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Abstract 17 

A multitude of recent studies have documented the detrimental effects of crude oil exposure on 18 

early life stages of fish, including larvae and embryos. While polycyclic aromatic hydrocarbons 19 

(PAHs), particularly alkyl PAHs, are often considered the main cause of observed toxic effects, 20 

other crude oil derived organic compounds are usually overlooked. In the current study, 21 

comprehensive two-dimensional gas chromatography coupled to mass spectrometry was 22 

applied to investigate the body burden of a wide range of petrogenic compounds in Atlantic 23 

haddock (Melanogrammus aeglefinus) and cod (Gadus morhua) embryos that had been 24 

exposed to sublethal doses of dispersed crude oil. Several groups of alkylated monoaromatic 25 

compounds (e.g. alkyl tetralins, indanes and alkyl benzenes), as well as highly alkylated PAHs, 26 

were found to accumulate in the fish embryos upon crude oil exposure. To investigate the 27 

toxicity of the monoaromatic compounds, two models (1-isopropyl-4-methyltetralin and 1-28 

isopropyl-4-methylindane) were synthesized and shown to bioaccumulate and cause delayed 29 

hatching in developing embryos. Minor developmental effects, including craniofacial and jaw 30 

deformations and pericardial edemas, were also observed at the highest studied concentrations 31 

of the alkylindane. 32 

 33 

Capsule: Crude oil derived monoaromatic hydrocarbons accumulate in fish early life stages and 34 

may contribute to overall toxicity. 35 

 36 

Keywords: Dispersed crude oil, monoaromatic compounds, fish early life stages, Atlantic 37 

haddock, Atlantic cod 38 

39 
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1 Introduction 40 

As oil exploration is moving further north, and closer to shore, there is a demand to produce 41 

accurate and relevant risk assessment models for future oil spills (Misund and Olsen, 2013). The 42 

Lofoten-Vesterålen area off the Norwegian coast is an important spawning ground for many 43 

economically and ecologically important fish species, such as the Atlantic cod (Gadus morhua) 44 

and haddock (Melanogrammus aeglefinus) (Caroll and Smit, 2011; Vikebø et al., 2014). 45 

Developing adequate risk assessment tools for evaluating the potential impact of oil exploration 46 

in these sensitive areas has become an important focus (Caroll and Smit, 2011; Hjermann et al., 47 

2007; Vikebø et al., 2014). In the aftermath of major spill events, such as the Exxon Valdez spill 48 

in the Prince William Sound in 1989 and the Deepwater Horizon event in the Gulf of Mexico in 49 

2010, the detrimental impact of crude oil pollution on early life stages (ELS) of marine fish has 50 

received much attention (Beyer et al., 2016). The development of good impact models for the 51 

effects of spilled crude oil on ELS of cold water marine fish requires additional empirical data, 52 

especially on bioaccumulation and critical body burdens of a wider range of oil compounds 53 

(Olsen et al., 2013). 54 

 55 

The main toxic responses observed in crude oil exposed fish ELS include mortality, cardiotoxicity 56 

and morphogenetic defects (Brette et al., 2014; Incardona and Scholz, 2016; Sørhus et al., 57 

2015a), but the toxicological mechanisms are still not fully understood. Previously, it was 58 

believed that only water-soluble oil constituents were responsible for crude oil toxicity toward 59 

fish ELS (Barron et al., 2004; Carls et al., 2008; Nordtug et al., 2011b; Wu et al., 2012). However, 60 

new observations suggest that the presence of crude oil droplets leads to more severe effects 61 

than if only the water-soluble fraction (WSF) is present (González-Doncel et al., 2008; Khursigara 62 

et al., 2017). Recently, it was established that the Atlantic haddock is particularly sensitive to 63 

dispersed crude oil (Sørhus et al., 2015a; Sørhus et al., 2016). It was hypothesized that this was 64 

caused by direct interaction with crude oil droplets adhering to the chorion of the exposed 65 

embryos, causing a secondary exposure pathway (Hansen et al., 2018) by allowing direct 66 

transfer of crude oil compounds from the droplets to the eggs. This way, water solubility 67 

becomes less important for bioavailability and significant accumulation of high log KOW 68 
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compounds becomes feasible. This secondary pathway has been demonstrated to cause 69 

increased internal body burden of embryotoxic PAHs and alkyl PAHs in haddock eggs (Sørensen 70 

et al., 2017), leading to much more severe effects than in similarly exposed cod eggs that are 71 

less affected by oil adhesion (Hansen et al., 2018).  72 

 73 

The novel indications of potential whole crude oil contribution to embryotoxicity, furthermore 74 

raises the question about the contribution to toxic response from other petrogenic compounds, 75 

beyond the well-studied PAHs (Hodson, 2017). Alkylated monoaromatic compounds, which are 76 

abundant in crude oils (Booth et al., 2007), have comparable molecular weights and water 77 

solubilities to 3-4 ring alkylated PAHs (Smith et al., 2001), and therefore might be expected to 78 

follow similar uptake pathways in fish embryos. Available literature on the toxicity of crude oil 79 

derived monoaromatic compounds is limited. Studies have revealed that alkyl tetralins and 80 

indanes are acutely toxic to the mussel Mytilus edulis (Booth et al., 2008; Donkin et al., 2003; 81 

Smith et al., 2001), but there is no available literature on the toxicity (chronic or acute) of 82 

monoaromatic compounds to fish ELS. 83 

 84 

The aim of the current study was to investigate the potential for accumulation and toxicity of 85 

currently overlooked petrogenic compounds toward fish ELS. Focus was given to monoaromatic 86 

compounds in the size range of 3-4 ring PAHs. In a non-targeted approach, two-dimensional gas 87 

chromatography coupled to time-of-flight mass spectrometry (GCxGC-MS) was applied to 88 

resolve and identify the complex mixtures of crude oil constituents accumulating in cod and 89 

haddock eggs exposed to dispersed crude oil. Two model monoaromatic compounds (1-90 

isopropyl-4-methyltetralin and 1-isopropyl-4-methylindane) were synthesized and their 91 

accumulation and toxicity to haddock ELS was evaluated in comparison with a known 92 

embryotoxic PAH (phenanthrene). 93 

 94 

 95 
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2 Materials and methods 96 

 Chemical and materials 2.197 

Certified standard solutions (100-1000 µg/mL) of n-alkanes (C14-32), pristane, phytane, PAHs, 98 

alkylated PAHs, heteroaromatics and deuterated PAHs were purchased from Chiron AS 99 

(Trondheim, Norway). Phenanthrene (>98 % purity) was purchased from Sigma-Aldrich. 100 

Cyclohexylbenzene was purchased from Acros Organics. Linear and branched alkyl benzenes 101 

were supplied by Chevron Oronite (Levallois-Perret Cedex, France). C10-11 branched alkyl 102 

tetralins and indanes were prepared as described by Booth et al. (2008). The deuterated 103 

internal standards used as surrogate spike during extractions comprised naphthalene-d8, 104 

biphenyl-d8, acenaphtylene-d8 or acenapthene-d10, anthracene-d10 or phenanthrene-d10, 105 

pyrene-d10 or chrysene-d12, perylene-d12 and indeno[1,2,3-cd]pyrene-d12. All solvents were 106 

of analytical grade and purity was tested before use.  107 

 108 

 Synthesis of C4 substituted branched alkylindane and tetralins 2.2109 

The syntheses methods were based upon cerium chloride-promoted Grignard additions of 110 

isopropyl magnesium bromide to 4-methyltetralone or 3-methylindanone. Cerium III chloride 111 

heptahydrate was supplied by Sigma (UK). All solvents were supplied by Rathburn (UK). Briefly, 112 

for the reaction with the indanone: cerium chloride (2.5 g) was added to dry magnesium 113 

turnings (1.7 g) in dry ether. 2-bromopropane (6.8 g) was added slowly with mild heating. On 114 

completion of the reaction, 3-methylindanone (1 g) was added in dry ether after cooling the 115 

mixture (ice). After stirring for a further 3h the solution was very cautiously worked up with wet 116 

ether and saturated ammonium chloride (1.05 g crude product; 81 %). For the tetralone: cerium 117 

chloride (5.3 g) was added to dry magnesium turnings (3.02 g) in dry ether. 2-bromopropane 118 

(15.4 g) was added slowly with mild heating. On completion of the reaction, 4-methyltetralone 119 

2.5 g) was added in dry ether after cooling the mixture (ice). After stirring for a further 3h, the 120 

solution was worked up with wet ether and saturated ammonium chloride (2.71 g crude 121 

product; 85 %). The resultant crude alcohols (also containing alkenes resulting from 122 

spontaneous dehydration during work-up) were dehydrated with pyridine/POCl3 and purified 123 
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from the other products in the crude mixture by column chromatography. The purified alkenes 124 

were hydrogenated to the hydrocarbons with either palladium on carbon or Adam’s catalysts 125 

(supplied by BDH Chemicals). The hydrocarbons, 1-isopropyl-3-methylindane and 1-isopropyl-4-126 

methyltetralin were assigned by GC-MS (Table S1) and 1-isopropyl-4-methyltetralin also by 1H 127 

and 13C NMR spectroscopy (data not shown).  128 

 129 

 Animal husbandry and exposure regime 2.3130 

2.3.1 Exposure of cod and haddock eggs to dispersed crude oil 131 

Fertilized Atlantic cod and haddock eggs were collected from brood stocks kept at the Austevoll 132 

Research station (Institute of Marine Research, Bergen, Norway), and maintained in incubators 133 

at 7±1 °C until transfer to exposure tanks. At 1 day post fertilization (dpf), approximately 12,000 134 

eggs were transferred into circular exposure tanks (50 L) of green PE plastic (giving an initial 135 

biomass loading of 0.4-0.5 g/L). The flow through of the tanks was 32 L/hour, and the water 136 

temperature was 7±1 °C. The light regime for the exposure tanks was 12 hours light; 12 hours 137 

dark with 30 min smooth transitions between light and dark. The light source was broad 138 

spectrum 2x36 W Osram Biolux 965 dimmable fluorescent light tubes (Munich, Germany, 139 

www.osram.com). 140 

 141 

The crude oil used in the exposure was a laboratory weathered crude oil blend from the 142 

Heidrun oil field in the Norwegian Sea (Sørensen et al., 2017). The oil exposure system is 143 

thoroughly described elsewhere (Nordtug et al., 2011a), and oil exposure was performed as 144 

described previously (Sørensen et al., 2017; Sørhus et al., 2015a). In the current study, cod eggs 145 

exposed to nominal concentrations of 600 µg/L oil and haddock eggs exposed to 300 µg/L oil 146 

(both with droplets present and the water-soluble fraction alone) was examined. Oil droplets 147 

were in the size range 10-30 µm. To create the water soluble-fraction (WSF), the 300 µg/L 148 

dispersion was filtered through a custom-made filter containing fine glass wool over a Whatman 149 

GF/F glassfiber filter (Whatman Ltd., Maidstone, UK) with nominal particle retention of 0.7 µm. 150 

To prevent clogging, the filter was replaced every 24 hours. The WSF exposure conditions were 151 

otherwise identical to the oil droplet exposures. All exposure experiments were stopped when 152 
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50 % hatching of embryos was observed. This happened at 12 dpf (11 days of exposure) for cod 153 

and 11 dpf (10 days of exposure) for haddock. Tissue samples (pooled 0.1-1 g eggs) were 154 

collected from all exposure groups and controls after nine days of exposure, quickly rinsed in 155 

clean seawater to eliminate any free oil droplets from the sample and examined under the 156 

microscope to eliminate dead and damaged eggs from the sample. At day 10 (during hatching), 157 

100 individual un-hatched haddock eggs were sampled, and the chorions and embryos manually 158 

separated using tweezers to be analyzed separately. The samples were preserved by flash-159 

freezing in liquid nitrogen and stored at -80 °C until further handling. 160 

 161 

2.3.2 Exposure of haddock embryos to phenanthrene and monoaromatic compounds 162 

Accumulation and toxicity studies of the two synthesized monoaromatic compounds and 163 

phenanthrene were performed using a passive dosing system. AlteSil® translucent Silicone 164 

Cords (1 mm diameter, 64 cm length) were loaded with the test compounds (1-isopropyl-4-165 

methyltetralin, 1-isopropyl-4-methylindane or phenanthrene) from methanol using a method 166 

adapted from Vergauwen et al. (2015). Briefly, pre-cleaned silicone cords were loaded by 167 

partitioning in methanol solution for 72 hours, followed by repeated partitioning in new 168 

methanol solution for 24 hours. Methanol solution concentrations are given in Table S2. Loaded 169 

silicone cords were rinsed in MilliQ-water three times, followed by equilibration in 80 mL 170 

seawater over 48 hours in glass vials. Both loading and equilibration took place at the exposure 171 

temperature (8 °C). Viable (n=250, biomass loading 6 g/L) embryos were transferred to the vials 172 

at 3 dpf. The exposure temperature was 8 ± 1 °C with a light regime of 12 hours light:12 hours 173 

dark.  After 72 hours exposure, samples were removed for body burden analysis and remaining 174 

live eggs were transferred to filtered (0.22 µm Sterivex®) seawater for development and 175 

hatching. Mortality and hatching success were recorded daily and dead eggs or larvae removed. 176 

Videos and images of hatched larvae at 3 days post hatching (dph) were taken through a 177 

microscope (Eclipse 80i, Nikon Inc., Japan) equipped with a CMOS camera (MC170HD, Leica 178 

Microsystems, Germany). All imaged larvae were analyzed for segmented body length, body 179 

area, eye diameter, jaw length and eye-to-forehead distance (myotome height) using ImageJ 180 

(Schneider et al., 2012). Morphological abnormalities (jaw deformations, craniofacial 181 
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deformations, pericardial edema, spine deformations, abnormal pigmentation) were 182 

determined according to a severity degree scale (0-3 where 0 is normal, 1 is minor deformation, 183 

2 is moderate deformation and 3 is severe deformation; Sørhus et al. (2015b), examples are 184 

given in Figure S10.). Heart rate measurements was performed on videos. All image analysis was 185 

performed 'blinded', on randomized samples. 186 

 187 

 Chemical analysis 2.4188 

2.4.1 Extraction and purification of fish egg samples 189 

Extraction of tissue samples was performed as described by Sørensen et al. (2016). After 190 

addition of surrogate standards (100 ng/g sample), the samples were homogenized in n-hexane-191 

dichloromethane (DCM) (1:1 v/v, 3 mL), followed by addition of Na2SO4, vortex extraction and 192 

centrifugation. The supernatant was collected, and the extraction repeated twice. The 193 

combined organic extract was concentrated to approximately 1 mL prior to clean-up by either 194 

silica solid phase extraction (SPE) columns as described by Sørensen et al. (2016) (haddock eggs 195 

exposed to single compounds) or by gel permeation chromatography (GPC) (haddock and cod 196 

eggs exposed to crude oil). The GPC clean-up was optimized to remove the largest lipid 197 

molecules, such as triacylglycerols (TAG), phospholipids (PL) and cholesterol, while leaving a 198 

larger fraction of crude oil compounds in the extracts. The separation was achieved using an 199 

Agilent 1220 Infinity series LC with Waters Envirogel GPC columns (300 x 19 mm) coupled to a 200 

diode array detector (DAD) for retention time monitoring. DCM was used as mobile phase at a 201 

flow rate of 5 mL/min.  Standards of TAG, PL, cholesterol, PAHs and a haddock egg lipid extract 202 

(method of Folch et al. (1957)) spiked with PAHs, were used to optimize the GPC. The method 203 

was calibrated first with a GPC standard made of soy oil (high content of TAG) spiked with 2-6 204 

ring PAHs (Meier et al., 2005). Standards of cholesterol and phospholipids extracted from 205 

herring roe were also analyzed to determine their elution range. Then the method was applied 206 

to a lipid extract of haddock eggs prepared as described by Sørensen et al. (2016). Fractions of 207 

the eluent were collected and characterized by thin layer chromatography, as described 208 

previously (Meier et al., 2006; Olsen and Henderson, 1989; Sørensen et al., 2016). For sample 209 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

clean-up, 900 µL samples were injected and the PAH fraction collected from 10-14 minutes. The 210 

collected fractions were concentrated by solvent evaporation (Turbovap LV) prior to analysis. 211 

 212 

2.4.2 Extraction of water samples 213 

During the cod and haddock exposure studies, water samples (1 L) were taken from each 214 

exposure tank at the beginning, during and at the end of each experiment (total three samples). 215 

The samples were acidified (HCl, pH<2) and stored dark and cool (4 °C) until further handling. 216 

For characterization of the exposure during the haddock egg passive dosing study, water 217 

samples (1 mL) were taken on day 0, 1, 2 and 3 of exposure. Deuterated internal standards were 218 

added prior to extraction to account for analyte loss during extraction. The samples were 219 

extracted three times by partitioning to solvent (30 mL DCM for 1 L samples, 1 mL 1:1 DCM:n-220 

hexane for 1 mL samples) and dried with Na2SO4. The sample volume was adjusted by gentle 221 

evaporation prior to GC-MS or GC-MS/MS analysis.  222 

 223 

2.4.1 GC-MS 224 

The GC-MS system for analysis of passive dosing water samples comprised an Agilent 7890A GC 225 

and an Agilent 5975 C MS fitted with a DB5 MS UI column (30 m x 0. 25 mm x 0.25 μm). The 226 

carrier gas was helium, at a constant flow of 1 mL/min. Samples (1 µL) were injected in pulsed 227 

splitless mode at 250 °C. The oven was held at 40 °C (1 min), ramped by 40 °C/min to 120 °C, by 228 

15 °C/min to 300 °C, and finally by 40 °C/min to 320 °C (7 min hold). The transfer line 229 

temperature was 300 °C. The MS was operated at 70 eV in selected ion monitoring (SIM) mode 230 

with the ion source at 230 °C and the quadrupole at 150 °C. The analytes were identified by 231 

their molecular ion. Quantification was based on average response factors relative to internal 232 

standard fluorene-d10.  233 

 234 

2.4.2 GC-MS/MS 235 

An Agilent 7890 gas chromatograph with an Agilent 7010 triple quadrupole mass spectrometer 236 

fitted with an EI source and collision cell was used for analysis of body burden samples and oil 237 

exposure water samples (Agilent Technologies, Santa Clara, CA, USA). Two Agilent J&W DB-5MS 238 
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UI GC-columns (15 m × 0.25 mm x 0.25 µm) were coupled in series through a purged ultimate 239 

union (PUU). The carrier gas was helium at constant flow of 1.2 mL/min. For analysis of PAHs 240 

from crude oil exposures, the oven was held at 60 °C for 1 min, then ramped to 120 °C by 40 241 

°C/min and finally ramped to 310 °C at 5 °C/min. For analysis of 1-isopropyl-4-methyltetralin and 242 

1-isopropyl-4-methylindane in passive sampling egg tissue samples, the oven was held at 60 °C 243 

for 1 min, ramped to 120 °C by 40 °C/min, and then ramped to 310 °C at 5 °C/min. The 244 

temperature was held at 310 °C for 5 minutes, while the first column was back-flushed. The ion 245 

source temperature was 230 °C and the quadrupole temperature was 150 °C. N2 was used as 246 

collision gas (1.5 mL/min) and helium was used as a quench gas (4 mL/min). Phenanthrene and 247 

deuterated PAHs were identified by two unique multiple reaction monitoring (MRM) transitions 248 

and quantified by the most intense peak (Sørensen et al., 2016). 1-isopropyl-4-methyltetralin 249 

was identified by transitions 145-91 (CE 25 eV) and 188-145 (CE 10 eV) and quantified by the 250 

former. 1-isopropyl-4-methylindane was identified by transitions 131-91 (CE 20 eV) and 174-91 251 

(CE 40 eV) and quantified by the former. 252 

 253 

2.4.3 GCxGC-MS 254 

Analysis of tissue samples by GCxGC-MS was performed using an Agilent 7890A GC (Agilent 255 

Technologies, Wilmington, DE) interfaced with a Zoex ZX2 GCxGC cryogenic modulator and an 256 

Markes/Almsco Bench Tofdx™ Time of Flight MS. The first-dimension column was a 100% 257 

dimethyl polysiloxane (60 m x 0.25 mm x 0.25 μm) Rxi®-1ms, and the second-dimension column 258 

was a 50% phenyl polysilphenylene siloxane (2.5 m x 0.25 mm x 0.25 μm) BPX50. Helium carrier 259 

gas was used and was kept at a constant flow rate of 1.0 mL/min and samples were injected (1 260 

µL) into a 250 °C splitless inlet. The temperature of the first oven was held 35 °C for 1 min, 261 

ramped by 5 °C/min to 120 °C, then by 2 °C/min to 280 °C, finally by 5 °C/min to 320 °C and held 262 

for 10 min. The temperature of the second oven was constantly offset by +50 °C and the hot jet 263 

pulse by +70 °C from oven 1. The modulation times were 4 or 6s. MS parameters were as 264 

follows: ionization energy 70 eV, scan speed 50 Hz, scan range m/z 50-550. The MS transfer line 265 

temperature was 300 °C and the ion source temperature was 250 °C. Data were collected in 266 

ProtoTof and processed using GC Image v2.3. Representative standards of different compound 267 
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groups were run to verify retention times. Quantification was achieved using ChromSpace 268 

software (provided by Markes International Limited, Llantrisant, Wales, UK), by use of linear 269 

regression of responses measured as volumes.  270 

 271 

 Statistical analyses  2.5272 

Statistical analyses were conducted using R software (R Development Core Team, 2008). 273 

Comparisons between treatments were made using the non-parametric Kruskal-Wallis test 274 

followed by Dunn's multiple comparison test for larvae deformation severity data and one-way 275 

ANOVA followed by Tukey’s multiple comparisons test for heart rate and biometric data. 276 

Significance level was set at p < 0.05. 277 

 278 

 Ethics statement 2.6279 

All methods were performed in accordance with approved guidelines. Embryos and larvae were 280 

frozen in liquid nitrogen immediately upon sampling. The Austevoll Aquaculture Research 281 

station has permissions for catch and maintenance of Atlantic cod and haddock given by the 282 

Norwegian Directorate of Fisheries. Austevoll Research station has a permit to run as a Research 283 

Animal facility using all developmental stages of fish, with code 93 from the Norwegian Animal 284 

Research Authority; NARA. 285 

 286 

 287 

3 Results and discussion 288 

The aim of the current study was to investigate the potential for accumulation and toxicity of 289 

currently overlooked petrogenic compounds toward fish ELS. There is a need for a better 290 

understanding of which oil compounds are responsible for the severe detrimental effects on 291 

developing fish. It is crucial that the most toxic oil compounds are included in risk assessment 292 

models. Today the main focus is on the PAHs and there is no doubt that the petrogenic PAHs are 293 

toxic to fish ELS (Hodson et al., 2007),  but PAHs alone far from explain the observed effects 294 

after an oil spill (Barron et al., 1999). In the current study, comprehensive two-dimensional gas 295 
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chromatography (GCxGC) was used to elucidate potential bioaccumulating oil compounds fish 296 

eggs. Focus was given to monoaromatic compounds in the size range of 3-4 ring PAHs. 297 

 298 

 GPC clean-up of fish egg extracts 3.1299 

To serve the study aim of non-target screening of a potentially large range of crude oil derived 300 

compounds, the clean-up protocol applied needed to be as non-discriminating as possible. 301 

Nonetheless, as previously shown, the lipid contents in fish eggs present analytical challenges if 302 

not effectively removed (Sørensen et al., 2016). Gel permeation chromatography (GPC) was 303 

applied, since this technique has the ability to separate compound groups based on size (as 304 

opposed to chemical properties such as polarity and functionalization), and its applicability 305 

toward isolating polar and semi-polar compounds relevant to crude oil has been shown 306 

previously (Meier et al., 2005). Significant lipid classes present in cod and haddock eggs include 307 

triacylglycerols (TAG), several classes of phospholipids (PL), cholesterol and free fatty acids (FFA) 308 

(Bachan et al., 2012; Salze et al., 2005; Sørensen et al., 2016). Initial tests of the method showed 309 

that TAGs eluted at 7 mins, while 2-6 ring PAHs eluted in the range 11-13 mins (Fig. S1). 310 

Cholesterol eluted at approximately 9.5-10 minutes. The method was then applied to an extract 311 

of haddock eggs (Fig. S2). Fractions of the eluent were collected and characterized qualitatively 312 

by thin layer chromatography (Table S3), which confirmed that TAGs and most PLs eluted in the 313 

earliest fractions. Most crude oil compounds eluted in the fraction collected from 10-14 minutes 314 

(Fig. S3). Some break-through of cholesterol and free fatty acids (particularly tetradecanoic, 315 

hexadecenoic and octadecanoic acids) was observed when the samples were analyzed by 316 

GCxGC-MS. However, their presence did not compromise the analysis, because their retention 317 

positions were well separated from those of any compounds of interest. 318 

 319 

 Accumulation of monoaromatic and polyaromatic hydrocarbons in crude-oil exposed 3.2320 

fish eggs 321 

It was previously determined that crude oil droplets adhere to a greater extent on the chorion 322 

of haddock eggs than cod eggs (Hansen et al., 2018; Sørensen et al., 2017). It was furthermore 323 
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revealed that the adhered droplets on the haddock chorion lead to a significant increase in the 324 

portion of PAHs and alkyl PAHs that accumulated in the internal embryo, compared to the non-325 

fouled cod eggs or haddock eggs exposed only to the WSF of oil. The observed increased 326 

internal PAH body burden was also correlated to increased toxicological response. However, 327 

PAHs only comprise 0.1-1 % of most crude oils (Bence et al., 1996), and there is a plethora of 328 

less characterized groups of compounds that might be of toxicological interest. Therefore, in the 329 

present study, the aim was to identify other crude oil compounds that also accumulate in fish 330 

embryos during oil exposure, with and without oil droplets adhering to the chorion. Confirming 331 

the visual observation of crude oil droplets on the haddock eggs, GCxGC chromatograms of oil 332 

exposed (and fouled) eggs showed a similar chromatographic profile to those of crude oil 333 

samples, although the egg samples were depleted in the most volatile crude oil compounds (Fig. 334 

S4). Compounds considered too large to partition through the chorion and thus likely originating 335 

from the adhered oil droplets, such as large alkanes, large cycloalkanes and some petroleum 336 

biomarker compounds (e.g. hopanes), were identified in these chromatograms (Fig. S5). These 337 

compounds were not detected in either control samples, samples of cod eggs, or WSF exposed 338 

haddock eggs. To investigate the partitioning of compounds into the embryo, it was necessary 339 

to de-chorionate the eggs prior to analysis (Sørensen et al., 2017), in order to analyze the 340 

chorion and embryo separately. Through this analysis, it was confirmed that the larger, oil-341 

related, compounds remained on the chorion. Alkanes, large cyclic alkanes and petroleum 342 

biomarkers (e.g. hopanes) were observed in samples of the entire haddock egg and separated 343 

chorion, but not in the separated embryos.  344 

 345 

A range of monoaromatic compounds was tentatively identified in both the WSF and oil droplet 346 

exposed haddock and cod embryos. The structures of the observed compounds were partially 347 

elucidated by co-injection of authentic compounds, and comparison of the two-dimensional 348 

retention positions and mass spectra of these and the unknowns. Among the identified 349 

compound groups were C5-10 alkylbenzenes, C1-2 cyclohexylbenzenes, C0-5 alkyltetralins and 350 

alkylindanes. Comparison of GCxGC retention times in first and second dimension with those of 351 

co-injected authentic compounds is shown for alkylnaphthalenes, alkyltetralins, 352 
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cyclohexylbenzenes and alkylbenzenes in Fig. S6. A comparison between mass spectra of the 353 

putative alkyltetralins observed in samples and the mass spectra of alkyltetralins available in a 354 

NIST library is shown in Table S4. Although the obtained mass spectra gave indications of the 355 

alkylation pattern in the petrogenic tetralins, the availability of only a few synthetic compounds 356 

meant that identification of specific isomers was not possible in the current study.  357 

 358 

Due to their previously demonstrated toxic potential of these two compound groups (Booth et 359 

al., 2008), focus was given to the determination of the accumulation and toxicity of 360 

alkyltetralins and indanes in the current study. Fig. 1 shows an example of the elution pattern of 361 

possible C4-alkyltetralins (molecular ion m/z 188) found both on the the oil-exposed haddock 362 

chorion and inside the embryo following oil exposure. For comparison, the same is shown for C0-363 

3 phenanthrenes. C4-alkyltetralins have molecular weights in the same range as some alkylated 364 

phenanthrenes, but are more hydrophobic. It is therefore plausible that the bioaccumulation 365 

potential of these compounds is high when fish eggs are exposed to crude oil droplets. By co-366 

injection with the synthesized C4-alkyltetralin and indanes (Table S1), it was possible to obtain 367 

semi-quantitative uptake data for identified peaks in the haddock chorion and embryo samples 368 

(Fig. 2). Six C4-alkylindanes were tentatively identified, of which five were quantifiable in both 369 

chorion and embryo samples. Seven C4-alkyltetralins were tentatively identified, of which six 370 

were quantifiable in the chorion sample and one was quantifiable in the embryo sample (Fig. 2). 371 

 372 

An interesting and unexpected phenomenon was the selective accumulation of certain isomers 373 

of each (C1-3) alkyl phenanthrene groups in the embryo (for instance 4/9-methyl-subsituted 374 

phenanthrene), whereas the profile of alkyl phenanthrenes on the chorion was similar to that of 375 

the crude oil (Fig. 1). Rather than being caused by selective partitioning through the chorion, it 376 

is hypothesized that the phenomenon is caused by a reduced potential for biotransformation of 377 

certain sterically-hindered isomers. Less pronounced differences were observed for the 378 

alkyltetralins (Fig. 1), and this emphasizes the need for further investigations into the effects of 379 

accumulated monoaromatic compounds in fish ELS. 380 

 381 
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 Uptake and toxicity of monoaromatic compounds in haddock embryos 3.3382 

Since several C4-alkyltetralins and indanes were observed in the cod and haddock embryos, two 383 

monoaromatic compounds (1-isopropyl-4-methyltetralin and 1-isopropyl-4-methylindane) were 384 

synthesized for the purpose of performing controlled bioconcentration and toxicity studies. 385 

Phenanthrene was also included in these studies and used as a 'positive' control for known 386 

accumulation and effects (Incardona et al., 2004). The preparation of solutions aimed for 387 

maximum solubility in seawater at the experimental temperature (8 °C), and two dilutions. 388 

Samples for egg tissue analysis were taken after three days of exposure. The accumulated body 389 

burden is shown in Fig. 3. Compared to observed body burden of comparable compounds after 390 

nine days crude oil exposure (shown in Fig. 3 of Sørensen et al. (2017)), these levels are much 391 

higher (ng/embryo rather than pg/embryo), reflecting the individual compounds exposure 392 

levels.  393 

 394 

In the oil exposure studies (Sørensen et al. (2017), haddock embryos were exposed to 300 µg 395 

oil/L and the body burdens of C4-tetralin (0.02 ng/embryo), C4-indane (0.05 ng/embryo) and 396 

phenanthrene (0.02 ng/embryo) were 600-3000 times lower compared with the highest dose of 397 

single compound exposures in the current study; 1-isopropyl-4-methyltetralin (24 ng/embryo), 398 

1-isopropyl-4-methylindane (32 ng/embryo), phenanthrene (63 ng/embryo). The oil exposed 399 

embryos were severely damaged (corresponding to a malformation degree of 3 or worse, Fig. 400 

5), while in the single compound exposure, similar severe malformation was only observed in 401 

the high dose phenanthrene. It should be mentioned that due to the differences in both 402 

exposure system and time, the body burden levels cannot be compared directly between the 403 

two studies.  Nevertheless, the differences in body burden suggest that these three single 404 

compounds we have tested cannot be expected to contribute strongly to the very severe 405 

toxicity that are observed in the oil exposed embryos. Oil exposures are extremely complex and 406 

the high embryotoxicity is expected to be a result of additive effects (and possibly synergistic 407 

effects) of many compounds. (Hodson, 2017). 408 

 409 
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Compared to obtained water concentrations of each test compounds (Fig. S7), the 410 

bioconcentration of the three studied compounds are similar (log BCF ~ 2.6-2.8). Due to 411 

differences in obtained water concentration (lower for the monoaromatics compounds), the 412 

maximum body burden obtained is also lower in the monoaromatic exposed eggs, so the lowest 413 

dose phenanthrene body burden (24 ng/embryo) is comparable to the high dose body burden 414 

of alkyltetralin (24 ng/embryo) and alkylindane (33 ng/embryo). This should be kept in mind 415 

when evaluating the toxicity endpoints. 416 

 417 

No clear dose-response relationship of mortality was observed during the single compound 418 

exposure study. Heart rate measurements revealed increased heart rate relative to controls 419 

(seawater and non-loaded silicone) in exposures with alkylindane and phenanthrene, but not 420 

with alkyltetralin (Fig. S8). Hatching was delayed relative to controls in all exposures, and the 421 

delay is linked to both compound and concentration (Fig. 4). Biometric measurements in 422 

hatched larvae (3 dph) revealed developmental abnormalities (reduced body and jaw length, as 423 

well as reduced eye diameter) only in embryos exposed to phenanthrene at the two higher 424 

concentrations (Fig. S9), while significant craniofacial deformations, jaw deformations and 425 

pericardial edema was observed also for embryos exposed to the two highest doses of 1-426 

isopropyl-4-methylindane (Fig. 5). In the high dose phenanthrene (85±16 µg/L; 33±2 mg/kg body 427 

burden) nearly all larvae were severely malformed.  428 

 429 

The effects doses in haddock embryo found for phenanthrene in this study are comparable with 430 

what has been reported in zebrafish. Vergauwen et al. (2015) found acute mortality at 310 µg/L 431 

(LC50; 120 h) (measured body burden of 485 mg/kg) and sublethal effects (malformation) at 52 432 

µg/L (37 mg/kg body burden).  Butler et al. (2016) found similar dose thresholds for acute (334 433 

µg/L, LC50; 120 h) and delayed (44 µg/L LC10; 30 days) mortality in zebrafish. The acute toxicity 434 

data from the zebrafish studies fits well with the model for base-line toxicity of nonpolar 435 

organics (Butler et al., 2016). To compare data from the current study to literature values, we 436 

re-calculated the obtained concentrations from ng/embryo to mmol/kg (haddock egg wet 437 

weight was determined 1.9 mg/egg). The tissue concentrations in the current study are below 438 
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concentrations expected to cause acute (narcosis) effects (<0.2 mmol/kg compared to 2-8 439 

mmol/kg) (McCarty and Mackay, 1993). 440 

 441 

Crude oil toxicity in fish ELS at environmental relevant concentration are most often associated 442 

with delayed mortality (not acute toxicity). The developing heart has been identified as the 443 

primary target of crude oil developmental toxicity (Incardona, 2017; Incardona and Scholz, 444 

2016). Exposure during key periods of embryonic heart development leads to a gradient of oil 445 

exposure phenotypes that is concentration-dependent and ranges from outright heart failure 446 

with accumulation of edema fluid to more subtle heart malformation. At the high end of this 447 

gradient, irreversible heart failure leads to a cascade of secondary effects from loss of 448 

circulation and accumulation of edema fluid, resulting in gross spinal and craniofacial 449 

abnormalities (Sørhus et al., 2017; Sørhus et al., 2016). At this level of severity, affected fish 450 

have jaw deformities and reduced swimming that preclude feeding, and they die as larvae 451 

(Hicken et al., 2011; Incardona et al., 2013). In the present study all the larvae with 452 

malformation severity degree 2 and 3 (Fig 5, Fig. S10) can be considered to be ecologically dead; 453 

they will not have the ability to catch and eat prey either due to destroyed jaws or disrupted 454 

swimming behavior. The damaged larvae will be easy prey to natural predators. 455 

 456 

Three-ring PAHs, like phenanthrene, are proven to induce cardiotoxicity in fish embryos  (Brette 457 

et al., 2017; Incardona et al., 2004). However, as shown in the current study, single compound 458 

exposure of phenanthrene requires more than thousand times higher exposure dose to 459 

generate the same severe malformation in haddock embryo as what is observed in oil exposure 460 

studies. While the crude oil exposures are very complex, severe malformations of fish larvae 461 

was found in oil exposed embryos at only 3.5 µg total PAH/L exposure concentration 462 

(corresponding to 3.3 ng total PAH/embryo body burden) (Sørensen et al. (2017)). In the current 463 

study, phenanthrene only gave similar toxic response at a dose of 85 µg/L (63 ng/embryo body 464 

burden). This strongly suggests that other compounds than PAHs also contribute to toxicity in 465 

the oil exposed embryos.  466 

 467 
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Based on the current study and the combined research knowledge available, it is proposed that 468 

all future crude oil bioaccumulation studies take advantage of the resolution power offered by 469 

GCxGC, preferably in combination with high-resolution mass spectrometry for identification of 470 

peaks. Knowledge obtained regarding bioaccumulation potential of several petrogenic 471 

compound groups should then be combined with targeted effects-directed chemical 472 

fractionation of oil, to allow better understanding of which compound groups and what mixture 473 

are driving the toxicity in towards fish ELS. Furthermore, it is suggested that more attention is 474 

given to the potential toxic effects of metabolites of PAHs and other oil compounds. It is thus a 475 

need for developing more sensitive methodologies for analyzing metabolites in small biogenic 476 

samples, such as fish ELS. 477 

 478 

 479 

4 Conclusion 480 

In this study, several groups of petrogenic monoaromatic compounds were identified in cod and 481 

haddock embryos after exposure to dispersed crude oil. Although the toxicity of these 482 

compounds has been evaluated in only a limited number of studies, they have been proven 483 

detrimental to marine species. To investigate the potential toxicity of such compounds to fish 484 

embryos, two monoaromatic compounds (1-isopropyl-4-methyltetralin and 1-isopropyl-4-485 

methylindane) were synthesized and subjected to haddock embryo toxicity assay using passive 486 

dosing as an exposure pathway. Although the monoaromatic compounds were observed to 487 

have comparable bioconcentration factors to phenanthrene, the total uptake was lower, due to 488 

the lower concentrations which could be solubilized in seawater by passive dosing. The 489 

monoaromatic compounds caused dose-dependent delayed hatching in the exposed embryos. 490 

Small, but statistically significant effects, including craniofacial and jaw deformations and 491 

pericardial edemas, were also observed at the highest doses of 1-isopropyl-4-methylindane. The 492 

results of the current study suggest a need for more research on the sublethal effects of 493 

monoaromatic compounds toward fish ELS. This would require additional work on identifying 494 

and synthesizing relevant compounds of interest. Of particular interest, would be the study of 495 

possible synergistic effects of co-exposure of monoaromatic compounds and PAHs. 496 
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Fig. 1 GCxGC-chromatograms of whole egg, chorion and embryo tissue samples of crude oil 644 
exposed haddock. The x-axis (RT1) shows relative retention times in the first dimension 645 
(apolar), while the y-axis (RT2) show relative retention times in the second dimension (polar). 646 
Circled are extracted peaks for m/z 178, 192, 206 and 220 (molecular masses of C0-C3-647 
phenanthrenes) as well as extracted peaks for m/z 188 (molecular mass of C4-tetralins) in 648 
haddock eggs, haddock egg chorion, and haddock embryo separated from the chorion. 649 
 650 

Fig. 2 C4-indanes and C4-tetralins measured in embryo and chorion samples of crude oil 651 
exposed haddock eggs (nine days exposure). 652 
 653 

Fig. 3 Body concentrations of phenanthrene (PHE), 1-isopropyl-4-methyltetralin (TET), and 1-654 
isopropyl-4-methylindane (IND) during passive dosing exposure at three different doses. 655 
Concentrations in seawater (SW) and silicone controls (Sil Ctrl) samples are shown as 656 
reference. Error bars represent standard deviation (n=3). 657 
 658 

Fig. 4 Cumulative hatching success (% of embryos surviving to hatch that hatched and at what 659 
day of development) of embryos exposed to phenanthrene (PHE), 1-isopropyl-4-660 
methyltetralin (TET) and 1-isopropyl-4-methylindane (IND) at three different doses, viewed 661 
relative to seawater (SW) and silicone controls (Sil ctrl). 662 
 663 

Fig. 5 Deformation severities in larvae 3 days post hatching after embryonic exposure to 664 
phenanthrene (PHE), 1-isopropyl-4-methyltetralin (TET) and 1-isopropyl-4-methylindane (IND) 665 
at three different doses plotted as a function of measured body burden (ng/embryo) and 666 
viewed relative to pure seawater (SW) and silicone controls (Sil Ctrl). Error bars represent 667 
standard error of the mean. Images of a control larvae is provided on top, and examples of 668 
larvae with different degrees of deformation severities (1, 2 and 3, bottom to top) is provided 669 
on the right side of each graph (1 mm scale bar indicated). Statistical differences between sea 670 
water controls and exposed fish (N=31-67 for different groups), using the non-parametric 671 
Kruskal-Wallis test, are given as *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.   672 
 673 
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 674 

Fig. 1 GCxGC-chromatograms of whole egg, chorion and embryo tissue samples of crude oil 675 
exposed haddock. The x-axis (RT1) shows relative retention times in the first dimension 676 
(apolar), while the y-axis (RT2) show relative retention times in the second dimension (polar). 677 
Circled are extracted peaks for m/z 178, 192, 206 and 220 (molecular masses of C0-C3-678 
phenanthrenes) as well as extracted peaks for m/z 188 (molecular mass of C4-tetralins) in 679 
haddock eggs, haddock egg chorion, and haddock embryo separated from the chorion. 680 
 681 

 682 
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 683 

 684 

Fig. 2 C4-indanes and C4-tetralins measured in embryo and chorion samples of crude oil 685 
exposed haddock eggs (nine days exposure). 686 
 687 

 688 

Fig. 3 Body concentrations of phenanthrene (PHE), 1-isopropyl-4-methyltetralin (TET), and 1-689 
isopropyl-4-methylindane (IND) during passive dosing exposure at three different doses. 690 
Concentrations in seawater (SW) and silicone controls (Sil Ctrl) samples are shown as 691 
reference. Error bars represent standard deviation (n=3). 692 
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 693 

 694 

Fig. 4 Cumulative hatching success (% of embryos surviving to hatch that hatched and at what 695 
day of development) of embryos exposed to phenanthrene (PHE), 1-isopropyl-4-696 
methyltetralin (TET) and 1-isopropyl-4-methylindane (IND) at three different doses, viewed 697 
relative to seawater (SW) and silicone controls (Sil ctrl). 698 
 699 
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 700 

Fig. 5 Deformation severities in larvae 3 days post hatching after embryonic exposure to 701 
phenanthrene (PHE), 1-isopropyl-4-methyltetralin (TET) and 1-isopropyl-4-methylindane (IND) 702 
at three different doses plotted as a function of measured body burden (ng/embryo) and 703 
viewed relative to pure seawater (SW) and silicone controls (Sil Ctrl). Error bars represent 704 
standard error of the mean. Images of a control larvae is provided on top, and examples of 705 
larvae with different degrees of deformation severities (1, 2 and 3, bottom to top) is provided 706 
on the right side of each graph (1 mm scale bar indicated). Statistical differences between sea 707 
water controls and exposed fish (N=31-67 for different groups), using the non-parametric 708 
Kruskal-Wallis test, are given as *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.   709 
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Highlights 

• Monoaromatic compounds were found to accumulate in crude oil exposed haddock and cod 

embryos 

• Two model compounds were synthesized and bioconcentration and toxicity tested using 

passive dosing 

• Monoaromatic compounds displayed sublethal toxicity towards haddock embryos 


