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ABSTRACT 9 

This study investigated the performance of different mixed microbial cultures (MMC) able to 10 

ferment crude glycerol generated from animal fat-based biodiesel to produce 1,3 propanediol (1,3 11 

PDO) and butyric acid, under non-sterile conditions. Eight different continuous flow stirred-tank 12 

reactors (CSTR) were set up with different inoculum types and growth media. The distribution of 13 

metabolic products under variable operating conditions was determined. All MMC were 14 

characterized from a kinetic point of view and overall stoichiometric reactions were constructed. 15 

Changes in the microbial communities were monitored by means of Next Generation Sequencing 16 

(NGS). Maximum substrate degradation rate reached approximately 110 g/L/d of glycerol (with a 17 

productivity of 38 g/L/d and 11 g/L/d for 1,3 PDO and butyric acid, respectively), obtained with an 18 

hydraulic retention time of 12 h and 60 g/L feed. The maximum feed concentration reached almost 19 

90 g/L, leading though to an incomplete substrate degradation. 20 
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1. INTRODUCTION 28 

In the last decade, extensive growth of the biodiesel industry resulted in a glycerol surplus 29 

production and a significant decrease in crude glycerol prices [1], causing problems not only to the 30 

glycerol-producing and-refining industries, but also to the economic viability of the biodiesel 31 

industry itself [2,3]. In fact, while high purity glycerol is an important industrial feedstock, crude 32 

glycerol derived from biodiesel production possesses very low value (oscillating between 0 and 240 33 

$/ton [4]), due to impurities such as methanol, heavy metals, soaps, etc. [5,6]. Moreover, it has been 34 

estimated that the projected volume production of crude glycerol over the next years will exceed the 35 

present commercial demand for purified glycerol [7], with an increasing EU biodiesel production 36 

capacity and a global production of glycerol from biodiesel that has exceeded 2 million tons [4,8]. 37 

As a consequence, chemical purification of such contaminants is becoming too costly, especially for 38 

small/medium-sized industries [9]. Thus, the development of new routes and efficient (in terms of 39 

productivity, yield and titer) as well as low-cost processes to convert crude glycerol into higher 40 

value products is expected to add value to the production of biodiesel and help the development of 41 

biorefineries.  42 

Clearly, conversion of glycerol can be obtained by different physico-chemical and biological 43 

methods. Bioconversion of crude glycerol into biofuels and green chemicals may have several 44 

advantages, such as no need of energy-intensive pretreatment or purification, low nutrient 45 

requirements and co-production of H2/biogas and other biofuels, which can be used as an energy 46 

source. A major challenge in the fermentation of low-grade crude glycerol, however, is to obtain 47 

microbial strains tolerant to undesirable inhibitory components, such as salts and organic solvents 48 

that are present in crude glycerol [10]. So far, most fermentation processes have been using pure or 49 
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refined glycerol as feedstock, while crude glycerol obtained from biodiesel industry is still 50 

relatively less investigated [11]. On the other hand, some studies have shown that using open mixed 51 

microbial cultures (MMC) in bioprocesses is a promising alternative approach, exploring the 52 

available diversity in nature [12], also in the case of glycerol conversion [13] . This is particularly 53 

advantageous if industrial waste feedstock, containing compounds of undefined composition, are 54 

used [10]. 55 

Glycerol bioconversion can lead to numerous value-added chemicals. 1,3 PDO is probably the most 56 

studied fermentation product from glycerol, with several patents and industrial plants already 57 

installed [14–17]. It represents a promising chemical for many synthetic reactions, particularly 58 

when used as a monomer for the synthesis of polytrimethylene terephthalate (PTT) polyesters [18]. 59 

Because of the environmental benefits and use of a renewable feedstock, the biotechnological 60 

synthesis of 1,3 PDO appears to be an attractive alternative to chemical synthesis [19]. 61 

On the other hand, very few studies have directly addressed the conversion of glycerol into butyric 62 

acid, which has many applications in food, pharmaceutical and chemical industries [20]. So far, 63 

biological butyric acid production has been mainly investigated using sugar-rich feedstocks and 64 

wild or engineered microbial strains. Despite the high yields, pure culture sterilization requirements, 65 

in combination with the requirements for pre-treatment and enzymes addition (in case of 66 

lignocellulosic biomasses), have not allowed for cost-efficient biological production of butyric acid 67 

on an industrial scale yet [21]. Various feedstocks have been studied for butyric acid production by 68 

fermentation [22–28], however, although a few research studies have focused on hydrogen 69 

production from glycerol and reported butyric acid as one of the by-products [29,30], there is a lack 70 

of studies investigating butyric acid production from crude glycerol. In a previous study, however, 71 

the authors have selected several MMC able to grow on animal fat-derived glycerol and produce, 72 

together with 1,3 PDO, butyric acid at interesting yields. Production of butyric acid along with 1,3 73 
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PDO could be of high importance since butyrate could be utilized by enriched consortia for 74 

bioplastics production, thus exploiting the full potential of crude glycerol as carbon source [31]. 75 

Clearly, production of butyric acid at industrial scale is dominated by chemical synthesis from 76 

crude oil [21]. On the other hand, the use of MMC fermentation has the potential to substantially 77 

improve the economics of microbial butyric acid production. Nonetheless, there are still important 78 

challenges with respect to their application at industrial scale, since the stability of such processes 79 

depends not only on operating conditions but also microbial interactions [32]. Furthermore, most 80 

studies have been focusing on the use of batch or fed-batch operations, and only few have addressed 81 

continuous mode. The latter would have the advantage to increase productivity, with an important 82 

impact on the reactor size and capital investment, as well as facilitating operations from a control 83 

point. Noticeably, the development of an efficient purification strategy is also considered of highest 84 

importance for biotechnological applications. A fermentation broth containing mixture of multiple 85 

components, such as, water, residual glycerol, by-products, macromolecules, salts and residual 86 

medium makes the downstream processing a potentially difficult separation challenge [11,33,34]. 87 

Therefore, significant technological advances and innovative approaches are also needed for cost-88 

efficient recovery and purification of the fermentation products. Selective conversion of butyric 89 

acid (and eventually other volatile fatty acids) to polyhydroxyalkanoates (PHA), while leaving 1,3 90 

PDO intact in a subsequent step, would thus facilitate its recovery [31].  91 

The overall goal of this study was to test different MMC in continuous mode and identify 92 

operational conditions able to reach stable fermentation in non-sterile conditions, using animal fat-93 

derived crude glycerol from second-generation (2G) biodiesel. The application of MMC, besides 94 

the aforementioned advantages, was deemed necessary since the crude glycerol used in this study 95 

was derived from animal fat based biodiesel processing and was highly inhibitory for single 96 

microbial strains widely known as efficient glycerol consumers, e.g. Clostridium pasteurianum. In 97 
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more detail, we aimed at a) studying the distribution of metabolic products during mixed culture 98 

fermentation under variable operating conditions, and b) defining the conditions and operating 99 

parameters necessary to maintain a stable MMC, through kinetic and molecular characterization of 100 

the microbial population. 101 

2. MATERIAL AND METHODS 102 

2.1 Media composition 103 

Two different growth media were tested in this study: a very simple Minimal Medium (MM), not 104 

containing any yeast extract, tryptone, nor mineral and vitamin solution, and a complete synthetic 105 

medium for anaerobes (containing salts, vitamins and trace elements, beside pH buffers), called BA. 106 

Unless differently stated, initial glycerol concentration was approximately 10 g/L (in terms of 107 

glycerol content of the crude glycerol), while in CSTR experiments the concentration ranged 108 

between 10 g/L and 12.88 g/L. Crude glycerol, provided by Daka Biodiesel (Denmark), was 109 

obtained from the transesterification of butchery waste (based on animal fat categories 1 and 2 110 

according to the EU regulation numbers 1069/2009 and 142/2011). The main characteristics of this 111 

type of crude glycerol are presented in the supplementary material (Table S1). 112 

2.1.1 Minimal Medium  113 

MM contained, per liter of distilled water: 10 g of glycerol, 3.4 g of K2HPO4·3H2O, 1.3 g of 114 

KH2PO4, 2 g of (NH4)2SO4, 0.2 g of MgSO4·7H2O, 20 mg of CaCl2·2H2O and 5 mg FeSO4·7H2O 115 

[35]. For cultivation, medium was dispensed into 125mL serum bottles and sealed with butyl rubber 116 

stoppers. Subsequently it was flushed with nitrogen for 3 minutes and inoculated with 10% v/v 117 

inoculum, before being incubated at 37 °C with continuous stirring (150 rpm). Initial pH was 7. 118 

2.1.2 BA Medium 119 
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BA medium was prepared from the following stock solutions (chemicals in g/1 of double distilled 120 

water): (A) NH4Cl, 100; NaCl, 10; MgCl2·6H20, 10; CaCl2·2H20, 5; (B) K2HPO4·3 H2O, 200; (C) 121 

trace metal and selenite solution: (D) NaHCO3 52 g/L; (E) vitamin mixture, according to [36] . To 122 

974 ml of redistilled water, the following stock solutions were added: A, 10 ml; B, 2 ml; C, 1 ml; D, 123 

50 ml; E, 1 ml [37]. 124 

2.2 Inoculum 125 

Five different MMC were previously selected through enrichment of activated and anaerobic sludge 126 

in batch and fed-batch. Different selection strategies were compared, using different growth media 127 

(BA and MM) and transfer strategies: a “Kinetic Control” (KC), with transfers every 21h, and “End 128 

of Fermentation” (EF), in which the inocula were transferred into fresh medium after 72h, when no 129 

more fermentation gases were produced. Four different MMC were obtained from the activated 130 

sludge, while only one stable MMC was obtained through the enrichment of heat-treated anaerobic 131 

sludge. Activated sludge was collected from the wastewater treatment plant of Daka Biodiesel, 132 

Denmark. Anaerobic sludge was collected from the Municipal Wastewater Treatment plant in 133 

Lyngby (DK) [10].  134 

2.3 Inoculum storage and activation  135 

Inoculum samples were stored in the freezer at -18°C. Prior to use, the frozen mixed cultures were 136 

transferred to the refrigerator at 4°C, for 2 hours, and then for an additional hour at room 137 

temperature, before being inoculated. 125 mL serum vials were used for batch experimentation. 45 138 

mL growth medium (either MM or BA medium) were flushed for 5 minutes with a mixture of 80% 139 

N2 and 20% CO2, in order to obtain anaerobic conditions, prior to inoculation (adding 5 mL 140 

inoculum), and incubated at 37°C, using an orbital shaker at 150 rpm. Gas and liquid samples were 141 

collected regularly. Batches at 24 h fermentation were used as (pre-activated) inoculum for 142 
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continuous experiments. In all experiments, 10% v/v inoculum was used to start up the fermentation 143 

and all operations were performed under non-sterile conditions.  144 

2.4 Continuous Experiments 145 

Continuous experiments were run to test the stability of the selected MMC and identify the 146 

operating parameters able to secure a stable fermentation.  A 3L Applikon 1030 fermenter (with a 147 

working volume of 1 L) equipped with an ez-controller was used for this purpose, testing different 148 

MMC, growth media (BA and MM), pH and Retention Time (RT, which is equal to both hydraulic 149 

and solid retention time) conditions. Biogas was measured through a Ritter MilliGas counter (Type 150 

MGC-1). pH was controlled through the addition of alkali (KOH 4 M) and the temperature was kept 151 

at 37 °C. The reactor was flushed for 20 minutes with a mixture of 80% N2 and 20% CO2 to obtain 152 

anaerobic conditions prior to inoculation (10 % v/v). The feed vessels were also flushed with 80% 153 

N2 and 20% CO2 to obtain anaerobic conditions and were changed every 2-3 days with fresh 154 

medium; they were stored in a fridge (4 - 6 °C) during the operation (because of the non-sterile 155 

conditions) to minimize external microbe growth. The outlet vessel was changed regularly as well 156 

and it was connected with a vessel filled with water to discharge pressure and to prevent air inlet 157 

(Figure 1). Experiments were continued for at least 6 retention times (with a variability of the main 158 

metabolites ≤ 25%) after steady state was reached. 159 

Shapiro-Wilks normal probability test and T-test for comparison of two sets of values were 160 

performed using OriginPro v 9.0.0. 161 

[insert Figure 1] 162 

2.5 Kinetic experiments 163 

In order to kinetically characterize the MMC, further experiments were conducted in batch mode, 164 

through the fitting of kinetic equations to the experimental data.10 mL fermentation broth from 165 

each reactor, at steady state, were used as inoculum in 300 ml serum vials, which were sealed with 166 
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rubber stoppers and aluminum crimps. The final working volume was 100 ml. Prior the inoculation, 167 

the vials were flushed for 5 minutes with a mixture of 80 % N2 and 20 % CO2 in order to obtain 168 

anaerobic conditions. All tests were performed in duplicates. Media composition was the same as 169 

reported in paragraph 2.1 (MM and BA), with the addition of K2HPO4/ KH2PO4 buffer (1.13 g/L, 170 

12.72 g/L for BA and 1.46 g/L, 11.42 g/L for MM) in order to hinder pH drop during batch 171 

fermentation (with an initial pH of 6.5). Incubation was at 37oC using an orbital shaker at 150 rpm. 172 

Samples were collected every three hours in the exponential phase and progressively in larger time 173 

intervals. At each sampling, biomass, VFAs, alcohols and organic acids and hydrogen were 174 

measured as reported in paragraph 2.7. In order to describe substrate consumption and biomass 175 

growth, the equation of Monod kinetics was used (Eq.1). 176 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= µΧ   being      µ = µ𝑚𝑚𝑚𝑚𝑑𝑑 · 𝑆𝑆
𝐾𝐾𝐾𝐾+𝑆𝑆

     Eq.1 177 

Where dx/dt is the microbial growth rate, μ and μmax is the specific growth rate and maximum 178 

specific growth rate of the microorganisms, respectively, S is the substrate concentration and Ks is 179 

the saturation constant. The maximum specific growth rate was calculated from the initial rates 180 

(where dx/dt = μmax X), based on the fact that the specific growth rate is constant and equal to the 181 

maximum specific growth rate at high substrate concentrations. The yields of the products (Yp/s) 182 

were expressed as mass of product per mass of substrate consumed (glycerol). The productivity (P) 183 

was expressed as mass of products per volume per time.  184 

2.6 Stoichiometric calculations  185 

Stoichiometric calculations were based on product yields and calculation of the glycerol electron 186 

equivalents, partitioned between energy producing reactions (catabolism of glycerol to various 187 

products) and biomass synthesis [27]. The theoretical energy reaction was constructed, assuming 188 

glycerol as the sole electron donor in the experiments and calculating the fraction of electron 189 
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equivalents found in each of the products. The organic half-reactions used for the substrate 190 

(glycerol) and products are shown below (Eq. 2- 10). 191 

 192 

Hydrogen: H+ + e- → ½ H2     Eq.2 193 

Acetic acid: 2/8 CO2 + H+ + e- → 1/8 CH3COOH + 2/8 H2O   Eq.3 194 

Butyric acid: 4/20 CO2 + H+ + e- → 1/20 CH3CH2CH2COOH + 6/20 H2O   Eq.4 195 

Ethanol: 1/6 CO2 + H+ + e- → 1/12 CH3CH2OH + ¼ H2O   Eq.5 196 

1,3 Propanediol: 3/16CO2 + H+ + e- → 1/16 OHCH2CH2CH2OH + ¼ H2O  Eq.6 197 

Lactic acid: ¼ CO2 + H+ + e- → 1/12 C2H4OHCOOH + ¼ H2O   Eq.7 198 

Propionic acid: 3/14 CO2 + H+ + e- → 1/14 CH3CH2COOH + 4/14 H2O   Eq.8 199 

Glycerol: 1/14 OHCH2CH(OH)CH2OH + 3/14 H2O → 3/14 CO2 + H+ + e-                        Eq.9 200 

Valeric acid: 5/26 CO2+ H+ + e- → 1/26 C5H10O2 + 8/26 H2O                      Eq.10 201 

 202 

The fraction of the electron donors’ electron equivalents used for energy production (fe) was 203 

calculated from the difference between the product yields predicted by the theoretical energy 204 

reaction and the actual measured yields, as reported in [27]. The fraction of the electron donors’ 205 

electron equivalents used for cell synthesis (fs) was then calculated using the following equation 206 

(Eq.11): 207 

𝑓𝑓𝑠𝑠 + 𝑓𝑓𝑒𝑒 = 1               Eq.11 208 

Subsequently, the microbial cell synthesis reaction was constructed using the cell formation half-209 

reaction (Eq. 12), taking NH4
+ as nitrogen source and C5H7O2N as empirical formula for microbial 210 

cells, according to [38]. 211 

1/5 CO2 + 1/20 HCO3
- + 1/20 NH4

+ + H+ + e- → 1/20 C5H7O2N + 9/20 H2O                    Eq. 12 212 
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The overall stoichiometric reaction was finally constructed as the sum of the energy and cell 213 

synthesis reactions, multiplied by fe and fs, respectively, as described in [38] and the theoretical 214 

biomass production was calculated from the stoichiometry of the overall reaction. For a data 215 

consistency check, a carbon recovery (Rc) calculation was carried out at the end of the batch 216 

cultures as well as at each steady state, according to [39]. Substrate removal rate (RGly) during 217 

steady state was calculated according to the following equation (Eq. 13): 218 

RGly = (Gly0-Gly)·D                         Eq. 13 219 

Where D is the dilution rate (h-1), Gly0 is the glycerol amount in the feed and Gly the concentration 220 

of glycerol in the reactor at steady state.  221 

2.7 Analytical Methods 222 

Detection and quantification of glycerol, ethanol, 1,3 PDO and lactic acid were obtained with a 223 

HPLC equipped with a refractive index, while VFA were analyzed by a gas chromatograph 224 

equipped with a flame ionization detector, as previously reported [10]. Hydrogen content was 225 

measured by a TCD-GC, as described in [10]. 226 

Biomass was estimated through the determination of Total Suspended Solids (TSS), according to 227 

standard methods [40]. Absorbance of samples was measured every day at an optical density of 600 228 

nm (OD600), after the correlation with TSS. Total soluble metabolites (TSM) yield was calculated 229 

as the ratio between g of TSM/ g of glycerol consumed (expressed as a percentage), and used as a 230 

relative comparison of the substrate conversion ability of the different samples (or stated differently, 231 

as an easy estimate of the glycerol acidification efficiency of each tested conditions). 232 

2.8 Next generation sequencing (NGS) 233 

DNA extraction and 16S amplicon sequencing were performed according to the procedures 234 

described previously, using an Illumina MiSeq System [10]. Main comparisons between samples 235 
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were done at the Order and Genus level. Sequencing reads have been deposited to the Sequence 236 

read archive of NCBI under the Bioprojects PRJNA352657 and PRJNA352658.  237 

Multivariate data analysis was performed using Unscrambler X 10.1 software (by Camo). A 238 

Principal Component Analysis (PCA) (Jackson 2003) [41] was chosen as a tool to explore the data 239 

matrix obtained from the relative abundance of genera and of the main fermentation parameters. 240 

3. RESULTS 241 

Eight different operating conditions (including RT, growth medium and inoculum type) were tested 242 

in continuous mode, comparing the performance of different (previously) enriched MMC [10] in 243 

non-sterile conditions. A typical example of the trend of main fermentation products, obtained 244 

during the tests with enriched anaerobic and activated sludge, is shown in the supplementary 245 

material Figure S1 and S2. 246 

3.1 Glycerol conversion during continuous mode experiments  247 

3.1.1 Glycerol conversion using enriched anaerobic sludge 248 

Two different growth media (BA and MM) and retention times (12h and 24h) were tested and the 249 

substrate conversion and main metabolites obtained during the steady state are shown in Table 1 250 

and Figure 2a. Preliminary tests were run to verify the effect of different pH (reactor BA-12h), 251 

which resulted to be a key parameter in controlling the sulphate reducing bacteria (SRB) 252 

community, originated from anaerobic sludge. Interestingly, SRB were able to out-compete the 253 

other microorganisms when growing at pH ≈ 7 (initial anaerobic sludge contained a total of 19 254 

genera of SRB, mainly belonging to Desulfovibrio and Desulfofrigus, and accounting for 1.19% of 255 

the total genera retrieved [10]), while there was no evident sulphide production or inhibition at pH = 256 

5.5. For this reason, all the following continuous experiments were run at pH = 5.5.  257 

[Insert Table 1] 258 
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During steady state, 1,3 PDO represented the main metabolite (ranging from 4.89 to 6.45 g/L), 259 

followed by butyric acid (1.44 – 2.26 g/L), propionic acid (0.33 – 0.88 g/L) and acetic acid (0.21 – 260 

0.33 g/L). Glycerol was completely consumed in all cases. Notably, in MM-24h initial butyric acid 261 

production was higher than 1,3 PDO, reaching a maximum concentration of 5.23 g/L; however 1,3 262 

PDO turned out to be the main metabolite during the steady state. Average TSM yield reached 263 

65.23 ± 3.48 % (corresponding to 74.9% ± 6.4 % in terms of Cmol), with 1,3 PDO and butyric acid 264 

accounting for 87.50 % of the TSM (95.8% in terms of Cmol).  265 

In general, use of BA medium seemed to favour a comparably more stable distribution of 266 

metabolites. Interestingly, the use of a shorter RT did not seem to reduce the process stability, at the 267 

same time allowing for an increased glycerol conversion rate. For this reason, an RT of 12h was 268 

chosen for the following experiments, using enriched activated sludge.  269 

It is worth noting that MM led to a higher butyric acid (around 25.80% compared to 17.63% of BA) 270 

and lower 1,3 PDO production (especially at the lower RT tested), which might be related to the 271 

absence of specific minerals and vitamins in the minimal medium. The production of 1,3 PDO, for 272 

instance, is typically vitamin B12-dependent (even though some exceptions were discovered recently 273 

[42]), and thus its absence could favour the oxidative pathway [43]. 274 

[Figure 2] 275 

3.1.2 Glycerol conversion using enriched activated sludge 276 

Crude glycerol conversion ability of four different inocula was tested in continuous mode, using 277 

previously enriched activated sludge [10]. In order to better compare the experiments among the 278 

different inocula, it was decided to use the same operating conditions for all four experiments 279 

(while in the case of anaerobic sludge only one stable inoculum was available). Based on the 280 

observations of the previous continuous mode tests with anaerobic sludge, the RT was set at 12h 281 

(more stable) and pH at 5.5; temperature was kept at 37°C. A RT of 24 h was also tested in the case 282 
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of MM-EF, showing comparable distribution of the main metabolites as in the 12h RT. Thus the 283 

operation at 12h was considered preferable, also due to a higher productivity.  284 

The growth medium used for the continuous experiments was kept the same as the medium used for 285 

the enrichment (BA or MM) [10]. The substrate conversion and main metabolites obtained during 286 

the steady state are reported in Table 1 and Figure 2b, respectively. In most cases, distribution of 287 

1,3 PDO and butyric acid were similar to those observed in the previous experiments with anaerobic 288 

sludge, with the 1,3 PDO showing a two-fold higher concentration compared to butyric acid. 289 

However, the initial phase of the CSTR with activated sludge showed a higher variability. BA-EF, 290 

in particular, showed a different distribution of metabolites in the first 20 days, with higher butyric 291 

acid production (reaching up to 5.74 g/L), but conformed to the other reactors after reaching steady 292 

state. Differently from all the other CSTR experiments, MM-EF was the only inoculum that did not 293 

reach complete substrate degradation, and was associated to the lowest biomass concentration, even 294 

after increasing the RT to 24h (which did not lead to an increase of biomass nor substrate 295 

degradation efficiency). 296 

Similarly to the anaerobic sludge MMC, 1,3 PDO always represented the main metabolite during 297 

steady state (ranging from 2.70 to 4.40 g/L), followed by butyric (1.09 – 1.98 g/L), acetic (0.14 – 298 

1.03 g/L) and propionic acid (0 – 0.63 g/L). Average TSM yield (62.57 ± 3.37 %) was comparable 299 

to the one obtained with enriched anaerobic sludge (corresponding to 78.1% ± 4.0 % in terms of 300 

Cmol). Similarly, 1,3 PDO and butyrate accounted for 83.92 % of the TSM (85.2% in terms of 301 

Cmol), however biomass was generally lower (especially in the case of MM experiments), with an 302 

average of 0.45 ± 0.20 g/L, compared to 0.76 ± 0.08 of anaerobic sludge.  303 

3.2 Production rates 304 

3.2.1 Characterization of productivity using enriched anaerobic sludge 305 
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As can be observed in Table 2, there was no clear difference of productivity between the MMC 306 

grown with MM and BA medium when working at 24 h RT, while BA operated at 12h RT clearly 307 

favoured 1,3 PDO production, reaching a maximum of 12.89 ± 0.81 g/L/d. On the other hand, MM 308 

clearly favoured butyric acid productivity, no matter the RT. Despite the formation of butyric acid, 309 

hydrogen detected was in general extremely low, possibly due to syntrophic mechanisms that can 310 

lead to hydrogen consumption [44], or to secondary fermentation (sensu Agler [45]) in which 311 

butyric acid production is not obtained directly from glycerol conversion but rather from the 312 

conversion of other metabolites, such as i.e. lactic and acetic acid [10]. Substrate degradation rate 313 

(RGly) reached 12.64 ± 0.18 g/L/d in the case of 24h RT and 25.71 ± 0.07 g/L/d with 12h RT. 314 

3.2.2 Characterization of productivity using enriched activated sludge 315 

During steady state, maximum and minimum 1,3 PDO production were both obtained with MM 316 

(maximum of 8.88 ± 0.43 was obtained with MM-KC), while there seemed to be little difference in 317 

terms of main metabolites among the two inocula selected on BA medium. As already mentioned, 318 

MM-EF represented a special case (it was the only inoculum that did not completely degrade the 319 

substrate), developing the lowest biomass concentration (see Table 1) consequently also leading to 320 

the lowest production rates. Gas production was very low with the exception of MM-EF, which 321 

reached the highest values of almost 1125 mL/L/d, with a hydrogen content of 53.85%, and an 322 

average productivity of almost 600 mL/L/d during the steady state, (see Table 2). 323 

Substrate degradation rate (RGly) reached on average 20.72 ± 0.46 g/L/d, with the exception of MM-324 

EF, which was run at 24h RT during steady state, due to its incomplete substrate degradation (thus 325 

obtaining an RGly of 7.48 g/L/d). Interestingly, despite the difference in initial substrate 326 

concentration used with anaerobic and activated sludge (about 12.5 g/L glycerol and 10.5 g/L 327 

respectively), there seemed to be no evident effect on butyric acid productivity (with an average of 328 

2.82 ± 1.21 and 2.75 ± 1.36 g/L/d, respectively).  In fact, the two-tail T-test (paired two samples for 329 



15 
 

means) showed a P-value of 0.945, while the Shapiro-Wilks test did not reject normality (decision 330 

level at 5%). 331 

[Insert Table 2] 332 

 333 

3.3 Production yields 334 

3.3.1 Characterization of production yields (Yp/s) using enriched anaerobic sludge 335 

Maximum butyric acid production yield was reached in the initial (and less stable) phase of CSTR 336 

operation, with 0.40 g/g in MM-24h. However, the yields decreased to an average of 0.14 ± 0.03 337 

g/g during steady state (Figure 3a). 1,3 PDO production yield, instead, stayed relatively stable 338 

throughout the whole fermentation (with an average yield of 0.43 ± 0.05 g/g during steady state): 339 

maximum yield obtained during the initial phase reached 0.52 g/g (corresponding to 0.6 mol/mol), 340 

which also corresponded to the maximum observed during steady state with BA-12h (see Figure 341 

3a). This represents 83% of the theoretical maximum yield [46]. These results are comparable with 342 

those of a recent study, using mixed cultures with pure glycerol fermentation, which reported yields 343 

from 0.52 to 0.64 mol/mol over a wide pH range [47].   344 

3.3.2 Characterization of production yields (Yp/s) using enriched activated sludge 345 

On average, production yields using enriched activated sludge were comparable to those obtained 346 

with anaerobic sludge, with a slightly higher butyric acid (0.16 ± 0.003 g/g) and a lower 1,3 PDO 347 

production yield (0.37 ± 0.009 g/g), as can be observed in Figure 3b. Moreover, similarly to the 348 

anaerobic sludge, maximum butyrate yield was reached in the initial phase of CSTR operation, 349 

suggesting that a disturbed/periodic fermentation [48] (rather than steady state) might be preferable 350 

for butyric acid production in CSTR. Ai BinLing and colleagues [49],  who investigated butyric 351 

acid production using MMC, observed i.e. the highest butyric acid production in a disturbed system, 352 

using a semi-continuous fermentation with intermittent discharging of the culture broth and 353 

replenishment with fresh medium. Maximum yield was obtained with enriched activated sludge 354 
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BA-EF, with up to 0.44 g/g, before reaching steady state. Finally, the use of the BA medium 355 

favoured a higher butyric acid/PDO ratio, which was almost twice the one obtained with MM (0.60 356 

and 0.32 respectively).  357 

[Insert Figure 3] 358 

3.4 Stoichiometric analysis 359 

Stoichiometric equations representing the overall stoichiometric reactions for the eight different 360 

CSTR conditions during steady state are reported in Table 3. The inoculum origin (anaerobic sludge 361 

or activated sludge) did not seem to have a significant effect on fe (and thus fs), with an average of 362 

0.88 ± 0.04 (fs = 0.12 ± 0.04) in the case of anaerobic sludge, and 0.86 ± 0.05 (fs = 0.15 ± 0.04), 363 

respectively. The two-tail T-test (paired two samples for means) showed a P-value of 0.617, while 364 

the Shapiro-Wilks test did not reject normality (decision level at 5%). This means that the fraction 365 

of the electron donors’ electron equivalents used for energy production (fe) and cell synthesis (fs) in 366 

activated and anaerobic sludge inocula was comparable. However, in the case of activated sludge 367 

the ratio of the experimental biomass yield to the theoretical biomass yield given by the 368 

stoichiometric equation was higher when using BA compared to MM medium, which might imply 369 

that the maintenance energy requirements were higher with MM medium. This could be explained 370 

by the fact that MM did not provide vitamins and growth factors to the microbial cells, which had 371 

an effect to the energy available for synthesis of new cells. In the case of anaerobic sludge, on the 372 

other hand, experimental to theoretical biomass ratios are very close to 1 which implies that 373 

maintenance energy requirements can be considered negligible in this case.  374 

[Insert Table 3] 375 

Finally, average values of carbon recovery (Rc) confirmed that there was a good closure [50], with 376 

an average of 100.45 ± 1.33 % for activated sludge and 101.6 ± 1.53 % in the case of anaerobic 377 
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sludge fermentation. Moreover, there was a good correlation between measured and calculated 378 

biomass, with a R2 = 0.95 for activated and 0.91 for anaerobic sludge (Fig. S3). 379 

3.5 Metagenomic analysis 380 

3.5.1 Molecular Characterization of the MMCs during CSTR operations using enriched anaerobic 381 

sludge  382 

There was a relatively similar evolution of the microbial community among the four different 383 

operating conditions, probably also due to the fact that there was only one starting inoculum (in the 384 

case of enriched anaerobic sludge). This was also reflected in the stability of the fermentation 385 

process. Overall, there was a dominance of bacteria belonging to the phylum Firmicutes (60.4%) 386 

and Proteobacteria (32.5%). As can be observed in Figure 4a, BA medium showed a slight increase 387 

in Clostridiales over time (mainly with the genera Clostridium, Blautia, Sporanaerobacter, 388 

Alkaliphilus), while the Bacteroidales disappeared. This was associated with a higher 1,3 PDO 389 

production, which reached around 70-80% of the TSM (Figure 5a). MM medium, on the other 390 

hand, showed an increase of Enterobacteriales (genera Klebsiella, Citrobacter, Enterobacter, 391 

Erwinia) and especially Burkholderales (Delftia), while the Bacteroidales disappeared. Clostridium 392 

represented by far the main genus (with an average relative abundance of 44.81%), followed by 393 

Blautia (7.05%), Enterobacter (6.15%) and Pseudomonas (5.65%). It is worth noting that C. 394 

butyricum, which was the dominant species found in MM (but absent in the BA samples), is known 395 

to perform a B12-independent glycerol-oxidative pathway leading to primarily butyric acid. This 396 

might have contributed to the higher butyric acid production in MM, which reached a maximum of 397 

56.2% in MM-24h (Figure 5a). Moreover, the higher butyric acid production was also associated to 398 

a higher abundance of Delftia, which reached a maximum of 7.70% and 15.55% in MM-12h and 399 

MM-24h respectively, compared to 2.01 % and 2.48% of BA-12h and BA-24h. Interestingly, even 400 
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though butyric acid was the dominant metabolite in BA-24h (D20 and D53), 1,3 PDO become 401 

dominant during the steady state also in this case. 402 

[Insert Figure 4] 403 

PCA was performed (taking into consideration the variability of relative abundance of microbial 404 

genera, together with the relative abundance of the main metabolites distribution, expressed in %) in 405 

order to further investigate the relationships between the microbial groups and the metabolic 406 

pathways (Fig. 6). The analysis was performed considering both, MM and BA experiments, at the 407 

end of fermentation, and showed a correlation between the genera Blautia and Lactobacillus 408 

together with the higher production of 1,3 PDO. PCA also confirmed the correlation of butyric (and 409 

succinic) acid with Unclassified genera (which might explain why it was so difficult to correlate 410 

butyric acid production to any of the dominant genera), and partially also to Citrobacter, 411 

Lysinibacillus and Delftia. Finally, the analysis also showed that there was a clear negative 412 

correlation between the 1,3 PDO and butyric acid pathway. Similar results were obtained also in the 413 

case of activated sludge.  414 

3.5.2 Molecular characterization of the MMCs during CSTR operations using enriched activated 415 

sludge  416 

A more complex situation could be observed with activated sludge MMCs (compared to the 417 

anaerobic sludge), during the whole fermentation process (Figure 4b). Nonetheless, similarly to the 418 

anaerobic sludge, there was a dominance of bacteria belonging to the phylum Firmicutes (51.9%), 419 

followed by Proteobacteria (34.4%). More in detail, Bacteroidales, together with Flavo- and 420 

Sphingobacteriales tended to disappear in MM-KC, with an increase in Enterobacteriales (with the 421 

genera Klebsiella, Enterobacter and Erwinia), Lactobacillales (with Lactobacillus) and 422 

Pseudmonadales (with the genus Pseudomonas). In the case of MM-EF there was a reduction of 423 

Enterobacteriales, with a concomitant increase in Clostridiales, which became dominant (89.4%). 424 
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BA-KC, on the other hand, showed to a drastic decrease of Clostridiales and an increase in 425 

Enterobacteriales (with increase of the genera Enterobacter, Trabulsiella, Klebsiella, Citrobacter 426 

and Acinetobacter) and Pseudomonadales (with Pseudomonas and Stenotrophobacter). In general, 427 

MM-KC and BA-KC seemed to favor Enterobacteriales and Pseudomonadales (compared to the 428 

EF). Finally, BA-EF showed a relatively more stable evolution, except for a descrease in 429 

Clostridiales (with Clostridium decreasing from 27.23% to 17.58%) and increase in Unclassified 430 

Operational Taxonomic Units (OTUs) (with an increase of unclassified genera from 8.28% to 431 

33.27%) after 30 days; notably this was associated to an inversion of the main metabolites, with a 432 

decrease of butyric acid, thus making 1,3 PDO the dominant metabolite in BA-EF-D30 (with 433 

45.41%; Figure 5b). Blautia decreased from initial 21.61% to 12.95%. All the other genera showed 434 

a very low relative abundance.  435 

Overall, Clostridium represented the main genus (with an average relative abundance of 33.87%), 436 

followed by Unclassified genera (15.65%), Escherichia, (4.76%), Enterobacter (4.16%), Blautia 437 

(4.13%), Lactobacillus (3.86%) and Pseudomonas (3.5%). 438 

[Insert Figure 5] 439 

Despite some general trends that could be observed, it was not always possible to clearly associate 440 

the dominance of certain OTUs to the distribution of the main metabolites. This might be due to the 441 

fact that in MMCs cross-feeding mechanisms can lead to the consumption of certain metabolites 442 

[51] and production of new ones (also by non-dominant species, which can have a significant effect 443 

despite their low abundance [52]). Moreover, this might also imply that metagenomics analysis 444 

alone is probably not sufficient to comprehensively describe all microbial interactions and the effect 445 

on the distribution of metabolites, due for instance to functional redundancies in the microbial 446 

community. Thus, additional information would probably be necessary. Similar conclusions were 447 

found in recent studies, that highlighted how high-throughput sequencing on its own is probably not 448 
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sufficient to track temporal and special population dynamics, while a combination of high-449 

throughput sequencing with quantitative PCR analysis to measure total bacterial abundance would 450 

be advisable [51]. Similarly, the study by Moscoviz and colleagues showed that no direct 451 

correlation could be found between main metabolites (i.e. 1,3 PDO) and specific families of 452 

bacteria [47]. Thus, the development of advanced models, such as microbial interaction networks, 453 

would be helpful in interpreting such connections and might also provide novel insight in bioreactor 454 

control [53]. 455 

3.6 Kinetic characterization of MMCs 456 

After reaching steady state, the MMC were used as inoculum for kinetic experiments in batch.  457 

Typical trend of the cumulative hydrogen production, microbial growth and substrate degradation 458 

curve can be found in Figure S4. As can be seen in Table 4, the batch experiments showed 459 

comparable results to those obtained in continuous (paragraph 3.4) in terms of distribution of 460 

electron fraction (fe and fs) for anaerobic and activated sludge, with an fe of 0.88 ± 0.02 and 0.84 ± 461 

0.02, respectively. Also the biomass yield was in good agreement with the CSTR results, with 0.06 462 

± 0.02 g/g obtained with anaerobic sludge and 0.05 ± 0.01 g/g with activated sludge. On the other 463 

hand, differently from the continuous operations, the batch tests showed incomplete substrate 464 

degradation in 5 of the 8 batch experiments, with a residual glycerol concentration of about 3.36 ± 465 

0.31 g/L in the three activated sludge MMC and 6.60 ± 2.15 g/L in the two anaerobic sludge MMC 466 

(see Table 4). Among the MMC with complete substrate degradation, maximum growth rate (µmax) 467 

was highest in BA-12h (even though on average there was no significant difference between 468 

activated and anaerobic sludge, with a µmax of 0.11 ± 0.05 h-1 and 0.08 ± 0.02 h-1 respectively; P-469 

value = 0.538), thus making it a better candidate for low RT in CSTR operations. Moreover, ethanol 470 

turned out to be one of the main soluble metabolites (in good agreement with previous results in 471 

batch conditions [10]), while it was hardly detected in continuous operations, underlining how the 472 
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different operation modes can significantly influence the metabolic pathway, irrespectively of the 473 

inoculum origin. In anaerobic sludge the main metabolites were represented by 1,3 PDO (0.57 - 474 

4.61 g/L) followed by ethanol (0.26 – 1.47 g/L), butyric acid (0.07 - 1.08 g/L), acetic acid (0.05 - 475 

0.77 g/L) and hydrogen (7.55 – 110.0 mL). Similar distribution was observed in the case of 476 

activated sludge, with 1,3 PDO (1.20 -3.66 g/L) followed by ethanol (0.17 - 2.03 g/L), butyric acid 477 

(0.26 – 0.54 g/L), acetic acid (0.02 – 0.66 g/L) and hydrogen (52.28 – 179.7 mL).  478 

[Insert Table 4] 479 

Average carbon recovery (Rc) at the end of fermentation reached 98.30 ± 3.02 %. It is noticeable 480 

that the fs values obtained in batch experiments (0.14 ± 0.03) were comparable with those obtained 481 

in their continuous counterparts (0.12 ± 0.04). In fact, the two-tail T-test (paired two samples for 482 

means) showed a P-value of 0.547, while the Shapiro-Wilks test did not reject normality (decision 483 

level at 5%). This means that the percentage of the carbon of the substrate that is directed towards 484 

metabolites was similar to that under continuous operating conditions.  485 

3.7 Improved CSTR operations 486 

Based on the results obtained from the kinetic characterization of the MMC, together with the 487 

productivity and yields of the steady states, BA-12h was chosen as the best candidate for further 488 

studies. In fact, besides having the highest µmax among the MMC with complete substrate 489 

degradation, BA-12h also showed maximum yields and productivities for 1,3 PDO (while butyric 490 

acid, the second most abundant metabolite, showed comparably modest results at steady state in all 491 

cases). In this experimentation, the ability of the selected MMC to withstand increasing crude 492 

glycerol concentrations was tested, in order to verify the efficacy of the enrichment and enhance the 493 

viability of the process. In fact, even though the MMC adaptation allowed working with non-494 

pretreated crude glycerol, tests were performed at a concentration of approximately 10 g/L, up to 495 
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that point. Moreover, based on µmax obtained through the kinetic experiments, it was decided to test 496 

an HRT of 6 h, in order to further investigate the potential of the selected MMC. 497 

It is worth noting that BA-12h was able to grow for four days on crude glycerol with feed 498 

concentrations up to almost 90 g/L, with an RT of 12h (see Figure 7a). This means that the reactor 499 

was fed at high substrate concentration for 8 RTs (which should be considered enough to establish a 500 

steady state), showing however a residual glycerol concentration of 46.5 g/L. High degradation 501 

efficiency was observed when using a feed up to 50-60 g/L (while pure strains tested were not able 502 

to grow even at 10 g/L, without glycerol pretreatment). After two days of feeding with 60 g/L, 503 

residual glycerol was about 3.75 g/L, with a conversion of more than 94%. Maximum productivities 504 

reached 37.8 g/L/d and 11.14 g/L/d for 1,3 PDO and butyric acid, respectively, together with a 505 

substrate degradation rate of 110.44 g/L/d of glycerol. This corresponded respectively to a 2.9-fold, 506 

3.7-fold and to a 3.9-fold increase, compared to the initial results obtained with BA-12h (see Table 507 

2). Moreover, the selected MMC was also able to efficiently grow with an HRT of 6 h, using a feed 508 

concentration of up to 35 g/L of glycerol (Fig 7b). However, when further increasing the feed 509 

concentration to 42 g/L, there was a cells loss (up to 30% of biomass) and only 18% of the substrate 510 

was converted (with a residual glycerol concentration of up to 34.26 g/L), thus suggesting the need 511 

for a fine control of operating parameters. Comparable results were obtained by Chatzifragkou and 512 

colleagues, who reached a maximum productivity of 45 g/L/d PDO (with an RT of 12,5 h), while 513 

finding non-negligible amounts of residual glycerol inside the chemostat [54].  514 

Highest final concentrations of 1,3 PDO production (from non-GMO) reported in international 515 

literature are usually ranging between 30 and 80 g/L, using various strains (i.e. Klebsiella 516 

pneumoniae, Clostridium butyricum, etc.) and in some cases also mixed cultures, both in sterile and 517 

non-sterile experiments [54–57]. These results were typically obtained in batch/fed-batch conditions 518 

using vegetable oil derived glycerol. Furthermore, high PDO productivities were obtained in CSTR 519 
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experiments in sterile conditions, while butyric acid production was usually low. Papanikolaou and 520 

colleagues [39] for instance, reported a maximum PDO productivity of 130 g/L/d, using a 521 

Clostridium butyricum strain grown on industrial glycerol, while even higher productivities (from 522 

105 g/L/d  - 240 g/L/d) were obtained with pure glycerol [58,59].    523 

It is worth noting that the use of different crude glycerol types as substrate will obviously lead to the 524 

presence of different contaminants. This can lead to growth-restrictive conditions for some 525 

microorganisms, depending on the origin of the feedstock [54] as well as transesterification process 526 

used to produce biodiesel. Content of unsaturated free-fatty acids (FFAs), i.e., were reported to have 527 

a noticeable negative effect on cell growth, requiring pretreatment with non-polar solvents to 528 

remove FFAs and fatty acids methyl esters (FAMEs) from crude glycerol, to allow microbial 529 

growth comparable to pure glycerol [57]. For this reason, some authors consider the results obtained 530 

with different raw glycerol stocks hardly comparable [60]. The crude glycerol utilized in the present 531 

study, for example, was obtained from the transesterification of butchery waste, which resulted to 532 

be a very challenging substrate. Non-adapted anaerobic sludge was quickly inhibited (while pure 533 

strain of Clostridium pasteurianum did not grow at all, unless hexane-pretreated glycerol was used 534 

[10]. On the other hand it would be highly desirable to valorize a residue coming from a 2G 535 

biodiesel, as recommended by the EU Renewable Energy Directive 2009/28/EC. Nonetheless, only 536 

extremely few studies investigated the use of this type of substrate so far [10,61,62]. For this reason 537 

it was considered of strategic importance to develop an adapted mixed culture able to grow on non-538 

treated (2G) crude glycerol, in a stable fermentation process. 539 

On the other hand, also the type of fermentation used can have a significant effect on the process 540 

performances. For industrial fermentation applications, for instance, fed-batch culture can be often 541 

preferred over batch or continuous culture, mainly owing to the higher product concentration and 542 

yield that can be achieved, as well as the flexibility of fermentation operation and reduced chance of 543 



24 
 

contamination (compared to continuous operations) [63]. This means that, while batch and fed-544 

batch processes (which last relatively short) can provide similar performance in sterile and non-545 

sterile conditions, it is much more challenging to keep such performances in non-sterile CSTR 546 

processes (which are supposed to last much longer). In fact, the contamination risk of glycerol 547 

degrading (non-extremophilic) bioprocess is known to increase as low-grade raw glycerol fraction, 548 

more complex medium and/or continuous mode of fermentation are being used [60]. An example is 549 

provided by the study of Chatzifragkou and colleagues [54], that tested the stability of a CSTR 550 

process, using Clostridium butyricum under non sterile conditions: even though the system was able 551 

to run at steady state for 16 days (corresponding to 23 retention times), a degeneration of the culture 552 

was observed after 21 days, with biomass and PDO concentrations tending to decline, accordingly 553 

with rise of residual glycerol inside the chemostat.  554 

The present study confirmed the possibility to developing a stable and continuous conversion of a 555 

highly inhibiting crude glycerol stream in non-sterile, MMC-based CSTR operated at a steady state 556 

for up to 116 RT in the case of BA-12h (and 166 RT with MM-12h). Even though the results 557 

achieved in the present work are lower than the highest ones reported in literature the process has 558 

the potential to be optimized for higher productivities and products concentrations. Further research 559 

could therefore target optimization of key parameters, in order to further enhance productivities and 560 

substrate conversion rates, while avoiding washout of cells, when working with higher feed 561 

concentrations coupled with low RTs. 562 

4. CONCLUSIONS  563 

All reactors were able to reach steady state in the tested conditions with most of them exhibiting 564 

highly efficient substrate degradation (98.29 - 100%). Clostridium represented the dominant genus, 565 

however the different Mixed Microbial Cultures differed in terms of sub-dominant Operational 566 

Taxonomic Units. 1,3 PDO was the main metabolite in steady state, followed by butyric acid 567 
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(which showed better results in non-steady state experiments). Further tests have shown that it was 568 

possible to grow the adapted MMC on animal fat derived crude glycerol with feed concentrations 569 

up to almost 90 g/L, with a substrate conversion of almost 50%. Maximum productivity was 570 

obtained with 60 g/L feed at 12h RT, and reached 37.8 g/L/d for 1,3 PDO and 11.14 g/L/d for 571 

butyric acid (corresponding to a 2.9-fold, 3.7-fold increase, compared to the initial results), together 572 

with a substrate degradation rate of 110.44 g/L/d, in non-sterile conditions.  573 
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Figures Captions 766 

 767 

Figure 1. Scheme of the reactor system used for CSTR experiments. 768 

Figure 2. Percentages and distribution of the main fermentation products obtained during steady 769 

state, with enriched anaerobic sludge (a) and enriched activated sludge (b). Activated sludge was 770 

run at 12h RT. 1,3 PDO = 1,3 Propanediol; BuA = Butyric acid; PA = Proprionic acid; AA = Acetic acid; 771 

EtOH = Ethanol; SA = Succinic acid; VA = Valeric acid. 772 

Figure 3. Production yield of the main metabolites recorded during steady state, using enriched 773 

anaerobic sludge (a) and enriched activated sludge (b). The latter was run at 12h RT. Yields < 0.02 774 

g/g are not reported. 1,3 PDO = 1,3 Propanediol; BuA = Butyric acid; PA = Propionic acid; AA = Acetic 775 

acid. 776 

Figure 4 Metagenomic classification of enriched anaerobic sludge (a) and enriched activate sludge 777 

(b) MMCs at different time intervals, represented at the Genus (left) and Order level (right). D0-D81 778 

= day 0 – day 81 of operation (with D0 taken prior to inoculation). 779 

Figure 5. Distribution of the main soluble metabolites (in %) measured at the same time interval of 780 

the metagenomics analysis, using anaerobic sludge (a) and activated sludge (b). Metabolites < 2% 781 

are not reported. D0-D81 = day 0 – day 81 of operation (with D0 taken after inoculation). 1,3 PDO = 1,3 782 

Propanediol; BuA = Butyric acid; PA = Propionic acid; AA = Acetic acid; EtOH = Ethanol; SA = Succinic 783 

acid; VA = Valeric acid; LA = Lactic acid.  784 

Figure 6. Principal component analysis for anaerobic sludge, taking into consideration the relative 785 

abundance of microbial genera and main metabolites. Samples were taken at the end of 786 

fermentation. Similar results were obtained also with activated sludge. 787 
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Figure 7. Distribution of main metabolites and substrate conversion, under increasing feed 788 

concentrations, at 12 RT (A) and 6 RT (B). Batch start-up was performed with 20 g/L glycerol 789 

concentration. 790 

 791 

 792 

Tables Captions 793 

Table 1. Substrate conversion and biomass obtained during steady state with different enriched 794 

inocula (standard deviation < 10%). Activated sludge was run at 12h RT. 795 

Table 2. Consumption of substrate and production rates of the main metabolites (> 0.3 g/L/d) 796 

recorded during steady state, using different enriched inocula. Activated sludge MMCs (MM-KC, 797 

MM-EF, BA-KC and BA-EF) were run at 12h RT. 798 

Table 3. Stoichiometric coefficients for the overall stoichiometric reactions for the CSTR 799 

operations at steady state. 800 

Table 4. Stoichiometric coefficients for the overall stoichiometric reactions for the kinetic batch 801 

experiments. 802 

803 



37 
 

Figures and Tables 804 

 805 

Figure 1. 806 

 807 

 808 

  809 



38 
 

 810 

Figure 2. 811 
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Figure 3 816 
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Figure 4. 819 
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Figure 6. 828 
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 835 

Table 1.  836 

   Gly cons. Residual Gly Substr. Degr. TSM TSM yield Biomass  Y x/s  

Inoculum  g/L g/L % g/L % g/L  g/g 

Anaerobic sludge        

MM-12h  12.83 0.05 ± 0.03 99.58 8.08 62.96 0.82 ± 0.10 0.064 

MM-24h  12.51 0.21 ± 0.09 98.29 8.40 67.15 0.66 ± 0.06 0.053 

BA-12h  12.88 0.00 ± 0.00 100.0 8.90 69.11 0.74 ± 0.09 0.057 

BA-24h  12.76 0.12 ± 0.29 99.05 7.87 61.70 0.84 ± 0.36 0.066 

Activated sludge        

MM-KC  10.13 0.14 ± 0.04 98.64 6.65 65.66 0.33 ± 0.04 0.033 

MM-EF  6.46 3.66 ± 0.86 63.82 4.02 62.17 0.23 ± 0.03 0.036 

BA-KC  10.39 0.01 ± 0.03 99.87 6.70 64.47 0.55 ± 0.02 0.053 

BA-EF  10.60 0.08 ± 0.15 99.26 6.15 58.00 0.69 ± 0.06 0.065 

Gly cons. = glycerol consumed; TSM = total soluble metabolites; Substr. Degr. = susbstrate degradation; Y x/s = biomass yield. 837 
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Table 2.  840 

Rates A n a e r o b i c      S l u d g e A c t i v a t e d       S l u d g e  
  MM-12h  MM-24h  BA-12h  BA-24h  MM-KC MM-EF BA-KC BA-EF 
1,3 PDO (g/L/d) 9.78 ± 0.72 5.42 ± 0.51 12.89 ± 0.81 5.17 ± 0.37 8.88 ± 0.43 2.65 ± 0.25 6.50 ± 0.91 5.99 ± 0.65 

Butyric acid (g/L/d) 4.51 ± 1.15 1.99 ± 0.28 3.09 ± 0.92 1.41 ± 0.16 2.48 ± 0.60 1.10 ± 0.16 3.72 ± 0.47 3.82 ± 0.30 

Propionic acid (g/L/d) 0.66 ± 0.09 0.33 ± 0.20 0.74 ± 0.57 0.88 ± 0.17 0.80 ± 0.16 0.14 ± 0.04 2.06 ± 0.29 0.52 ± 0.08 

Acetic acid (g/L/d) 0.65 ± 0.07 0.28 ± 0.08 0.67 ± 0.84 0.21 ± 0.03 0.65 ± 0.16 0.00 ± 0.00 0.90 ± 0.06 1.27 ± 0.25 

Hydrogen (mL/L/d) 7.11 ± 5.40 0.26 ± 0.32 18.17 ± 12.95 6.97 ± 4.45 0.89 ± 0.11 594 ± 95.54 0.35 ± 0.03 51.15 ± 50.80 

RGly (g/L/d) 20.28 ± 0.37  7.48 ± 0.69 20.78 ± 0.94 21.18 ± 0.58 25.66 ± 1.05 12.54 ± 1.37 25.77 ± 0.98 12.76 ± 1.29 

RGly = Substrate degradation rate841 
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Table 3. 842 

per mol glycerol Reactants 

 

Products   Electron fractions Rc 

  Glycerol HCO3
- NH4

+ → H2 BuA AA 1,3 PDO PA EtOH CO2 H2O C5H7O2N   fe fs % 

Anaerobic Sludge 

                

 

MM-12h 1.00 0.10 0.10 

 

0.00 0.18 0.04 0.46 0.03 0.02 0.28 1.09 0.10 

 

0.86 0.14 100.7 

MM-24h 1.00 0.05 0.05 

 

0.01 0.16 0.03 0.52 0.03 0.03 0.30 0.89 0.05 

 

0.92 0.08 103.3 

BA-12h 1.00 0.06 0.06 

 

0.00 0.12 0.04 0.60 0.02 0.00 0.30 0.87 0.06 

 

0.91 0.09 100.6 

BA-24h 1.00 0.12 0.12 

 

0.00 0.11 0.02 0.49 0.08 0.00 0.27 1.14 0.12 

 

0.82 0.17 101.8 

Activated Sludge 

                

 

MM-KC 1.00 0.07 0.07 

 

0.00 0.13 0.06 0.53 0.04 - 0.27 0.96 0.07 

 

0.90 0.10 102.4 

MM-EF 1.00 0.10 0.10 

 

0.00 0.17 0.03 0.55 0.00 - 0.42 0.62 0.10 

 

0.91 0.09 100.0 

BA-KC 1.00 0.12 0.12 

 

0.00 0.19 0.15 0.38 0.05 - 0.20 1.15 0.12 

 

0.84 0.15 99.4 

BA-EF 1.00 0.13 0.13   0.02 0.19 0.04 0.34 0.07 - 1.29 0.25 0.13   0.81 0.19 100.5 

Metabolites with values < 0.015 not reported. Activated sludge experiments were all run at 12 h RT. 1,3 PDO = 1,3 Propanediol; BuA = Butyric acid; PA = Propionic acid; AA = Acetic acid; EtOH = ethanol; 843 

C5H7O2N = empirical formula of biomass; Rc = Carbon recovery. 844 

 845 
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Table 4.  846 

per mol glycerol Reactants 

 

Products El. fractions   µmax  Y x/s  Rc 

  Glycerol HCO3
- NH4

+ → H2 BuA AA 1,3 PDO LA EtOH C5H7O2N CO2 H2O fe fs   (h-1) (g/g) % 

Anaerobic Sludge 

                 

 

MM-12h  * 1.00 0.09 0.09  0.03 0.22 0.01 0.37 0.02 0.100 0.09 0.32 1.09 0.86 0.13  0.08 0.06 96.1 

MM-24h  * 1.00 0.06 0.06  0.01 0.27 0.00 0.24 0.07 0.193 0.06 0.31 1.06 0.91 0.09  0.07 0.08 101.0 

BA-12h 1.00 0.08 0.08 

 

0.03 0.01 0.12 0.55 0.02 0.170 0.08 0.33 0.83 0.88 0.12 

 

0.11 0.05 94.1 

BA-24h 1.00 0.08 0.08 

 

0.03 0.01 0.11 0.53 0.03 0.214 0.08 0.34 0.80 0.89 0.11 

 

0.08 0.04 94.2 

Activated Sludge 

      

 

MM-KC  * 1.00 0.13 0.13 

 

0.55 0.08 0.01 0.33 0.03 0.238 0.13 0.56 0.82 0.82 0.18 

 

0.06 0.04 100.0 

MM-EF   * 1.00 0.12 0.12 

 

0.77 0.04 0.00 0.17 0.05 0.458 0.12 0.69 0.66 0.82 0.18 

 

0.11 0.03 100.7 

BA-KC 1.00 0.12 0.12 

 

0.56 0.03 0.05 0.28 0.00 0.413 0.12 0.62 0.72 0.83 0.17 

 

0.08 0.05 100.0 

BA-EF    * 1.00 0.09 0.09   0.26 0.05 0.15 0.54 0.04 0.072 0.09 0.36 0.78 0.87 0.13   0.17 0.05 100.5 

* = incomplete substrate degradation; BuA = Butyric acid; AA = Acetic acid; 1,3 PDO = 1,3 Propanediol; LA = Lactic acid; EtOH = ethanol; ; C5H7O2N = empirical formula of biomass; Rc = Carbon recovery.  847 
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Table S 1. Crude glycerol characteristics [8]. 

Content Typical values 

Raw Glycerine 75% 

Fat 10% 

Methanol < 1% 

Sulphur 1-2% 

Moisture 10% 

Ash 5% 

Density 1,2-1,3 Kg/L 

pH 1.5  

 

 

 



 

Figure S1. Typical distribution of main metabolites during CSTR experiments, using enriched anaerobic 
sludge with BA medium at HRT 24h (37 °C, pH 5.5).  

 

  



 

 

Figure S2. Distribution of main metabolites during CSTR experiments, using BA-KC (enriched activated 
sludge) at 12 h HRT (37 °C, pH 5.5).     

 

 

  



 

Figure S3. Correlation between measured and calculated biomass (g/L) of steady state CSTR experiments, 

with activated sludge (a) and anaerobic sludge experiments (b). 

 

  



 

 

Figure S4. Example of kinetic experiments (here represented by MM-KC), showing (from left to 
right) the cumulative hydrogen production, microbial growth curve (as TSS) and substrate 
degradation, in two replicates (I and II).  

  



Table S 2. Carbon balance of the CSTR experiments. 

  Activated Sludge   Anaerobic Sludge 
Carbon balance MM-KC MM-EF BA-KC BA-EF 

 
MM-12h MM-24h BA-12h BA-24h 

  Cmol Cmol Cmol Cmol   Cmol Cmol Cmol Cmol 
Acetic acid 0.0266 0.0047 0.0687 0.0165 

 
0.0218 0.0112 0.0223 0.0070 

Butyric acid 0.1126 0.0504 0.1691 0.1666 
 

0.2049 0.1100 0.1404 0.0640 
Ethanol 0.0000 0.0000 0.0000 0.0133 

 
0.0101 0.0113 0.0000 0.0000 

Butanol 0.0000 0.0000 0.0486 0.0453 
 

0.0000 0.0000 0.0000 0.0000 
1.3 PDO 0.3499 0.1085 0.2563 0.2270 

 
0.3856 0.2607 0.5084 0.2037 

Lactic acid 0.0000 0.0033 0.0030 0.0133 
 

0.0000 0.0000 0.0000 0.0000 
Succinic acid 0.0000 0.0000 0.0000 0.0000 

 
0.0011 0.0136 0.0049 0.0053 

Propionic scid 0.0262 0.0000 0.0000 0.0000 
 

0.0269 0.0165 0.0151 0.0270 
Valerate acid 0.0116 0.0000 0.0000 0.0000 

 
0.0000 0.0000 0.0000 0.0000 

Isobutyric acid 0.0099 0.0000 0.0000 0.0000 
 

0.0000 0.0000 0.0000 0.0000 
C5H7O2N 0.0779 0.0235 0.1224 0.1505 

 
0.1365 0.0472 0.0857 0.0846 

CO2 0.0607 0.0245 0.0046 0.0341 
 

0.0551 0.0428 0.0676 0.0316 
Sum 0.6755 0.2149 0.6726 0.6667 

 
0.8420 0.5133 0.8444 0.4232 

Gly consumpt. 0.6599 0.2150 0.6769 0.6636 
 

0.8359 0.4969 0.8394 0.4158 

          Rc (%) 102.4 100.0 99.4 100.5   100.7 103.3 100.6 101.8 
C5H7O2N = biomass; Gly consumpt. = Glycerol consumption; Rc = carbon recovery. 
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