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A B S T R A C T

Lagrangian particle models are used for many applications in the ocean sciences, including transport modelling
of oil spills, fish eggs and larvae, plastics, and sediment particles. In the context of oil spill modelling, there are
numerous papers discussing entrainment of surface oil by breaking waves. However, for the opposite process,
i.e., droplets reaching the surface and joining the surface slick, we have found no discussion in the literature of
the exact steps involved. Given the wide use of particle-based models in oil spill modelling, it is important to
establish a consistent recipe for treating the surface boundary.

We investigate a Lagrangian particle model for the vertical transport, surfacing and resuspension of buoyant
material in the water column. By modifying the behaviour at the surface boundary, the model can be applied to
materials such as oil droplets, that form a surface slick, and hence see the surface as an absorbing boundary, and
to particles that do not form a surface slick, such as fish eggs and microplastics. For slick-forming materials, we
also consider resuspension from the surface slick, (e.g., entrainment of surface oil by breaking waves). While we
restrict our attention to positively buoyant materials, the model is equally applicable to the settling of negatively
buoyant particles, such as sediment grains and marine snow.

We consider three case studies, each designed to allow a detailed and direct comparison of the Lagrangian
model to an Eulerian model based on numerical solution of the advection-diffusion-reaction equation. We de-
monstrate that the two models give the same results when the boundary at the surface is treated correctly.

1. Introduction

Lagrangian transport models are commonly used in many areas of
ocean-related science, including the modelling of oil spills (Dagestad
et al., 2018; De Dominicis et al., 2013; French-McCay, 2009; García-
Martínez and Flores-Tovar, 1999; Mariano et al., 2011; Reed et al.,
2000), microplastics (Ballent et al., 2013), ichtyoplankton (Castano-
Primo et al., 2014; Fox et al., 2009; Thygesen and Ådlandsvik, 2007),
fish eggs (Röhrs et al., 2014), and mineral particles (Gräwe and Wolff,
2010). The relative simplicity of the core Lagrangian particle scheme
makes it attractive for numerical applications, however, there are sev-
eral subtle points which must be carefully addressed in oceanic appli-
cations (Brickman and Smith, 2002; Ross and Sharples, 2004; van
Sebille et al., 2018). For example, common to all of these applications is
that the models must correctly treat the boundaries at the sea surface
and the seabed. Furthermore, in the case of spatially variable diffusion,

which is usually the case in the ocean, care must be taken to avoid
numerical artefacts that result from a naïve formulation of random walk
(Hunter et al., 1993; Visser, 1997).

In the field of numerical oil spill modelling, it has long been re-
cognised that the vertical distribution of oil is of paramount im-
portance. This includes both the vertical distribution of submerged oil,
and the distinction between surface oil and submerged droplets. One of
the earliest works treating an oil spill as a three-dimensional process is
that of Elliott (1986). Elliott described the elongation of an oil slick in
the direction of the wind, attributing the effect to vertical current shear,
and also formulated a three-dimensional random-walk based particle
model. While that model allowed sufficiently large oil droplets to re-
main at the surface, as their rise due to buoyancy would always dom-
inate over the random displacement due to diffusion, it did not include
a slick formation process or a separate surface state.

Since Elliott (1986), much has been written about natural
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entrainment, i.e., the process where surface oil is submerged as droplets
due to dissipation of surface gravity waves. Several different models
have been developed for both the rate of entrainment and the resulting
droplet size distribution (see, e.g., Delvigne and Sweeney (1988),
Johansen et al. (2015), Li et al. (2017)). However, less has been said
about the opposite process, i.e., oil droplets reaching the surface due to
buoyancy and merging with a surface slick. Reviews of the field, such as
Spaulding (1988), ASCE (1996), Reed et al. (1999), and Spaulding
(2017) all discuss entrainment of surface oil and vertical transport and
mixing of droplets, but contain no details of the surfacing process. In
the context of Eulerian models, surfacing is discussed by, e.g., Tkalich
and Chan (2002), but to the best of our knowledge, a complete de-
scription of the steps involved in calculating surfacing in a particle-
based oil spill model has not been published.

In the current paper, we provide a direct comparison between the
Lagrangian particle scheme, and an Eulerian model based on the ad-
vection-diffusion-reaction (ADR) equation, focusing particularly on the
treatment of the surface. To this end, we provide a detailed description
of a Lagrangian particle model for the vertical mixing, transport and
surfacing of oil droplets in the water column, as well as the vertical
mixing and transport of non-slick-forming particles such as fish eggs
and microplastics. For the case of oil droplets, we also include re-
suspension from the surface slick into the water column, which can for
example be caused by breaking waves. We then formulate an equivalent
Eulerian model, based on the ADR equation, with appropriate boundary
conditions. While we consider positively buoyant material throughout
this paper, the formulated models and the results are equally applicable
to settling, and optionally resuspension, of negatively buoyant particles.

We consider three case studies, which are designed to allow a direct
comparison of the Lagrangian and Eulerian schemes. For each case, we
provide details of all the steps involved in the Lagrangian particle
model, and a complete description of an equivalent Eulerian scheme
with specific boundary conditions. We then demonstrate that we obtain
the same results with the two models.

The layout of the paper is as follows: In the following section
(Section 2) we describe the system to be studied, i.e., buoyant material
in the water column, and how this material may or may not form a
continuous slick at the surface, and how a continuous slick may be
resuspended as droplets due to breaking waves. We then formulate two
models for this system, a Lagrangian model based on particles subjected
to buoyant rise, random walk and resuspension, and an Eulerian model
based on the ADR equation. In Section 3 we consider three different
case studies, and present the results of simulating all three cases with
both models. Section 4 contains a discussion of the way we have chosen
to treat the boundary, both for the Lagrangian and Eulerian schemes.
Finally, in Section 5, we provide some concluding remarks. The Ap-
pendices expand on some of the technical details of solving the ADR
equation numerically, and on the choice of numerical parameters for
the particle model.

2. Models for buoyant material in the water column

We consider a system where some buoyant material (e.g., micro-
plastics, fish eggs or oil droplets) is dispersed in the water column. We
will only consider transport in the vertical direction, treating the water
column as a one-dimensional system, and we consider positively
buoyant particles rising at their terminal velocity.

The main source of vertical mixing in the ocean is turbulent diffu-
sion, which is orders of magnitude greater than molecular diffusion
(Tennekes and Lumley, 1972). Vertical turbulent diffusion is usually
described by an eddy diffusivity profile, here denoted as K(z), which
gives the diffusivity as a function of depth. Eddy diffusivity profiles can,
for example, be obtained from ocean models (e.g., ROMS1), from

specialised turbulence models (e.g., GOTM2) or from simpler analytical
expressions seeking to capture some important features for a given
scenario (see, e.g., Large et al. (1994)).

Depending on the type of material, the surface may or may not be
seen as a partially absorbing boundary. Materials that do not form
surface slicks, such as fish eggs and microplastics, may reach the surface
through buoyancy, and later be resuspended due to turbulent eddies in
the water. Hence, we may formulate the following rules, which when
repeatedly applied describe the motion of non-slick-forming buoyant
particles in a turbulent water column:

• Particles are randomly displaced, due to turbulent motion of the
water. Being caused by the motion of the water, this random dis-
placement treats the surface as a reflecting boundary.

• Particles rise due to buoyancy. When particles reach the surface due
to buoyancy, they can rise no further, thus treating the surface as a
barrier.

The rationale for treating the boundary as reflecting in diffusion is
that turbulent diffusion is caused by eddies in the water, and, being
formed by water, these eddies are necessarily unable to carry material
out of the water.

In the case of oil droplets, a continuous slick may be formed at the
surface, and as a droplet rises to the surface and merges with the slick, it
is effectively removed from the water column. For an oil slick to be
broken up into droplets and resuspended, a high-energy event such as a
breaking wave is required. A set of rules describing the motion of slick-
forming, buoyant particles is:

• Droplets are randomly displaced, due to turbulent motion of the
water. Being caused by the motion of the water, this random dis-
placement treats the surface as a reflecting boundary.

• Droplets rise due to buoyancy. When droplets reach the surface due
to buoyancy, they become part of the surface slick, thus treating the
surface as an absorbing boundary.

• Once part of the surface slick, droplets may be resuspended due to
breaking waves, at some rate which is related to the wave state.
Droplets resuspended due to waves are distributed into the upper
part of the water column, and may in general be assigned a new size
in the process.

Again, the rationale for the reflecting boundary in the diffusion step
is that material carried by the motion of the water cannot leave the
water. Furthermore, if the surface was absorbing in diffusion, in-
creasing the diffusivity could lead to arbitrarily fast surfacing, which is
contrary to what is observed in reality.

In what follows, we will formulate an Eulerian and a Lagrangian
model for the behaviour described above. Common to both models is
that they operate in discrete time, and that we consider a fixed time-
step, Δt, where

= +t t n t,n 0 (1)

and where t0 is the time at the start of the simulation.

2.1. Lagrangian model

In a Lagrangian particle model, an ensemble of a large number, Np,
of particles is used to describe the effects of advection and diffusion. At
each timestep, each particle undergoes a random displacement due to
diffusion, and a directed displacement due to buoyancy. The step length
in the random displacement is found from the diffusivity profile, K(z).

For the random walk formulation to be consistent, it must obey the
rule that an initially well-mixed passive (i.e., neutrally buoyant) tracer
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must remain well mixed, regardless of the diffusivity profile. This is
known as the well-mixed condition, and was first formulated by
Thomson (1987). As has been pointed out by several authors (see, e.g.,
Holloway (1994), Hunter et al. (1993), van Sebille et al. (2018), Visser
(1997)), a naïve formulation of the random walk will cause an un-
physical net transport away from areas of high diffusivity, and thus will
not obey the well-mixed condition. Additionally, care must be taken
near the boundaries of the computational domain, as the shape and
properties of the diffusivity function here can impact the accuracy of
the results (Ross and Sharples, 2004). We will return to this last point in
greater detail in Sections 3 and 4.

We implement a random walk algorithm known as the Visser
scheme (Gräwe, 2011; Visser, 1997), where a particle which at time tn is
at a depth zn, at a time tn+1= tn +Δt will be at a new position
zn+1= zn + ξ(zn), where the displacement ξ(zn) is given by

= + +z K z t R
r

tK z K z t( ) ( ) 2 ( )
2

,n n n n (2)

where =K z( )n
K
z z

d
d n

, Δt is the timestep of the model, and R is a random

process with mean =R 0, and variance =R r2 . Throughout this
paper, we have taken R to be uniformly distributed random numbers
between −1 and 1, in which case r =1/3.

The Visser scheme will obey the aforementioned well-mixed con-
dition, provided the timestep is sufficiently short. The requirement is
essentially that the diffusivity profile is well approximated by a linear
function over the step length of the random walk (Visser, 1997). This is
satisfied if

t
K z

min 1
| ( )|

,
(3)

where =K z( ) K
z

d
d

2
2 , and the minimum is taken over the entire water

column. According to Gräwe et al. (2012), it is generally agreed that the
timestep should be kept at least an order of magnitude below the limit
given by Eq. (3).

The rise due to buoyancy is simply implemented as a constant,
upwards displacement equal to − vbΔt at each timestep (we take depth
to be positive downwards). This is because particles are considered to
rise at their terminal velocity. For small particles with small rise velo-
cities, this is a good approximation, as the terminal velocity is reached
very fast compared to other relevant processes.

As previously discussed, what happens when a particle reaches the
surface depends on the particular type of material considered. In the
context of an oil spill simulation, a droplet that surfaces is assumed to
be absorbed into a continuous surface slick of oil, and will not be mixed
back down into the water column by the eddy diffusivity alone. Hence,
an oil droplet that has surfaced is (temporarily) removed from the water
column. For a non-slick-forming particle such as a piece of microplastic,
the situation may be different, and the eddy diffusivity may be suffi-
cient to move the particle back down into the water column.

Particles that have surfaced and been absorbed into a surface slick
may however be resuspended due to breaking waves, as would be the
case for oil droplets. We have chosen to include this in the model for
slick-forming materials3 by optionally submerging a constant fraction
of the surface slick at each timestep. This corresponds to an exponential
decay of the amount of material at the surface, with a decay rate λ,
which is related to the wave state, typically calculated via the whitecap
fraction (Li et al., 2017; Scanlon et al., 2016). The entrainment is in-
cluded in the particle model by giving each surfaced particle a

probability of being mixed down at each timestep, calculated from the
lifetime, τ =1/λ, at the surface. When a particle is resuspended, it is
placed at a random depth, uniformly distributed between the surface
(z =0) and a depth z = L (Tkalich and Chan, 2002). In practice, the
entrainment depth is related to the wave height (Delvigne and
Sweeney, 1988) or the intrusion depth of breaking waves (Leifer and De
Leeuw, 2006). In a more realistic model, a resuspended particle would
also be assigned a new size, randomly drawn from a suitable size dis-
tribution (see, e.g., Delvigne and Sweeney (1988), Johansen et al.
(2015), Li et al. (2017)). However, these complications are outside the
scope of the current study, which is focused on the process of surfacing.

This model can be formulated as a series of operations carried out
for each particle, during each timestep, in order to calculate the posi-
tion, zn+1, at time tn+1, from the current position, zn. We here consider
a water column of finite depth H (depth positive downwards), and a
particle rising with a constant terminal speed vb.

Step 1: Displace particle randomly

= +z z z( ).n n n (4a)

Step 2: Reflect from boundaries

=
<
>z

z z
H z z H

z

if 0
2 if

otherwise.
n

n n

n n

n (4b)

Step 3: Rise due to buoyancy

=z z v t.n n b (4c)

Step 4: Set depth to 0 if above surface

=+z
z

z
0 if 0

otherwise.n
n

n
1

(4d)

Depending on the application, a particle that reaches the surface in
Step 4 may either remain in the water column, at a depth of 0m, or it
may be removed from the water and considered “surfaced”. For an oil
spill model, the latter would be the case, corresponding to the droplet
merging with a continuous surface slick. It would then take energy in
the form of breaking waves to re-introduce surfaced oil into the water
column. In that case, a fifth step is also carried out at each timestep:

Step 5: If a particle is considered surfaced, it is resuspended with
probability p =1−e−Δt/τ, in which case it is assigned a
random depth between z =0 and z = L.

Note that in the case of slick-forming particles, Steps 1–4 are applied
to all particles in the water column (i.e., those particles that are not part
of the surface slick), while Step 5 is applied to all particles that are part
of the slick.

2.2. Eulerian model

The ADR equation describes the time-development of the con-
centration of a chemical or biological species affected by diffusive,
advective and reactive processes. This may be expressed mathemati-
cally in the form of a partial differential equation (PDE),

= +c
t

K c c Sv( ) ( ) , (5)

where c is the concentration of species, K is the diffusivity, v is the
velocity, and S is the reaction term.

3 Note that breaking waves will of course also influence the behaviour of non-
slick-forming particles, such as fish eggs. However, we have chosen to include
this effect for slick-forming particles only, as it is far more important in this
case, as can be seen by comparing the steady-state results of the three case
studies in Section 3.
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For the investigation of the vertical movement of particles (e.g., oil
droplets) in the water column, Eq. (5) may be simplified to one spatial
dimension, that is, along the z-axis (depth positive downwards). The
diffusivity is considered to be spatially dependent, that is, K(z) in the
vertical case. Similarly, the advection velocity, which in this case de-
scribes the rising of the individual particles due to buoyancy, may also
be spatially dependent, i.e., v(z), to allow particles to stop at the surface
and/or bottom boundaries of the water column. Furthermore, the re-
action term may be considered dependent on position and concentra-
tion. Consequently, Eq. (5) becomes:

= +c z t
z z

K z c z t
z z

v z c z t S z c z t( , ) ( ) ( , ) ( ( ) ( , )) ( , ( , )),
(6)

where c(z,t) represents the concentration of material, K(z) is the spa-
tially dependent diffusivity, v(z) is the spatially dependent velocity and
S(z,c(z,t)) is the source term.

2.2.1. Boundary conditions
In our Eulerian model, we have chosen to treat the transition of oil

from the water column to the surface slick via the boundary conditions
at the surface. An alternative is to model this process as a loss-term (also
known as a sink), whereby oil near the surface is removed from the
water column at some rate (see, e.g., Ramírez et al. (2018), Tkalich and
Chan (2002)). However, the use of a sink term requires the introduction
of some length scale that determines what is meant by “close to the
surface”. For the Eulerian model, this could be a grid cell, but for the
Lagrangian model, no such convenient length scale exists. Modelling
the transition from subsurface to surface via the boundary conditions,
on the other hand, gives a natural comparison between the Eulerian and
Lagrangian schemes, as the concept of “reaching the surface” arises
naturally in both models.

For the examination of oil droplets, which rise toward the surface
and create an oil slick, we propose a partially absorbing boundary
condition, where only the advective flux is allowed to transport parti-
cles out of the domain through the surface boundary located at z =0,
while we demand that the diffusive flux be zero at the boundary. This is
equivalent to Steps 2 and 4 in the particle model, where we reflect a
particle that has been placed above the surface due to the random walk,
and consider a particle “surfaced” if it crosses the boundary due to
buoyancy.

Writing the total flux as the sum of the advective flux and the dif-
fusive flux, jT = jA + jD, we may write the above boundary condition as

= +

= =

= =

= =

j j j

v z c z t K z c z t
z

v z c z t

| ( )|

( ) ( , ) ( ) ( , ) ( ) ( , ) ,

T z A D z

z z

0 0

0 0 (7)

which then can be simplified to the following Neumann boundary
condition for the diffusive flux at the surface:

= ==
=

j K z c z t
z

| ( ) ( , ) 0.D z
z

0
0 (8)

We note that if the velocity v(z =0) at the surface boundary is set to
zero, the boundary condition reduces to a fully reflective boundary,
since there will be no advection through the surface. This may for in-
stance be used in the simulation of particles that do not create a slick at
the surface (e.g., buoyant fish eggs or microplastics).

In a similar manner, and to ensure that no particles leave the do-
main at the bottom boundary, located at z = H, we propose a reflective
boundary condition, where the total flux is zero, i.e.,

= + = == =
=

j j j v z c z t K z c z t
z

| ( )| ( ) ( , ) ( ) ( , ) 0,T z H A D z H
z H (9)

which takes the form of a Robin boundary condition, that is, a combi-
nation of a Dirichlet and a Neumann boundary condition.

2.2.2. Reaction term for resuspension of oil from an oil slick
Let Ctot be the total amount of material considered in the simulation.

Assuming that we consider a system with a finite depth, H, and we start
out at time t0 with all the material being submerged (i.e., nothing on the
surface), we have

=C c z t z( , ) d .tot

H

0
0

(10)

Then, at any time, tn, the amount of material in the surface slick,
Cslick(tn), can be found as

=C t C c z t z( ) ( , ) d .slick n tot

H

n
0 (11)

In our model, oil from the surface slick may be resuspended as
droplets by assuming an exponential decay of the amount of oil at the
surface, with a decay rate λ =1/τ, where τ is the corresponding life-
time. This is equivalent to submerging a constant fraction of the surface
slick at every timestep, where that fraction is given by

=p 1 e .t/ (12)

Hence, the amount of oil resuspended during timestep n is

pC t( ),slick n (13)

and the corresponding source term is given by

=S z c z t p C t
L t

z L( , ( , ))
( ) if ,

0 otherwise,
n

slick n

(14)

where Δt is the timestep of the model. In this case, the resuspended
material is distributed uniformly throughout the upper part of the water
column, down to the depth L (see also Section 2.1, Step 5).

2.2.3. Numerical solution method for the advection-diffusion-reaction
equation

To solve Eq. (6), a finite volume method (FVM) was used. The z-axis
was discretised into control volumes, or cells, of a constant size Δz.
Then, the diffusive fluxes through the cell faces were approximated by a
second-order central difference of the two adjacent cells. Moreover, flux
limiting was used to approximate the advective fluxes as a first-order
upwind flux with a (higher-order) correction depending on a limiter
function (Hundsdorfer, 2003, pp. 66–67). The flux limiting was per-
formed with a QUICK (quadratic upstream interpolation for convective
kinetics) limiter function, yielding second-order spatial accuracy (see,
e.g., Versteeg (2007, pp. 170, 178)). Finally, the finite volume scheme
was discretised in time according to Eq. (1) and integrated by the
Crank-Nicolson method (implicit trapezoidal rule) in order to achieve
second-order accuracy in time and favourable unconditional stability
(see, e.g., Versteeg (2007, pp. 247–248)). See Appendix A for further
details.

3. Case studies

In this section, we present and discuss the results of three example
cases. In each case, we present the solution as calculated both by the
Eulerian grid model and the Lagrangian particle model, to demonstrate
that they give equivalent results. For both models, we consider a finite
water depth of H=40 m. For the Eulerian model, a spatial discretisa-
tion of Δz =0.04 m was used, and a timestep of ΔtE =1 s. For the
Lagrangian particle model, Np =960,000 particles were used, and a
timestep of ΔtL =0.01 s. The same numerical parameters were used for
all three case studies. See Appendix B for details on the choice of nu-
merical parameters for the particle model.

In order to directly compare the results, both models were used to
calculate concentrations. For the Eulerian model, the initial
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concentration was in all cases a Gaussian concentration profile centred
at z = μ0= 20 m, with a standard deviation of σ0= 2 m. Hence we
have

=C
z µ

z1
2

exp
( )

2
d 1,tot

H

0 0
2

0
2

0
2

(15)

where the integral can for practical purposes be considered equal to 1.
To calculate equivalent concentrations from the particle model, the

initial positions of the particles were drawn from a Gaussian random
distribution with the same properties as the above (μ0= 20 m, σ0= 2
m). The z-axis on the interval z =0 to z = H was divided into
Nb =1000 bins, giving a bin size equal to the spatial resolution,
Δz =0.04 m, of the Eulerian model. The particle count in each bin was
then converted to a normalised concentration by dividing by NpΔz. Note
that during the simulation, the depth of a particle can have any value.
The concentration bins are only introduced as a means to calculate
concentrations, and do not affect the particle positions. After calcu-
lating the binned concentrations, these were averaged over 100 con-
secutive timesteps, to get profiles that represent average conditions
over the same interval as the timestep of the Eulerian model, ΔtE =1 s.

We have considered two different diffusivity scenarios. One where
the diffusivity is a constant, K =3 ⋅ 10−3 m2/s, and one where it varies
with depth. For ease of implementation, we have chosen to consider a
variable profile that is given by an analytical expression. Following
Visser (1997), we use a diffusivity, K(z), given by

= +K z K K z( ) e ,z
0 1 (16a)

= = =K K10 m /s, 6 10 m/s, 0.5 m0
3 2

1
3 1 (16b)

which approximates a wind-forced surface boundary layer with a
mixing layer depth of approximately 10m. The diffusivity profiles are
shown in Fig. 1.

3.1. Case 1: Fish eggs

We consider here a case where we have buoyant particles, with a
rise velocity of 6mm/s. This corresponds approximately to the rise
velocity of fish eggs with a density of 1.01 kg/L, and a size of 1mm. In
this case, the boundary condition at the surface is zero flux in both

advection and diffusion, thus describing particles that do not form a
slick at the surface (see discussion in Sections 2 and 2.1).

We have simulated this scenario with the two different diffusivities
shown in Fig. 1, i.e., a constant diffusivity of K =3 ⋅ 10−3 m2/s, and a
variable diffusivity given by Eqs. (16). In Fig. 2, the results obtained
with constant diffusivity are presented. Concentration profiles are
shown in the left panel, calculated both with the Lagrangian particle
model described in Section 2.1, and with the Eulerian model described
in Section 2.2. Concentrations at five different times are shown, with
the five coloured lines showing the results of the Lagrangian model, and
the corresponding dashed black lines showing the results of the Eu-
lerian scheme. We find that the two models give very similar predic-
tions. It is furthermore observed that the concentration profiles at 2, 3
and 4 h appear identical. This is because after about 2 h, a steady state
is reached, where the upward drift due to buoyancy is exactly balanced
by a downwards displacement caused by diffusion in the presence of a
reflecting boundary (i.e., the surface).

In the right panel of Fig. 2, concentration in the topmost bin (i.e.,
the interval from z =0 to z =Δz =0.04 m) is shown as a function of
time, again for both models, with the Lagrangian particle model results
shown as a continuous blue line and the Eulerian grid model as a da-
shed black line. That the system reaches a steady state is clearly visible,
as the concentration in the topmost bin reaches a constant level after
about 2 h. Even after the steady state is reached, we observe that the
concentration in the topmost bin fluctuates in the particle model, due to
the inherent randomness of the random walk scheme. However, the
time-averaged concentrations in the top bin, over the interval from 5 to
6 h, is 1.92268 m−1 for the particle model and 1.92170 m−1 for the
grid model, which is a discrepancy of 0.053% between the two models.

For the special case considered here, with constant rise speed and
diffusivity, and completely reflecting boundary, the PDE for the con-
centration profile (Eq. (6)) has an analytical solution given by

=C z C( ) e ,z v
K0
b

(17)

where K is the diffusivity, vb is the constant rise speed and C0 is the
concentration at the surface. By using that the integral of the con-
centration over the entire water column should be unity, we find the
following analytic solution for the normalised average concentration in
the top bin:

z
z

z
1 e d

e d
1.92209134033411.

z zv K

H zv K
0

/

0
/

b

b (18)

Strictly speaking, the above expression is only approximate, as Eq. (17)
only holds for infinite water depth. However, due to the rapid ex-
ponential falloff it is accurate to about 36 decimal places.

In Fig. 3, similar results are shown for the same case of buoyant
particles with a completely reflecting boundary, but this time with a
variable diffusivity given by Eqs. (16). Again, the left panel shows
concentration profiles at five different times, and the right panel shows
the concentration in the top bin for both models. We observe that also
in this case a steady state is reached. However, we note that this time
there is a visible discrepancy in the predicted steady-state concentration
of the topmost cell (Fig. 3, right panel), where the particle scheme
predicts a concentration of 2.25304 m−1, while the grid model predicts
2.23698 m−1 (in both cases an average over the interval from 5 to 6 h is
taken). This difference of about 0.7% is presumably caused by an ar-
tificial build-up of particles near the boundary, which occurs in the
reflection step when the diffusivity profile has a non-zero derivative
approaching the boundary (see Ross and Sharples (2004) and
Section 4). The comparison of the steady-state predictions is sum-
marised in Table 1, and the observed discrepancy in the case of variable
diffusivity will be analysed and discussed further in Section 4.Fig. 1. Diffusivity profiles used in the case studies: One constant profile, and

one profile where diffusivity is a function of depth, as given by Eq. (16).
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3.2. Case 2: Oil droplets

In this case, we consider particles with a rise velocity of 3mm/s,
which corresponds approximately to oil droplets with a density of
0.9 kg/L, and a size of 0.25mm. Note that this value was somewhat
arbitrarily chosen as an example, and should not be seen as re-
presentative for oil spills in general.

The boundary at the surface is treated as reflective in diffusion, but
absorbing in advection. This represents oil droplets being absorbed into
the surface slick if they reach the surface due to buoyancy, but not if
they reach the surface due to diffusion (see details in Section 2). In this
case, we present results for the variable diffusivity profile only (see Eqs.
(16)).

The results of the simulation are shown in Fig. 4, again with

concentration profiles for different times shown in the left panel. The
results from the Lagrangian model are shown as continuous coloured
lines, while the predictions of the Eulerian model are shown for the

Fig. 2. Case 1: fish eggs, constant diffusivity. In the left panel, concentration profiles are shown for several different times, for an initial distribution of a Gaussian
centred at a depth of 20 m (the blue line). The continuous coloured lines show the results for the Lagrangian model, while the dashed black lines show the
corresponding timesteps for the Eulerian model. In the right panel, concentration in the top bin (0 ≤ z <Δz) is shown as a function of time, for both models.

Fig. 3. Case 1: fish eggs, variable diffusivity. In the left panel, concentration profiles are shown for several different times, for an initial distribution of a Gaussian
centred at a depth of 20 m (the blue line), and a diffusivity profile given by Eqs. (16). The continuous coloured lines show the results for the Lagrangian model, while
the dashed black lines show the corresponding timesteps for the Eulerian model. In the right panel, concentration in the top bin (0 ≤ z <Δz) is shown as a function of
time, for both models.

Table 1
Results for Case 1. Calculated average steady-state concentration in the top bin
(i.e., 0 ≤ z <Δz =0.04 m). For both numerical schemes, an average over the
interval from 5 to 6 h is taken.

Constant diffusivity Variable diffusivity

Analytical solution 1.92209 -
Particle model 1.92268 2.25304
Grid model 1.92170 2.23698
Difference between particle and grid 0.053% 0.72%
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same times as dashed black lines. In the right panel, the fraction of
material that remains in the water column (i.e., the fraction that has not
been absorbed into the surface slick) is shown.

We again observe that the two different models give very similar
predictions, both for the concentration profiles and for the amount of
oil remaining in the water column as a function of time. In this case, the
steady-state solution is that all the material has settled on the surface,
with no droplets left in the water column.

3.3. Case 3: Oil droplets with resuspension

In the final case, we again consider particles with a rise velocity of
3mm/s, which corresponds approximately to oil droplets with a density
of 0.9 kg/L, and a size of 0.25mm. Note again that this value was
somewhat arbitrarily chosen as an example, and should not be seen as

representative for oil spills in general. Furthermore, the boundary at the
surface is treated as reflective in diffusion, but absorbing in advection.
This represents oil droplets being absorbed into the surface slick if they
reach the surface due to buoyancy. In contrast to Case 2, however, this
time the model includes resuspension. At each timestep, a constant
fraction p =1−e−Δt/τ of the surface slick is resuspended into the
water column. This is equivalent to exponential decay of the amount of
surface oil, at a rate corresponding to a lifetime, τ, at the surface, where
we have arbitrarily chosen τ =500 s. The resuspended oil is evenly
distributed throughout the interval from z =0 to z = L, where the en-
trainment depth was also somewhat arbitrarily set to L =1 m. As noted
in Section 2, the entrainment depth and rate, as well as the droplet size
distribution of the entrained oil, will in general depend on the wave
state and the properties of the oil (see, e.g., Delvigne and Sweeney
(1988), Johansen et al. (2015), Li et al. (2017)). However, these

Fig. 4. Case 2: oil droplets, variable diffusivity. In the left panel, concentration profiles are shown for several different times, for an initial distribution of a Gaussian
centred at a depth of 20 m (the blue line). The continuous coloured lines show the results for the Lagrangian model, while the dashed black lines show the
corresponding timesteps for the Eulerian model. In the right hand panel, the submerged fraction is shown as a function of time.

Fig. 5. Case 3: oil droplets with resuspension, constant diffusivity. In the left panel, concentration profiles are shown changing over time, for an initial distribution of
a Gaussian centered at a depth of 20 m (the blue line). The continuous coloured lines show the results for the Lagrangian model, while the dashed black lines show the
corresponding timesteps for the Eulerian model. In the right hand panel, the submerged fraction is shown as a function of time.
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complications do not directly affect the discussion of the boundary
conditions, and are thus outside the scope of the current investigation.

This case has also been simulated with both constant and variable
diffusivity. The results of the simulations with constant diffusivity are
shown in Fig. 5, in the same way as for Case 2, i.e., with concentration
profiles in the left panel, and remaining submerged fraction as a func-
tion of time in the right panel. We again observe that the two different
models give very similar predictions, both for the concentration profiles
and for the amount of oil remaining in the water column as a function
of time. In this case a steady state is reached, where a significant
fraction of the material remains submerged. This state is reached after
about 4 h. At the steady state, the upwards drift due to buoyancy is
exactly balanced by the combined downwards motion due to re-
suspension, and diffusion in the presence of a reflecting boundary. We
observe that the two different models predict essentially the same time-
development of the remaining submerged fraction, as well as very si-
milar steady-state level. At steady-state, the predicted submerged
fraction is 0.5005 in the particle model, and 0.4998 in the grid model, a
discrepancy of about 0.14%. Here, the average over the interval from 5
to 6 h was used.

The same situation as the above has been simulated with the vari-
able diffusivity profile given by Eqs. (16), and the results are shown in
Fig. 6. Again, concentration profiles are shown in the left panel, and
submerged fraction as a function of time in the right panel. A steady
state is reached also in this situation, and after about 3–4 h the sub-
merged fraction remains approximately constant. At steady state, the
predicted submerged fraction is 0.5659 for the particle model, and
0.5667 for the grid model, where the average from 5 to 6 h has been

taken in both cases. The results are summarised in Table 2.

4. Discussion

In this section, we discuss some technical details of the reflecting
boundary in the Lagrangian particle model, as well as our reasons for
choosing to model the removal of oil from the water column via the
boundary conditions in the Eulerian scheme.

4.1. Boundary treatment in Lagrangian models

We mentioned initially that there are a number of somewhat subtle
details that must be taken into account in formulating a particle model.
First among these are the correct formulation of the random walk, to
avoid unphysical transport away from regions of high diffusivity.
Random walk schemes are essentially numerical integration methods
for stochastic differential equations, and there are a range of available
methods at different orders of accuracy. For a detailed survey of several
alternative methods, see, e.g., Gräwe (2011), Gräwe et al. (2012), as
well as specialist literature such as Kloeden and Platen (1992).

In this paper, we have chosen to use the Visser scheme (see Visser
(1997) for details). While higher-order methods may allow longer
timesteps, and better handle sharp transitions in diffusivity, they will
typically formulate the transport process as a single step that includes
both random displacement and drift (in this case, rise due to buoyancy).
The Visser scheme, on the other hand, allows us to handle the drift as a
separate step. This is convenient when we want to split the advection
and diffusion steps to treat the boundary at the surface as reflecting in
diffusion and absorbing in advection.

On the topic of reflecting boundaries in spatially variable diffusion,
Ross and Sharples (2004) have demonstrated that simple reflection is
not strictly correct. In our case, when using the Visser scheme with a
reflecting boundary, and a diffusivity profile whose derivative does not
go to zero at the boundary, one will observe a spurious increase in
concentration of particles near the boundary4. The effect can however
be made arbitrarily small by choosing a sufficiently short timestep. We

Fig. 6. Case3: oil droplets with resuspension, variable diffusivity. In the left panel, concentration profiles are shown changing over time, for an initial distribution of a
Gaussian centred at a depth of 20 m (the blue line), and a diffusivity profile given by Eqs. (16). The continuous coloured lines show the results for the Lagrangian
model, while the dashed black lines show the corresponding timesteps for the Eulerian model. In the right hand panel, the submerged fraction is shown as a function
of time.

Table 2
Results for Case 3. Calculated submerged fraction at steady state. For both
numerical schemes, an average over the interval from 5 to 6 h is taken.

Constant diffusivity Variable diffusivity

Analytical solution - -
Particle model 0.5005 0.5659
Grid model 0.4998 0.5667
Difference between particle and grid 0.14% 0.14%

4 Note that this effect is not unique to the Visser scheme, but may take a
different shape with other schemes.
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demonstrate this with a numerical example.
As we have taken R in Eq. (2) to be uniformly distributed random

numbers between −1 and 1, it is possible to calculate the maximum
upwards and downwards displacements a particle can have, at any
position. Inspired by Ross and Sharples (2004), we introduce the
parameters h1 and h2 to describe the range of possible displacements of
a particle situated exactly at the reflecting boundary. Here, h1 is the
maximum displacement of a particle moving away from the boundary,
while h2 is the maximum displacement of a particle moving into the
boundary, followed by reflection (note that our definition of h1 differs
from Ross and Sharples (2004), while h2 is the same). Hence, h1 and h2
for the boundary at the surface (z =0) are in our case given by

= + +( )h K t tK K(0) 6 0 (0) ,t
1 2 (19a)

= + +( )h K t tK K(0) 6 0 (0) .t
2 2 (19b)

These parameters indicate the size of the region affected by the spurious
concentrations.

As a numerical example, we consider a case with neutrally buoyant
tracers, in a finite depth of 10m, with the same diffusivity profiles as
used earlier, i.e., a constant K =3 ⋅ 10−3 m2/s, and a variable profile
given by Eqs. (16). The diffusivity profiles are shown in Fig. 1. We
employ an ensemble of Np =200,000 tracers, initially distributed in a
uniform manner in the whole domain, and let the system develop for
12 h. The resulting concentrations, averaged over 12 h, are shown in
Fig. 7, where the calculations have been performed with four different
timesteps, Δt, and the concentrations have been calculated by normal-
ised particle counts in Nb =5000 bins. In principle, the tracers should
remain well mixed, however, as can be seen this is not the case close to
the boundary when the variable diffusivity profile is used.

In each panel of Fig. 7, the parameter h1 has been indicated by a
horizontal dashed line, while h2 is indicated by a dotted line. We ob-
serve that for a constant diffusivity, h1= h2, and there is no spurious
concentration effect. For the variable profile, on the other hand, h1≠h2,
and hence there is a region of higher concentration close to the
boundary, followed by another region of reduced concentration. We
observe from Eqs. (19) that the size of the region with spurious con-
centrations is dependent on the timestep, Δt, as well as on the behaviour

of the diffusivity profile near the boundary. Note in particular that if
K′(z =0)=0, the effect disappears (provided the timestep is suffi-
ciently short, cf. Eq. (3)).

For our Case studies with variable diffusivity, which were carried
out with the diffusivity profile given by Eqs. (16), and a timestep of
Δt =0.01 s, we find that

= =h h0.007806 m, 0.007686 m.1 2 (20)

While these values are smaller than the bin size used to calculate
concentrations (which was Δz =0.04 m), we found in Case 1, when a
variable diffusivity was used, a slightly increased prediction of the near-
surface concentration (see Fig. 3, right panel), when the particle model
is compared to the Eulerian model. The effect was not observed for
constant diffusivity in Case 1. It was also not seen in Cases 2 and 3,
where any spurious accumulation at the surface is continuously re-
moved by the combined effect of upwards drift due to buoyancy and the
absorbing boundary condition in advection. One might have expected
an increase in concentration near the surface to lead to faster surfacing
of the oil in Cases 2 and 3, but no indication of this is found at the
timestep length used here.

4.2. Boundary treatment in Eulerian models

In the current study, we have chosen to describe the transition of oil
from the water column to the surface slick via the boundary conditions
in the Eulerian scheme. This is a natural way to describe the process, as
a droplet joining the surface slick will pass through a boundary at the
oil-water interface, and join the continuous oil phase. It also allows for
a straightforward comparison between the Lagrangian and Eulerian
schemes, as the concept of the boundary at the surface exists in both.

As previously mentioned, an alternative would be to formulate the
disappearance of oil from the water column as a loss term, or sink, in
the ADR equation. An example of such a formulation is found in Tkalich
and Chan (2002), where the loss of oil to the surface slick is modelled
by assuming the existence of a well-mixed layer near the surface,
throughout which the oil concentration is constant. At each timestep,
some fraction of the oil in this layer is lost to the surface, where this
fraction is determined from the rise speed of the droplets, and the
thickness of the well-mixed layer.

Fig. 7. Concentration profiles (arbitrary units), averaged over 12 h, shown for constant and variable diffusivity (see Eqs. (16)), and for four different timesteps, Δt.
For each case, the depth h1 is indicated by a dashed line, and h2 by a dotted line (see Eq. (19)). For constant diffusivity, h1= h2. Note that only the 20 cm closest to the
boundary are shown.
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In our opinion, treating the surfacing of oil via the boundary con-
ditions should be the preferred approach, as it does not require any
assumptions about the existence of special layers. In formulating our
Eulerian model, we have assumed that the transport and mixing of
buoyant material in the water column can be described by the advec-
tion-diffusion equation, with the diffusivity given by an eddy diffusivity
profile, and that the buoyant material can optionally leave the water
column through its natural boundary at the surface, to form a con-
tinuous, floating slick.

5. Conclusion

We have analysed a Lagrangian particle model for vertical transport,
mixing, surfacing and optionally resuspension of buoyant materials,
such as oil droplets, microplastics and fish eggs. The Lagrangian model
is compared to an Eulerian model based on direct numerical solution of
the ADR equation. We have described how to treat the boundary at the
surface in order to model materials that form a slick at the surface, such
as oil, as well as non-slick-forming materials such as plastics and fish
eggs. In particular, we demonstrate that treating the surface in the
particle model as completely reflecting is equivalent to solving the ADR
equation with a Robin boundary condition, ensuring no flux across the
boundary. Moreover, we have demonstrated that treating the surface in
the particle model as absorbing in advection, and reflecting in diffusion,

gives the same results as solving the ADR equation with a Neumann
boundary condition enforcing zero diffusive flux, while allowing an
advective flux. We also consider the effect of entrainment of surface oil
due to waves in both models, and again demonstrate that consistent
results emerge.

While it is likely that many particle-based oil spill models use a
similar approach to the one outlined in Section 2.1, an explicit de-
scription and analysis of the steps involved in surfacing has, to the best
of our knowledge, never appeared in the literature. Furthermore, while
most oil spill models are based on Lagrangian particle schemes, Eu-
lerian oil spill models exist and are being developed (see, e.g., Restrepo
et al. (2015), Tkalich et al. (2003)), hence it is a point of some im-
portance to have an understanding of how to formulate equivalent
descriptions in the two schemes.
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Appendix A. Details on the implementation of the Eulerian finite volume method

In FVMs, the partial differential equation is transformed to integral form by integrating over a control volume Ωj corresponding to cell j.
Considering Eq. (6), the volume integrals on the right-hand side may then be rewritten to surface integrals over the boundary of the control volume
through the divergence theorem. By applying the Leibniz integral rule on the left-hand side to change the order of the spatial integral and the
differentiation with respect to time, the average concentration in control volume Ωj, c̄j, may be defined. Similarly, on the right-hand side, the average
reaction term in the control volume, S̄j, is found by integration.

Since only flow in the vertical z-direction is considered, the left-hand side of Eq. (6) reduces to the change of the cell-average concentration per
unit of time in the control volume with the grid spacing = +z z zj j j1

2
1
2
. Moreover, the right-hand side is given by the difference of the diffusive

and advective fluxes at the bottom and top faces of the control volume, +zj 1
2
and zj 1

2
(depth positive downwards), respectively, with the addition of

the cell-average source term in the control volume with the grid spacing Δzj. Thus, the integral form of Eq. (6) reads:
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which is noted to be an exact equation. Now, the concentration is assumed to be constant within each control volume, such that the cell-averages, c̄j
and S̄j may be approximated by the values located at the cell centres, zj, that is, cj and Sj, respectively. Assuming a constant grid spacing Δz, the z-axis
is thus discretised into NJ equidistant control volumes (or cells). A similar derivation may, e.g., be found in Versteeg (2007, pp. 243–246).

Considering the cell adjacent to the surface boundary, notated as j =0, the insertion of the absorbing surface boundary condition of Eq. (8) into
Eq. (A.1) causes the diffusive flux over the surface to vanish. Thus, Eq. (A.1) reduces to
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where =j 1
2 corresponds to the surface boundary. Moreover, as noted in Section 2.2.1, if the velocity over the surface is zero, the advective flux

over the surface also vanishes, making the surface a reflecting boundary.
Similarly, in the cell adjacent to the bottom boundary, i.e., j = NJ−1, inserting the reflecting boundary condition from Eq. (9) into Eq. (A.1)

causes both the diffusive and advective fluxes over the bottom boundary to disappear. Hence, Eq. (A.1) reduces to
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where =j NJ 1
2 corresponds to the bottom boundary.

In Eq. (A.1), the diffusive fluxes at the cell faces were approximated by a second-order central difference of the two adjacent cells (see, e.g.,
Versteeg (2007, p. 117)). That is, on the form
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where the diffusivity +Kj 1
2
is determined on the cell faces either explicitly by an analytic expression, or by an arithmetic or harmonic mean in the case

of a discrete diffusivity.
For the advective fluxes, however, it is noted that linear numerical schemes of second-order accuracy and higher are known to yield numerical

oscillations for advection-dominated problems, that is, when the cell Péclet number =Pe 1v z
K

| | , for non-smooth solutions (Hundsdorfer, 2003, pp.
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66–67, 118–119). Consequently, in order to implement a more flexible higher-order numerical scheme (that is, higher than first-order, in this case)
for advection, flux limiting was used to approximate the advective fluxes as a first-order upwind flux with a (higher-order) correction depending on a
limiter function (Hundsdorfer, 2003, pp. 216–217; Versteeg, 2007, pp. 165–171). The approximation of the advective fluxes thus takes the form
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where ψ(ρ±) is the limiter function determining the correction, and ρ± is given by
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i.e., the local ratio of the upwind gradient to the downwind gradient (Versteeg, 2007, pp. 167, 171–172; Hundsdorfer, 2003, p. 216). The flux
limiting was done with a QUICK (quadratic upstream interpolation for convective kinetics) limiter function, given by

= +( ) max 0, min 2 , 3
4

, 2 ,
(A.7)

where = +( ) 3
4 corresponds to the QUICK scheme, and resulted in second-order accuracy (see, e.g., Versteeg (2007, pp. 170, 178)).

According to Versteeg (2007, pp. 167–168), higher-order accuracy without oscillatory behaviour for non-smooth solutions is attained if the
scheme is monotonicity preserving, i.e., that it does not create local extrema and does not increase or decrease existing local maxima or minima,
respectively. Such monotonicity-preserving schemes will have the property of being total variation diminishing (TVD), that is, that the total variation

= =TV ( ) | |j
NJ

j j1 1 does not increase over time (Versteeg, 2007, p. 168). As noted in Versteeg (2007, pp. 168-171), flux limiter functions were
derived to satisfy a number of criteria which ensures that the resulting scheme is TVD and second-order accurate.

The scheme was discretised in time according to Eq. (1) and integrated by the Crank-Nicolson method (or implicit trapezoidal rule), given by
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where F corresponds to the right-hand side of Eq. (A.1) evaluated at time steps n and n +1. This was utilised in order to get second-order accuracy in
time and favourable unconditional stability (Versteeg, 2007, pp. 247–248). By including the higher-order correction of the flux limiting as an
additional source term, that is, as a deferred correction (see Versteeg (2007, pp. 163–164, 172)), the scheme may be written as a system of equations
that must be solved for each time level (n +1) by defining a tridiagonal matrix of coefficients. The tridiagonal system of equations was at each time
level solved by the tridiagonal matrix algorithm (TDMA) or Thomas algorithm (see, e.g., Pletcher (2013, pp. 150–151)). However, due to the
nonlinearities appearing in the source term and the deferred correction, an iterative approach must be used to update the coefficients until an
acceptable solution is found at the (n +1) time level (see, e.g., Pletcher (2013, p. 440)). It is noted in Hundsdorfer (2003, p. 232) that the implicit
trapezoidal rule for a pure advection problem is TVD for Courant numbers =C 1v t

z
| | .

Appendix B. Details on the choice of timestep and number of particles

In a Lagrangian particle model, there are two main numerical parameters that control the accuracy: the timestep, Δt, and the number of particles,
Np. Ideally, the modelled result will converge to the correct solution (which may or may not be known), as Δt becomes smaller, and Np becomes
larger.

When using a particle method, each particle position constitutes a sample from the true distribution of positions. Hence, the random noise that is
seen when using few particles is not a systematic error, but rather an indication that the sample distribution has not yet converged to the true
distribution. For practical applications, this amounts to a random error in the modelled concentration field. The convergence with number of
particles is N1/ p , which means that increasing the number of particles by a factor 10 only reduces the error by a factor 1/ 10 . The computational
effort, on the other hand, increases linearly with Np.

The scaling of the error with the timestep depends on the chosen random walk scheme. In this paper, we have used the Visser scheme, which has
order of convergence 1, in the weak sense (Gräwe, 2011). Technically, this means that the error in the moments of the modelled distribution (as
compared to the moments of the true distribution) will scale as Δt, for sufficiently small Δt (Kloeden and Platen, 1992, pp. 326–327). Higher-order
random walk schemes exist, although many have the drawback that one must evaluate higher order derivatives of the diffusivity (see, e.g., Gräwe
(2011), Gräwe et al. (2012), Kloeden and Platen (1992)).

However, in the special case of constant drift and constant diffusivity, i.e., for a stochastic differential equation (SDE) given by

= +z a t b W td d d ( ), (B.1)

where a and b are constants, all schemes reduce to the Euler-Maruyama scheme (Maruyama, 1955; Pavliotis, 2014, page 146), given by

= + ++z z a t b W ,n n1 (B.2)

where ΔW is a Gaussian random variable with mean =W 0, and variance =W t2 . For this reason, we chose to use Case study 1 with constant
diffusivity (see Section 3.1) to carry out a convergence test, in order to determine a suitable timestep and number of particles. As in the results for
Case 1, we have calculated the average concentration in the top Δx =0.04 m of the water column, using the particle method with different Δt and Np.
We then calculated the error in the modelled result by subtracting the analytical solution (see Eq. (18)).

In Fig. B.8, the results of the convergence test are shown. In the left hand panel, we have used Np =19,200. We observe that the error scales
linearly with Δt, down to a relative error of about 3 ⋅ 10−3. From this point, the error due to too few particles dominates, and there is no additional
accuracy gained by reducing the timestep further. In the middle panel, with Np =192,000, we observe that increasing the number of particles by a
factor 10 has improved the accuracy by a factor of about 1/ 10 . In this case, improved accuracy with reduced timestep is seen down to an error of
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about 10−3. Finally, in the right hand panel, the particle number is again increased tenfold, to Np =1,920,000. It is again clear that the increase in
number of particles has led to an increased accuracy, and the timestep can profitably be decreased even further.

The convergence test indicates that with the numerical parameters used in the case studies (Np =960,000 and Δt =0.01 s), we may reasonably
expect a relative error of about 5 ⋅ 10−4 for the case with constant diffusivity, which is what we see in Case 1. Note also that changing to a higher-
order SDE scheme would not improve the accuracy when constant drift and diffusivity is used, as the correction terms in higher-order schemes
typically contain derivatives of the drift and diffusivity, and the drift and diffusivity are the same no matter where they are evaluated (Gräwe, 2011;
Gräwe et al., 2012; Kloeden and Platen, 1992).

A final point related to the number of particles is that this will depend on how the concentration field is calculated. One option is that one could
use larger bins when counting particles to calculate the concentration. As larger bins will contain more particles, the results are then less suceptible
to random fluctuations. The trade-off is a loss in resolution, in that features smaller than the bin size cannot be resolved. In this paper, we have
chosen to use a fairly small bin size of Δx =0.04 m, both for the Eulerian and the Lagrangian models. The intention was to facilitate a direct
comparison, and to study the details of the behaviour near the boundary. In practical applications, such as in oil spill modelling, the bin size would
more likely be on the scale of meters, rather than centimeters, and this would significantly reduce the need for a large number of particles.

Another commonly used approach, which may further reduce the need for large particle numbers, is to apply some kind of smoothing to the
concentration field instead of using the box counts (which are equivalent to a histogram of particle positions). Lynch et al. (2014, Chapter 8) discuss
some different options, including kernel estimators, also known as kernel density estimators (Silverman, 1986).

With a kernel estimator, the concentration field (in one dimension) is calculated as

=
=

C z
N

z z( ) 1 ,
p i

N
i

1

p

(B.3)

where the sum is over particles, and zi is the position of particle i. The kernel, z( ) can be any positive function that satisfies =z z( ) d 1, and λ is
called the bandwidth. For the same number of particles, a kernel estimator can give a smoother and more accurate representation of the con-
centration field, compared to the box count approach. The results depend on both the kernel and the bandwith, the choices of which depend among
other things on the number of particles (see, e.g., Spivakovskaya et al. (2007)).

For the current study, we have chosen not to apply kernel estimators, as the focus of the investigation is on the boundary conditions, and not on
the concentration field.
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