in the work of Tilghman and
Mitchell.8,14 In the rate expressions, the total site density for the carbonaceous matrix, S, is taken to be
6×10^{19} sites/m2 and N_{AV} is Avogadro’s number. Kinetic parameters for the chars of Wyodak coal, a
subbituminous-B coal from the Powder River Basin region of Wyoming, and corn stover, a common
agricultural waste-product in areas where corn is grown, have been reported8 and are employed in this
work. The mechanism and associated rate parameters accurately predict nearly all of the trends reported
in the literature during coal char gasification and combustion, including high pressure effects on char
reactivity and the inhibiting effects of H$_2$ and CO on char reactivity to H$_2$O and CO$_2$. It also captures the
observed trends in the CO/CO$_2$ product ratio during char combustion, yielding values within the 95%
confidence range for the spread in reported values.15

In our approach, a spherical char particle was discretized into many concentric shells; the species
conservation equations for the reactive gas and products of reaction in each shell were solved
simultaneously, yielding their concentration profiles inside the particle. This permitted the calculation of
reaction rates at given radii inside the particle, providing a means to determine the actual overall particle
gasification rate. The ratio of the actual overall particle conversion rate to the maximum possible
conversion rate (the rate evaluated using the reactive gas concentrations at the outer surface of the
particle, where they are maximum) yields the effectiveness factor. Having determined the effectiveness
factor, the contributions of internal and external gasification rates to the overall particle gasification rate
can be evaluated as functions of temperature for specified particle sizes without the need to perform a
time-consuming, calculation-intensive, direct numerical simulation.
Each of the concentric shells into which the spherical particle is divided represents a volume element that contains an initial mass of material, determined from the initial apparent density of the char. Taking the true density of the carbonaceous material to be 2000 kg/m3, the porosity of each volume element can be calculated and thus, so can a value for its mean pore radius (via Eq. (6)). The species concentrations in each shell are then solved for numerically, with the boundary conditions being the surface concentrations determined by balancing the particle’s overall consumption of each gas with the flux of the gases from the bulk to the particle’s outer surface.

It should be noted that due to the distributions of reactive gases within the particle (and associated distribution in char conversion rate), porosity and pore radius begin to differ for each shell as gasification progresses, and so does the effective diffusion coefficient for each shell. Also, the outermost shell will have the highest conversion rate since the reactive gas concentrations are highest at the particle periphery. When the extent of conversion in the outermost shell is greater than 99%, we assume that the particle radius decreases an amount equal to the thickness of this outer shell. In effect, the DNS will predict the variations in particle size and apparent density as gasification progresses. This was demonstrated in our previous work.11

Shown in Fig. 1 are calculated variations in diameter, for both Wyodak coal and corn stover char particles, during gasification in an ambient of pure CO$_2$ at 1 atm and a range of temperatures. The calculations were made assuming an initial particle diameter of 100 µm. When the CO$_2$ concentration is uniform inside particles, conversion occurs throughout particle volumes - the apparent densities of the particles decrease with mass loss while changes in diameters are negligible. Such is the case at 1000 °C, the normalized radius ($r_s/r_{s,0}$) remains near unity until the late stages of char conversion. For both chars, gasification rates at 1000 °C (and lower temperatures) are in the so-called Zone I gasification regime, the regime in which the rates of chemical reactions control the overall char conversion rates. At 1400 °C, a decrease in diameter is noted at about 80% conversion for the Wyodak coal char, indicative of
concentration gradients inside the coal char particle. At 1400 °C, the reactivity of the coal char has increased to the extent that chemical reactions are beginning to consume CO$_2$ before it can completely penetrate the particle. Coal char reaction rates are even higher at 1800 °C, and still higher at 2200 °C, causing the penetration depth of CO$_2$ to become less and less until at higher temperatures, the CO$_2$ is completely consumed at the periphery of the char particle. When this occurs, the char particles are said to gasify in the Zone III regime in which CO$_2$ diffusion to the outer surfaces of char particles limit their overall gasification rates. At temperatures between 1400 and 2200 °C, the Wyodak coal char particles gasify in the Zone II regime, the regime in which the combined effects of chemical reaction and pore diffusion limit overall gasification rates.

![Normalized particle radius as a function of char conversion.](image)

Figure 1. Normalized particle radius as a function of char conversion.

The behavior is the same with the corn stover char particles but since these char particles have a higher porosity than the coal char particles and hence are easier to penetrate, higher temperatures (faster reaction rates) are needed before CO$_2$ penetration is significantly limited. As noted in Fig. 1, at temperatures as high as 1800 °C, the diameters of the biomass char particles do not start to change until over 60% conversion. At 2200 °C, the corn stover char particles have gasification rates that fall into the Zone II regime.
Shown in Fig. 2 are the calculated normalized concentration profiles for the Wyodak coal char particles. As noted, at 1000 °C, the CO₂ concentration profile is nearly uniform inside the particles, indicative of gasification in the Zone I regime. At 1400 °C, a gradient exists in the CO₂ profile but reaction rates are not quite high enough to prevent CO₂ from reaching the center of the particle. At 1800 °C, reaction rates are sufficiently high to prevent CO₂ from reaching the center of the particle and at 2200 °C, the CO₂ concentration profile is quite steep, falling to less than 10% of its value at the outer surface at only 20% of the radial distance from the wall. The concentration gradients established at temperatures between 1400 and 2200 °C are indicative of gasification in the Zone II regime. As illustrated in the inset of Fig. 2, the CO₂ concentration at the outer surface of the particle decreases with increasing particle temperature. When temperatures are high enough to render the CO₂ concentration at the outer surface to nearly zero, gasification is in the Zone III regime, the regime in which overall particle conversion rates are limited by the transport of reactive gases to the outer surface of the particle, the conversion rates are diffusion limited.

Figure 2. Normalized CO₂ concentration versus normalized particle radius for Wyodak coal char particles exposed to 100% CO₂ at various temperatures. The CO₂ concentration at the outer particle surface as a function of temperature is shown in the inset.
The DNS results provided the means to determine the actual overall particle gasification rate at the specified ambient condition, from which the effectiveness factor was determined. In order to determine the effectiveness factor - Thiele modulus relationship, the full numerical simulation was executed over a range of temperatures and gas concentrations. During the course of each simulation, the Thiele modulus and the effectiveness factor were calculated and stored. It should be noted that for specified reactor conditions, both the Thiele modulus and effectiveness factor vary with extent of conversion, since the particles become more porous with mass loss, and this impacts mass transport. These two parameters are then plotted against each other, so a relationship can be determined.

Shown in the top panel of Fig. 3 are $\eta_i - \phi_i$ relationships determined from several direct numerical simulations of Wyodak coal and corn stover char particles exposed to 100% CO$_2$ over a range of temperatures up to 2200 °C. At low temperatures, the concentration profiles inside the particle are uniform, and η_{CO_2} is near unity. As temperature increases, concentration gradients inside the particles progressively steepen and η_{CO_2} progressively decreases. For very small values of η_{CO_2}, chemical reaction is confined primarily to the periphery of the particle - overall particle conversion rates become diffusion limited.

Figure 3. Effectiveness factor as a function of the Thiele modulus for Wyodak coal and corn stover char particles exposed to CO$_2$ over a range of temperatures up to 2200 °C (left panel) and for Wyodak coal char particles exposed to H$_2$O at selected temperatures up to 2200 °C (right panel).
The dashed line in the top panel of Fig. 3 represents the theoretical relation derived by Thiele12 for steady-state, first-order, irreversible reaction in a sphere. As noted, in 100% CO\textsubscript{2} the char-CO\textsubscript{2} reaction mechanism exhibits near first-order behavior. We attribute the deviations from first-order behavior to inhibition by CO, via the reverse of reaction R.10 or reactions R.12 and R.13. If the ambient gas contains even modest levels of CO, the η-φ relationship is altered further, as this affects the internal CO gradients that arise from the carbon gasification (and also changes the reactivity at the surface, thus changing the comparison between the reactivity of internal shells with that at the surface).

Shown in the bottom panel of Fig. 3 are η-φ relationships determined from several direct numerical simulations of Wyodak coal char particles exposed H\textsubscript{2}O over a range of temperatures up to 2200 °C. Deviations from the first-order relationship ($\Delta \eta$) are due primarily to inhibition by H\textsubscript{2}, which is formed in reaction R.3. The DNS results were analyzed to determine the deviations from first-order behavior due to CO and H\textsubscript{2} as products of the heterogeneous reactions and due to CO and H\textsubscript{2} as part of the ambient gas.

Shown in Fig. 4 are results obtained for $\Delta \eta$ for the char-CO\textsubscript{2} reaction mechanism and shown in Fig. 5 are the results obtained for the char-H\textsubscript{2}O reaction mechanism, where $\Delta \eta$ signifies the difference between the actual effectiveness factor and the first-order predicted effectiveness factor. In order to obtain the information needed to evaluate these differences, the DNS model was run several times, varying temperature over a range of values for different CO\textsubscript{2}/CO/N\textsubscript{2} mixtures and different H\textsubscript{2}O/H\textsubscript{2}/N\textsubscript{2} mixtures. The deviations exhibit a Gaussian shape, and thus were empirically correlated with φ via the Gaussian expressions below (Eqs. (7) – (10)). The deviation shape for the “product H\textsubscript{2}” was not quite close enough to a Gaussian shape, due to its wider peak, but was well fit by the sum of two identical Gaussian curves with different means.

\begin{equation}
\Delta \eta_{product\ CO} = 0.16 \exp\left(-\frac{(\ln(\varphi)-0.77)^2}{2(0.8)^2}\right)
\end{equation}
\begin{equation}
\Delta \eta_{ambient\ CO} = -(0.07)X_{CO} \exp\left(-\frac{(\ln(\varphi)-0.55)^2}{2(0.9)^2}\right)
\end{equation}
Figure 4. Deviations in effectiveness factor from first-order behavior due to CO as a heterogeneous reaction product (left) and due to CO in the ambient gas (right) for the char-CO$_2$ heterogeneous reaction mechanism. In both panels, the dashed lines represent Gaussian fits to the calculated differences.

Figure 5. Deviations in effectiveness factor from first-order behavior due to H$_2$ as a heterogeneous reaction product (left) and due to H$_2$ in the ambient gas (right) for the char-H$_2$O heterogeneous reaction mechanism. In both panels, the dashed lines represent Gaussian fits to the calculated differences.
A deep investigation into the explanation for the shape of these effectiveness factor deviations is beyond the scope of this paper. However, in general it is likely that at relatively low Thiele moduli, inhibition does not impact effectiveness factor because internal gradients of the inhibiting gases are negligible. At relatively high values for Thiele moduli (which typically corresponds to relatively high temperatures or reactivities), the inhibitory nature of CO and H\textsubscript{2} is reduced, often attributed to the reduced residence times of surface species. In between these values, when there are internal gradients of inhibitory gases as well as a temperature that is appropriate for the gases to indeed inhibit reactivity, the deviation from first-order Thiele modulus – effectiveness factor behavior is most evident. This also offers a potential explanation for the flatter peak of the “product H\textsubscript{2}” deviation, which requires two Gaussian curves to fit. It has been posited by many researchers that H\textsubscript{2} can inhibit carbon reactivity in two ways: by adsorbed C(H) species occupying reactive sites and by adsorbed or gaseous hydrogen reacting with adsorbed C(O) species before they get a chance to desorb as gaseous CO. Both of these modes are accounted for in this mechanism. Each mode may have a different Thiele modulus at which its contribution to first-order-deviation peaks, and overall behavior is an overlap of these two modes. Another explanation is that one of these peaks is attributable to internal inhibition by CO, which is also a product of H\textsubscript{2}O gasification. Indeed, one of the Gaussian curves involved in the fit for product H\textsubscript{2} is very similar to that for product CO.

Note that the deviations associated with CO and H\textsubscript{2} in the ambient gas depend on their mole fractions (X_i) in the ambient gas mixture. With these deviations, the η_i-φ relationships for the char-CO\textsubscript{2} and char-H\textsubscript{2}O heterogeneous reaction mechanisms are given as follows:

$$\eta_{CO} (\varphi) = \eta_{1st\, order} (\varphi) - \Delta \eta_{product\, CO}(\varphi) - \Delta \eta_{ambient\, CO}(\varphi)$$ \hspace{1cm} (11)

$$\eta_{H_2O} (\varphi) = \eta_{1st\, order} (\varphi) - \Delta \eta_{product\, H_2O}(\varphi) - \Delta \eta_{ambient\, H_2O}(\varphi)$$ \hspace{1cm} (12)

where the first-order relationship is given by
This expression was derived by Thiele12 for a spherical particle undergoing reaction at steady-state, assuming a one-step, irreversible char consumption reaction.

As evidenced by the agreement demonstrated in Fig. 6, Eqs. (7) – (13) yield satisfactory predictions of the η_i-ϕ_i relationships for the char-\text{CO}_2 and char-\text{H}_2\text{O}$ heterogeneous reaction mechanisms (dashed lines in the figures). It should be noted that the scatter in the DNS results are due to the fact that the η_i-ϕ_i relationships were obtained throughout the course of char conversion, even before steady state concentration profiles were established inside the particle. Most of the scatter is associated with determining η during these periods. In most of the simulations, steady-state concentration profiles were not attained until over 50% char conversion.

![Graph showing effectiveness factor - Thiele moduli relationships](image)

Figure 6. Effectiveness factor - Thiele moduli relationships determined from the direct numerical simulations (points) and calculated from Eqs. (7) – (13) (solid and dashed lines) for the char-\text{CO}_2 (left) and char-\text{H}_2\text{O} (right) heterogeneous reaction mechanisms.

The above equations permit the accurate determination of overall char particle conversion rates in environment containing \text{CO}_2 and \text{H}_2\text{O} at high temperatures. Since char reactivity to \text{O}_2 is so much faster
than char reactivity to \(\text{H}_2 \text{O} \) and \(\text{CO}_2 \) and the key oxidation reactions are essentially irreversible, the \(\eta_{\text{O}_2} \)-\(\varphi_{\text{O}_2} \) relationship for char reaction in environments containing oxygen were found to be well predicted by Thiele’s first-order formulation, Eq. (13). Thus,

\[
\eta_{\text{O}_2} (\varphi) = \frac{3}{\varphi} \left(\frac{1}{\tanh(\varphi)} - \frac{1}{\varphi} \right)
\]

(14)

The actual overall reaction rate of all reactive gases is given as follows in terms of the species specific effectiveness factors:

\[
\vec{R} = \sum_{i=1}^{N_{\text{reactants}}} \hat{R}_i = \sum_{i=1}^{N_{\text{reactants}}} \eta_i \hat{R}_{\text{max},i}
\]

(15)

The reaction rates of the individual species were determined from the reaction mechanism presented in Table 1. The maximum possible overall reaction of all reactive gases is given by:

\[
\hat{R}_{\text{max}} = \sum_{i=1}^{N_{\text{reactants}}} \hat{R}_{\text{max},i}
\]

(16)

Employing these equations, besides the species specific effectiveness factors given by Eq. (2), a mean effectiveness factor for the particle is also defined:

\[
\eta = \frac{\text{Actual overall reaction rate of all reactant species}}{\text{Maximum possible reaction rate of all reactant species}} = \frac{\vec{R}}{\hat{R}_{\text{max}}}
\]

(17)

The mean effectiveness factor is a key parameter in the char particle gasification model, as indicated in the following sections.

2.2 The char particle mode of conversion relations. The char particle gasification model includes a mode of conversion submodel\(^{11} \) in which the effectiveness factor governs how the apparent density of the carbonaceous portion of a char particle and its size vary as mass is lost due to heterogeneous reaction. In the mode of conversion submodel, the mass of a char particle \((m_p) \) changes owing to the changes in the
mass of the carbonaceous particle material \((m_c)\) during gasification, and is followed in time by integrating the following equation:

\[
\frac{d m_p}{d t} = \frac{d m_c}{d t} = -\eta R_c S_g m_c
\] \hspace{1cm} \text{(18)}

Here, \(R_c\) is the carbon reactivity (in g/m\(^2\)/s), evaluated employing the reaction mechanism presented in Table 1 and the concentrations of the reactive species and temperature at the outer surface of the particle.

When the apparent density of the carbonaceous material in the very thin outermost shell at the periphery of the particle falls to zero, the particle diameter will start to decrease. As demonstrated in our previous work, this occurs at the time when char conversion \((x)\) equals the time-averaged effectiveness factor \(\bar{\eta}\).

For \(x < \bar{\eta}\), the radius of the particle is constant \((r_p = r_{p0}\) where \(r_{p0}\) is the initial particle radius) while the apparent density of the carbonaceous particle material is decreasing, such that \(\rho_c = \rho_{c0}(m_c/m_{c0})\). For \(x > \bar{\eta}\), the radius and apparent density of the carbonaceous material decrease, the smaller the effectiveness factor, the more the fractional change in radius. For very small values of \(\bar{\eta}\), the apparent density of the carbonaceous material remains essentially constant during conversion. The following piece-wise power-law relations are used to reflect this conversion mode as mass loss progresses in time:

\[
\frac{\rho_{c,t+dt}}{\rho_{c,t}} = \begin{cases}
\left(\frac{m_{c,t+dt}}{m_{c,t}}\right)^\eta & \text{if } x \leq \bar{\eta} \\
\left(\frac{m_{c,t+dt}}{m_{c,t}}\right) & \text{if } x > \bar{\eta}
\end{cases}
\] \hspace{1cm} \text{(19)}

\[
\frac{r_{p,t+dt}}{r_{p,t}} = \begin{cases}
1 & \text{if } x \leq \bar{\eta} \\
\left(\frac{m_{c,t+dt}}{m_{c,t}}\right)^{1-g/3} & \text{if } x > \bar{\eta}
\end{cases}
\] \hspace{1cm} \text{(20)}

Knowing the char particle mass, radius and apparent density at time \(t\), Eq. (18) is integrated to determine the mass of the carbonaceous material at time \(t + dt\), and Eqs. (19) and (20) are used to determine the apparent density of the carbonaceous material and particle radius at the new time. The
following expression is used to determine the mass specific surface area of the carbonaceous particle material at the new time:

\[
S_{gC,t+dt} = S_{gC,0} \sqrt{1 - \psi \ln\left(1 - \frac{\rho_{C,t+dt}}{\rho_{C,0}}\right)}
\]

(21)

Here, \(\psi\) is a structural parameter that depends on the structure of the pore network within the carbonaceous material. This expression is based on the work of Bhatia and Perlmutter\(^\text{16}\), and is consistent with their work for char conversion in the Zone I regime in which the apparent density ratio equals char conversion (i.e., in Zone I, at any time, \(\rho_{C,t}/\rho_{C,0} = x\)). For Wyodak coal char, \(\psi\) equals 8 and for corn stover char, \(\psi\) equals 7, based on the work of Mitchell\(^\text{14}\). With these values for \(\psi\), the mass specific surface area increases with decreases in the apparent density of the char during char conversion.

The equations were tested in simulations – model predictions were compared to predicted results of a full DNS. The goal of the mode of conversion submodel is to predict results consistent with the predictions of the DNSs.

Comparisons of predicted size profiles for a 100 \(\mu\)m diameter char particle exposed to 6% oxygen, by volume, at selected temperatures indicate excellent agreement, as evidenced in Fig. 7. Calculations were made employing the kinetic parameters for the reactivity of Wyodak coal char. Shown in the figure are variations in particle normalized radius, mean effectiveness factor and conversion as time progresses. Owing to the significantly higher conversion rates in oxygen, the rapid changes in the morphology of the particle provide a stringent test of the model. As noted in the figure, like the DNS code, the mode of conversion submodel predicts that particle radius starts to decrease at earlier times (and at earlier conversions), as the temperature is increased. The agreement depicted serves to validate the use of Eqs. (19) and (20) to predict changes in char particle size and apparent density with mass loss.
Figure 7. Comparison of predicted particle size profiles as a function of char conversion and time for an initially 100 µm diameter particle exposed to 6% oxygen at selected temperatures: mode of conversion model (black dashed line); DNS model (red solid line). Effectiveness factor and time-averaged effectiveness factor predicted by the mode of conversion model are also shown (blue dashed line and blue line, respectively).
The temporal variations in the mean value of the effectiveness factor (see Fig. 7) are noted to exhibit a rapid decrease at early extents of conversion, with a more uniform variation at higher conversions as steady-state conditions are approached. The higher the temperature, the more rapid the decrease in the effectiveness factor from its initial value. The scatter exhibited in the plots shown in Figs. (3) to (6) is due to values of the effectiveness factor determined during these rapid transients at early stages of conversion.

2.3 The char particle gasification model. The char particle gasification model combines all of the submodels discussed into a single model capable of predicting char particle behavior in environments of specified temperature, pressure, and composition. It uses the heterogeneous reaction mechanism for char reactivity to H\textsubscript{2}O, CO\textsubscript{2} and O\textsubscript{2} put forth in Table 1 along with the Thiele modulus – effectiveness factor relationships (Eqs. (7) – (17)), the mode of conversion submodel (Eqs. (18) – (20)), and the specific surface area evolution submodel (Eq. (21)). Multi-species diffusion across the boundary layer surrounding the particle is taken into account, as described in our previous work,10 when evaluating the Thiele moduli. The model also takes into account heat transfer effects, which include the energy released and absorbed due to chemical reactions (Q_{reac}), combined conduction and convection between the particle and its surrounding gas (Q_{con}), and radiation from the particle (Q_{rad}). The energy conservation equation is expressed as follows:

$$m_p c_{p,p} \frac{dT_p}{dt} = Q_{\text{reac}} + Q_{\text{con}} + Q_{\text{rad}}$$

(22)

where the T_p, m_p, and $c_{p,p}$ are the temperature, mass and specific heat, respectively, of the particle. Expressions for Q_{rad} can be found in our previous work.17 When evaluating Q_{reac}, the thermochemical data needed to calculate the heats of reaction of the heterogeneous reactions listed in Table 1 were taken from the work of Tilghman and Mitchell.8,14 Account is made for
Stefan flow when determining the combined heat transfer coefficient between the particle and gas when evaluating Q_{con}, and for particle-to-wall radiation exchange as well as for particle-to-particle radiation exchange when evaluating Q_{rad}. When evaluating Q_{rad}, the particle can be assumed to be near the center of a cloud of similar reacting particles where particle-to-particle radiation exchange is dominant, or near the periphery of a cloud of particles where particle-to-wall radiation is significant, or somewhere in between, where both particle-to-particle and particle-to-wall radiation exchange play significant roles in cooling gasifying char particles.

The energy equation is integrated simultaneously with Eq. (18) to yield the particle mass and temperature as char conversion progresses. Input conditions include a description of the gaseous environment to which the particle is exposed and the initial properties of the char particle, in particular the initial particle size, apparent density, specific surface area, temperature, and ash content.

2.4 Accounting for ash in the particle. In the model, the ash is assumed to consist of discrete small particles that are distributed uniformly throughout the particle’s volume. The ash is also assumed to have insignificant influence on the particle’s behavior during mass loss. Whether or not an ash film is formed at the particle periphery or whether ash components soften or melt and diffuse into the carbonaceous matrix, an ash dilution effect, is outside the scope of the present model. In essence, it is assumed that the ash is inert, remains with the particle during mass loss and poses no limitations to the transport of reactive gases to the carbonaceous particle material.

The mass of the char particle at any time equals the mass of the ash plus the mass of the carbonaceous material that has not yet been gasified ($m_p = m_{\text{ash}} + m_{C}$). Assuming that no ash leaves the particle during
the gasification process, the apparent density of the ash-containing particle \(\rho_p \) at a time when the mass of the particle is \(m_p \) can be determined via the following expression:

\[
\frac{1}{\rho_p} = \frac{X_{ash}}{\rho_{ash}} + \frac{(1 - X_{ash,0})}{\rho_c} = \frac{X_{ash,0}}{(m_p/m_p,0)\rho_{ash}} + \frac{(1 - X_{ash,0}/(m_p/m_p,0))}{\rho_c}
\]

(23)

Here, \(X_{ash} \) and \(\rho_{ash} \) are the instantaneous mass fraction and apparent density, respectively, of the ash in the particle and the subscript “0” denotes initial values. The mass of the particle at any time \(m_p \) is determined via integration of Eq. (18) and the corresponding apparent density of the carbonaceous material in the particle \(\rho_C \) is determined via Eq. (19). The apparent density of the ash is taken to be constant at 2300 kg/m\(^3\), a value consistent with the values determined from the specific gravities of fly ashes and bottom ashes found in coal-fired utility boilers.\(^{19}\) The finely divided ash is assumed to be distributed within the carbonaceous matrix, clinging to pore walls. Any ash clinging to the outside of a char particle is assumed to be in the sub-micron-to-micron size range, sufficiently small so as not to contribute to the overall size of the char particle. No buildup of an ash layer surrounding the particle is assumed to occur during mass loss. Consequently, Eq. (20) applies to the ash-containing particle.

The mass specific surface area of the ash-containing char particle \(S_{g,p} \) is assumed to include contributions from both the ash and the carbonaceous material, and is expressed as follows:

\[
S_{g,p} = X_{ash}S_{g,ash} + (1 - X_{ash})S_{gC}
\]

(24)

The specific surface area of the ash is taken to be in the range 5 – 10 m\(^2\)/g, the range of the values measured in our laboratory for several samples of coal ash, and the instantaneous specific surface area of the carbonaceous material is determined via Eq. (21). For most coal and biomass chars, the mass specific surface area of the char particle is dominated by the mass specific surface area of the carbonaceous material within the particle.
Similarly, the instantaneous specific heat of the char particle is assumed to include contributions from both the ash and the carbonaceous particle material, and is expressed as:

\[
c_{p,p} = X_{ash}c_{p,ash} + (1 - X_{ash})c_{p,c}
\]

(25)

Such an approach is consistent with the formulations of Merrick17 for estimating the thermal properties of coals. The specific heat of the ash and the specific heat of the char, which depends on its elemental composition, are calculated via the correlations put forth by Merrick.20 In the above equations, the instantaneous fraction of ash in the particle \((X_{ash})\) and the fraction of the particle mass remaining \((m_p/m_{p,0})\) are calculated from the extent of char conversion \((x)\) via the following relations:

\[
X_{ash} = \frac{1}{(1 + (1 - x)(1 - X_{ash,0})/X_{ash,0})}
\]

(26)

\[
m_p/m_{p,0} = (1 - X_{ash,0})(1 - x) + X_{ash,0}
\]

(27)

3. RESULTS AND DISCUSSION

To demonstrate the capability of the particle gasification model, it was used to assess the contributions that various effects have on overall particle behavior during gasification. In the calculations that follow, a cloud of 100 µm diameter Wyodak coal char particles of specified number density was assumed to be exposed to an environment typical of that established in an oxygen-blown entrained flow gasifier operating at 24 bar and 1640 K. The carbon-to-gas mass ratio inside the enclosure was taken to be 0.65 and the gaseous environment was assumed to consist of 73% O\textsubscript{2}, 14% N\textsubscript{2} and 13% H\textsubscript{2}O, initially, i.e., before injection of any coal char. The initial particle temperature was taken as 1500 K, a consequence of devolatilization (a process not included in the gasification model). GRI-Mech 3.013 was used to describe the effects of
homogeneous reaction in the gas phase. Ash-free particles are assumed in the calculations that follow, emphasis being placed on the behavior of the reactive portion of the particle material.

In the left hand panel of Fig. 8, char conversion is shown as a function of time for different cases, the black line being the base case where all processes are taken into account. The initial increase in conversion is very fast as the carbonaceous material is consumed via reactions with oxygen. The conversion rate slows down at about 75% conversion as oxygen is consumed and steam becomes the dominant gasification agent. For the base case, about 78% of the total time used to reach full conversion is spent gasifying only the last 20% of the particle mass.

Figure 8. Char particle conversion (left) and particle and gas temperatures (right) calculated for a 100 µm diameter char particle in a cloud of particles (mass_{carbon}/mass_{gas} = 0.65) exposed to a gaseous environment containing 73% O_2, 12% H_2O and 14% N_2 (by volume) at 24 bar and 1640 K, initially.

In the right hand panel of Fig. 8, the particle and gas phase temperatures are shown as a function of time. The high gas phase temperature in the vicinity of the particles at early times is due to gas phase reactions, as can be seen by comparing the base case and the case without gas phase reactions (red line). Hydrogen and carbon monoxide that leave the particle surface are oxidized, providing the energy to drive the endothermic steam gasification reactions. The gas phase temperature falls from its peak value of over 3000 K to around 1800 K at the end of the
gasification process. The particle temperature increases to about 1800 K at the time the gas temperature peaks, and falls to only about 1650 K before complete conversion. As evidenced in the figure, if it were not for the energy release due to homogeneous reaction, char particle temperatures would be low (due to less convective heat transfer from the gas) and char conversion would not reach 100% before heterogeneous reactions become frozen owing to the low particle temperatures.

If account is not made for the concentration gradients established inside the particle (a consequence of fast reaction rates relative to pore diffusion rates inside the particle) and the species concentration profiles are assumed to be uniform, the particle conversion rate is too high, as evidence by the case labeled “No-Thiele,” and the particle reaches full conversion in a shorter time than for the base case. The gas and particle temperatures also exceed their base case values if proper account is not made for the reduced overall conversion rate when the reactive gases do not totally penetrate the porous char particle.

In traditional approaches to modeling radiation losses from char particles, only radiation exchange between the particle and the enclosure walls is taken into account (simple radiation case, blue line). Since this traditional approach does not take into account particle heating via radiation from all the surrounding particles (as in the base case), it yields a particle cooling-rate that is too high. The temperature evolutions for the two cases are very similar at early times, but at later times the traditional approach (blue line) shows the effect of the stronger cooling. The cooling is actually so strong that full conversion is not reached, and the chemical reactions are quenched due to the low temperatures.

For the base case calculations, the char particle is assumed to be an “average” particle in the cloud of particles, a particle not near the center nor near the periphery of the cloud but
somewhere in between, surrounded by radiating particles. If the particle were at the center of the cloud, its temperature would be somewhat higher than that for the base case because radiant energy loss from the particle would be minimum since the radiant energy exchange would be primarily between the particle and other hot particles with little if any direct radiant energy exchange with the cooler enclosure walls. If the particle were near the periphery of the cloud, its temperature would be somewhat lower than that for the base case since a significant portion of the radiant energy exchange would be between the particle and the cooler walls. A more detailed discussion of the importance of inter-particle radiation for pulverized solid fuel combustion is provided in our previous work17 that focuses on this topic.

Increasing the initial gas and particle temperatures by 200 K gives a somewhat reduced gasification time as noted from the case labeled “hot” (yellow/green line) in Fig. 8. Even though both the gas and particle temperatures were initially 200 K higher than for the base case, for nearly all the time spent gasifying the particle, the temperature difference between the two cases is less than 50 K.

To further demonstrate the utility of the particle gasification model, it was used to provide information needed to compare the conversion behaviors of Wyodak coal and corn stover char particles. Temperature profiles predicted at early times for a 100 \(\mu \text{m} \) diameter char particle in an enclosure that initially contains 1\% \(\text{O}_2 \), 20\% \(\text{H}_2\text{O} \), and 20\% \(\text{CO}_2 \) (the balance, \(\text{N}_2 \)) at 800 °C and 1 atm are shown in Fig. 9 when kinetic parameters for Wyodak coal and corn stover chars are employed. A temperature of 800 °C is a typical gasification temperature for agricultural waste biomass, as such biomass has several considerations that require it to be gasified at a lower temperature than coal (namely larger ash content with lower ash fusion temperature, and a higher tendency to agglomerate).21 The same temperature was used for the coal simulation to enable a
straightforward comparison between the coal and biomass chars as well as because the moderate temperature of 800 °C allows for better investigation of the inhibition differences, which diminish at higher temperatures. As noted, the corn stover char particle attains a slightly higher peak temperature than the Wyodak coal char particle and reacts faster with oxygen as the reactive gas, reaching the peak temperature in less than half the time. These temperature profiles are during the early stages of char conversion, during the time that the char-O$_2$ reaction is dominant. After depletion of the oxygen, the endothermic char-H$_2$O and char-CO$_2$ reactions are responsible for char gasification, which results in a decrease in particle temperature as char conversion progresses.

![Figure 9](image)

Figure 9. Early time char particle temperature profiles in an enclosure that initially contains 1% O$_2$, 20% H$_2$O and 20% CO$_2$ at 800 °C and 1 atm for Wyodak coal and corn stover char particles.

Normalized particle mass profiles for the Wyodak coal and corn stover char particles are shown in Fig. 10. Neither of the char particles is completely consumed in the 1800 s of simulation time in the conditions selected. During 1800 s of reaction, the coal char loses only about 60% of its initial mass and the corn stover char, only about 40% of its initial mass and in each case, a significant portion of the mass is lost quite early when O$_2$ is the primary reactant. The char conversion rates during reactions with H$_2$O and CO$_2$ are quite low at temperatures less than 1000 °C (1273 K). As suggested in the discussion
below, the reasons for such low gasification rates are due, in part, to the inhibiting effects of H\textsubscript{2} and CO on char reactivity to H\textsubscript{2}O and CO\textsubscript{2}, which become more significant as the concentrations of H\textsubscript{2} and CO\textsubscript{2} buildup inside the enclosure. The corn stover char particles appear to be more impacted by inhibition than the Wyodak coal char particles.

![Figure 10](image)

Figure 10. Char normalized mass versus time for char particles exposed to an environment that initially contains 1\% O\textsubscript{2}, 20\% H\textsubscript{2}O, and 20\% CO\textsubscript{2} at 800 °C and 1 atm for Wyodak coal and corn stover char particles.

The buildup of CO and H\textsubscript{2} in the enclosure as it is released from the char is shown in Fig. 11 at early times, during oxygen depletion, and in Fig. 12 at later times when char gasification via reactions with H\textsubscript{2}O and CO\textsubscript{2} controls the char conversion process. The different behaviors of the coal and the biomass chars at early times (Fig 11) are attributed predominantly to the differences in reactivity to oxygen. As already noted, the corn stover char is much more reactive to O\textsubscript{2} than is the Wyodak coal char, leading to an earlier and more abrupt spike in CO (a main byproduct of reaction with O\textsubscript{2} at these temperatures). The spike is higher not only due to intrinsic chemical differences (*i.e.* different rates for the reactions that produce CO versus those that produce CO\textsubscript{2}), but also because the faster reaction with O\textsubscript{2} leads to higher corn stover char particle temperatures (see Fig 9). These higher temperatures lead to more CO being produced during reaction with O\textsubscript{2}, instead of CO\textsubscript{2}.
Figure 11. Production of H\textsubscript{2} and CO at early times in an enclosure that initially contains 1% O\textsubscript{2}, 20% H\textsubscript{2}O and 20% CO\textsubscript{2} at 800 °C and 1 atm for Wyodak coal char particles (left) and corn stover char particles (right).

Figure 12. Production of H\textsubscript{2} and CO at late times in an enclosure that initially contains 1% O\textsubscript{2}, 20% H\textsubscript{2}O, and 20% CO\textsubscript{2} at 800 °C and 1 atm for Wyodak coal char particles (left) and corn stover char particles (right).

The spike in CO also drops quicker for the corn stover char than for the Wyodak coal char. This is somewhat surprising if one assumes that gas phase reaction with the remaining O\textsubscript{2} is predominantly responsible for the depletion of CO and the gas phase kinetics do not differ. However, there are other factors at work. First of all, consider that with corn stover, the enclosure is hotter due to the more rapid release of energy, meaning higher gas phase reaction rates when corn stover is the fuel. But also important is a phenomenon related to one of the modes of inhibition for CO. One of the most important modes of inhibition by CO is the reverse of the reaction R.10. When the gaseous CO molecule reacts
with an adsorbed C(O) complex to yield a gaseous CO$_2$, it prevents the C(O) molecule from removing carbon from the substrate by a subsequent CO desorption. Any difference in this mode of inhibition for the two fuels is extra evident in this scenario, where there are high amounts of C(O) on the surface (due to reaction in O$_2$) and relatively low amounts of CO$_2$, leading to a scenario which favors the reverse of the reaction over the forward of the reaction (in normal dry gasification conditions, the forward direction of the reaction is typically far faster). Indeed, for the kinetic parameters used in this work, corn stover char has a much higher reaction rate coefficient for the reverse direction of reaction R.10 than does the Wyodak coal char (at this temperature): about 0.10 vs 0.04 (m3 mol$^{-1}$ s$^{-1}$).8 This difference is also contributing to the quicker depletion of CO in the corn stover-fueled enclosure. One can also see a kink upwards in the production of H$_2$ coincident with the minimum in CO concentration. This coincides with the depletion of ambient O$_2$, which consumes both H$_2$ and CO via gas phase reactions.

Note that just after oxygen depletion, for each char the production rates of CO and H$_2$ are comparable, suggesting that the char-H$_2$O reaction (which produce CO and H$_2$ in nearly equal amounts) is faster than the char-CO$_2$ reaction (which produces only CO) at early times. As time progresses, the production rate of CO outpaces that of H$_2$, suggesting a decrease in the rate of the char-H$_2$O reaction. This is especially true for the corn stover char. The decrease in the char conversion rate is due to the inhibiting effects of H$_2$ and CO on char reactivity. Inhibition of H$_2$O gasification can occur by the reverse of reactions R.1, R.2, or R.3. The reverse of reaction R.2 eliminates C(O) complexes, whose desorption into gaseous CO is the primary source of reactivity. The reverse of reaction R.1 eliminates C(OH) complexes, thereby reducing the number that dissociate into C(O) + C(H). The reverse of reaction R.3 increases the number of C(H) complexes, which reduces the number of free sites but also increases the reverse rates of both reactions R.1 and R.2. The most prominent difference between the corn stover and Wyodak coal chars at this temperature is the reverse rate of reaction R.1. The rate constant for the reverse reaction of R.1 (k_{1r}) for the corn stover char is over 300 times greater than it is for the Wyodak coal char.8 The accumulation of H$_2$ within the enclosure increases the amount of C(H)
on the surface, which consequently increases the reverse rate of reaction R.1, thereby reducing the net
reaction rate of R.1 more for the corn stover char than for the Wyodak coal char. As the concentrations
of these species increase in the enclosure, the inhibiting effects increase, slowing down the overall char
conversion rates. Simulations performed at a higher enclosure wall temperature, 1100 °C, yielded
similar results. These calculations demonstrate the use of the char particle gasification model to compare
char particle conversion behavior of different fuels and at elevated temperatures.

These investigations support the use of the char particle gasification model to describe char particle
conversion behavior in high temperature environments containing CO₂, H₂O and O₂. The model can be
used to predict the fates of char particles in fluidized bed and entrained flow gasifiers and combustors.
The model is even applicable to oxy-combustion conditions. In order to accurately predict gas
composition (for instance, the mole fractions of CO, H₂, CO₂, H₂O, CH₄ and O₂ within the gasifier or
combustor), the char particle gasification model must be combined with a detailed homogeneous
reaction mechanism that characterizes CH₄ formation (such as GRI-Mech 3.0¹³).

4. CONCLUSIONS

The reactant-specific effectiveness factor-Thiele modulus relations presented in this paper provide a
means of using a heterogeneous reaction mechanism developed at low temperatures, when chemical
kinetics govern char conversion rates, to be used at high temperatures, when the combined effects of
chemical kinetics and pore diffusion govern overall char particle conversion rates. Combined with mode
of conversion and mass specific surface area submodels, these relations permit the prediction of the
variations in char particle size, apparent density and temperature during char conversion in environments
of specified initial temperature, pressure and composition. Model predictions agree with observations,
suggesting that the char particle gasification model can be used as a tool to provide fundamental
understanding of the processes governing char conversion behavior during gasification and combustion.
The model is applicable to all char particle sizes undergoing mass loss in any conversion regime, either the Zone I, II or III conversion regime.

5. AUTHOR INFORMATION

Corresponding Author (REM)

Phone: (650) 725-2015. *Email: remitche@stanford.edu. Corresponding address: Mechanical Engineering Department, Stanford University, Stanford, CA 94305-3032

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

6. ACKNOWLEDGEMENTS

The authors (MBT and REM) would like to acknowledge support from the United States Department of Energy through its National Energy Technology Laboratory (USDOE/NETL, award number: DE-FC26-10FE0005372; Arun Bose, Project Manager). Support from Stanford University’s Global Climate & Energy Project (grant number: GCEP-106796) is also acknowledged. In addition, NELH would also like to acknowledge the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009-2014 in the frame of Project Contract No Pol-Nor/232738/101/2014.
7. REFERENCES

(13) GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/version3.0.

