
Detection of Mooring Line Failure using Dynamic Hypothesis TestingI

Vahid Hassania,b,∗, António M. Pascoalc, Asgeir J. Sørensena

aCentre for autonomous marine operations and systems (AMOS) and Dept. of Marine Technology, Norwegian Univ. of Science and Technology, Trondheim,
Norway.

bSINTEF Ocean, formerly Known as Norwegian Marine Technology Research Institute (MARINTEK), Trondheim, Norway.
cInstitute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Univ. Lisboa, Portugal.

Abstract

This article proposes a novel methodology for the detection of mooring line breakage in thruster assisted position mooring (PM)
systems, when no measurements of the tensions on the mooring lines are available. For dynamic positioning (DP) of marine
vessels moored to the seabed via a turret-based spread mooring system, the thrusters provide only complementary assistance to the
mooring system, which is responsible for a large part of the forces and moments required for station keeping. However, in extreme
weather conditions thruster assistance is essential to avoid mooring line failure. Once a mooring line is parted, the remaining lines
face an increase in the tension forces due as a means to compensate for the lost tension in the ruptured line. This in turn may
lead to a cascade breakage of the mooring lines. Hence, it is of paramount importance to detect any line breakage as soon as it
occurs to compensate for the lost tension by proper use of DP thruster assistance. As a contribution to solving this problem, in
this paper we propose a methodology that builds on Dynamic Hypothesis Testing (DHT) whereby a set of hypotheses are assessed,
at each sampling time, using the measured inputs and outputs of the thruster assisted position mooring system. While the first
hypothesis corresponds to the assumption that all mooring lines are intact, the remaining hypotheses are built assuming that a
single, or multiple line breakage events have taken place. At each sampling time, the inputs and outputs to the system are used to
generate the conditional probability of each hypothesis being true. These conditional probabilities are then used to evaluate which
hypothesis is more probable to comply with the collected measurements. In addition, we find conditions for any pair of hypothesis
being distinguishable. Numerical simulations, carried out using a high fidelity nonlinear PM simulator illustrate the efficiency of
the proposed methodology.
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1. Introduction

Rising world oil demand, with only limited easy-to-access
oil fields, is steadily pushing offshore oil and gas exploration
and exploitation activities to increasingly remote, deeper areas
under extreme environmental conditions. The latter expose off-5

shore vessels and structures used for drilling and production of
oil and gas to challenging operational conditions characterized
by high winds reaching hurricane-force and temperatures drop-
ping below zero. In such severe conditions, the reliability of
offshore vessels and their equipments as well as the efficacy of10

the corresponding monitoring and control systems are funda-
mental to the safety and success of the operations. Some of the
commercially attractive alternatives to permanent platforms for
offshore oil and gas exploitation are dynamic positioning (DP)
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and Position Mooring (PM) systems. The research and devel-15

opment of thruster assisted position mooring systems follows
the rich and by now mature applications of DP systems.

DP systems have been commercially available since the late
1960s for offshore drilling applications. Early DP systems were
built around PID controllers driven by output measurements20

that were filtered using a cascade of notch and low pass filters
aimed at suppressing thruster wear and tear caused by wave-
induced motions. However, since notch filters introduce some
phase lag around the crossover frequency, phase margin re-
duction and deterioration of the system performance were in-25

evitable. To overcome this problem, PID controllers were re-
placed by more advanced control techniques based on optimal
and Linear-Quadratic-Gaussian (LQG) control, and Kalman fil-
ter theory in Balchen et al. (1976) that were further modified
and extended in Grimble et al. (1979, 1980); Balchen et al.30

(1980); Fung & Grimble (1983); Sælid et al. (1983); Sørensen
et al. (1996); Fossen et al. (1996) and Fossen & Perez (2009a).
Since the application of LQG to DP systems involved the lin-
earization of the veseel’s kinematic and dynamic equations over
different operating points and the tuning of design variables35

such as the covariances of process and sensor noises, sim-
pler frameworks were developed using integrator back stepping
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techniques in Aarset et al. (1998); Fossen & Grøvlen (1998);
Robertsson & Johansson (1998) and passive observers and non-
linear multivariate PID controllers in Fossen & Strand (1999);40

Strand & Fossen (1999); Strand (1999); Torsetnes et al. (2004);
Fossen (2000). In recent years other techniques such as gain-
scheduling Torsetnes et al. (2004), robust control Hassani et al.
(2012a,b, 2017), adaptive control Tannuri et al. (2006); Hassani
et al. (2010, 2013b) and hybrid control Nguyen et al. (2007b);45

Hassani et al. (2013b) have come to the fore. The literature
on modeling and simulation of DP systems and the application
of different control techniques to the design of DP controllers
is vast and defies a simple summary. The reader is referred
to Sørensen (2005, 2011b); Hassani et al. (2013a) and the ref-50

erences therein for a short presentation of the subject and its
historical evolution.

PM systems have been available since the late 1980s. While
PM systems are built upon DP systems, there are some key
differences between the two. Namely, the main function of55

thruster assistance in PM systems is to keep the heading an-
gle at a desired value and add damping in the surge, sway and
yaw motions while the mooring lines keep the position of the
vessel in a predefined admissible region, see Strand (1999).
This strategy leads to reduced activity of the thrusters in nor-60

mal environmental condition; however, in harsh environmen-
tal conditions thruster assistance helps keeping the vessel in
a predefined tolerable region in order to prevent the mooring
line tension from rising above safety limits. A mathematical
model of a thruster assisted mooring system and a mooring line65

were developed in Strand et al. (1998b) and Aamo & Fossen
(2000), respectively. Back stepping techniques were applied to
PM systems in Strand et al. (1998a); Chen et al. (2013). In
Aamo & Fossen (1999) a dynamic line tensioning controller
was developed to reject constant or slowly varying environ-70

mental disturbances, and hence, reduce the thruster force and
consumed fuel. In Sørensen et al. (1999) a nonlinear multi-
variable controller and a passivity based observer were applied
to an FPSO with PM systems. A switching controller algo-
rithm was proposed by Nguyen et al. (2007b) whereby the sea75

state is identified through power spectral density analysis of
the vessel’s motion and a suitable controller is automatically
selected to increase the operation weather window of the PM
system under study. The safety of DP and PM systems is of
paramount concern in the marine industry, and hence, regula-80

tions are in place to define different levels of system redun-
dancy, to prevent faults in equipment from causing accidents
at the system level DNV (2014, 2015). Any failures in moor-
ing lines can cause loss of position-keeping capability which, in
turn, can lead to disasters on an unprecedented scale. In Strand85

et al. (1998b) a line break detection and compensation algo-
rithm was coupled with an LQG based controller; then, any
irregular tension measurement is monitored to detect a possi-
ble line break. Furthermore, a compensation mechanism is de-
veloped in Strand et al. (1998b), so that in case of line break90

detection, a feed-forward thrust in surge and sway and feed-
forward momentum in yaw are applied to compensate for the
lost tension, due to line break, and to alleviate the load increase
in the remaining mooring lines. In order to reduce the possi-

bility of mooring line breakage in harsh environmental condi-95

tions, a setpoint chasing algorithm was introduced in Nguyen
& Sørensen (2009). A structural reliability index for integrity
of the the mooring lines was proposed in Berntsen et al. (2004,
2006, 2009) where a new controller was developed to keep the
probability of line failure below an acceptable level. A con-100

sistency based diagnosis technique was used to develop fault
tolerant control of PM systems in Nguyen et al. (2007a) us-
ing the methodology developed in Blanke (2005); Blanke et al.
(2006). A methodology to detect line breakage and loss of of
a buoyancy element in mooring lines was developed in Fang &105

Blanke (2011); Blanke et al. (2012) based on a structure-graph
approach Blanke et al. (2006). Detection of line breakage was
studied in Ren et al. (2015) using a supervisory control frame-
work Hespanha (2001).

Common to all of the above-mention methods, except for110

Ren et al. (2015), is the need for measuring the tension of moor-
ing line forces which makes all these techniques susceptible to
measurement noise or sensor failure. As a matter of fact, not all
the mooring lines are equipped with loadcells and even when
they are, it is frequently reported that loadcells do not work115

properly and offshore personnel have little confidence in the re-
ported values; see Limited (2006). Furthermore, in the case of
abnormal sensor reading for submerged turrets, it is laborious
to figure out whether it was the the line that failed or the sen-
sor that failed. A reported mooring line failure incident for an120

instrumented North Sea FPSO in Limited (2006), confirms that
it took two weeks of data processing of the measured tension
from the other lines to conclude that a recorded tension spike
was indeed a real failure rather than an instrumentation fault.

The above circle of ideas motivates us to further develop a125

model based algorithm to detect any changes in the dynamic
behavior of a PM system due to any breakage in mooring lines.
To this end, we use the dynamic model of the PM system and
calculate the conditional probabilities of any line break using
input and output measurements only. We further develop a Dy-130

namic Hypothesis Testing (DHT) algorithm that will be used
for failure detection in mooring lines. The rationale for our ap-
proach is similar to Response Learning System (RLS) for Au-
tomatic Line Failure Detection, a suggestion proposed in Lim-
ited (2006). In RLS, by taking into account the expected per-135

formance in a measured weather condition, the response of the
systems is analyzed to check if it is consistent with the expected
performance and if not, could this change be due to change of
system stiffness as a result of line failure. As pointed out in
Limited (2006), doing so is a fairly complicated procedure that140

require further research and development and testing. However,
if successful, it has the real benefit of being a relatively simple
retrofit to existing installations, avoiding the need for expensive
intervention work such as installing load-cells and wiring.

The main contribution of the current article is the develop-145

ment of a model based supervisor in which by measuring the
inputs and outputs of the PM system, any mooring line failure
is detected without the need for measuring the tension forces in
mooring lines using load cells. To this end, a set of hypotheses
are built and the conditional probability of each hypothesis is150

calculated in an iterative manner. Using the conditional prob-
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abilities, all hypotheses are tested in parallel at each sampling
time to detect any possible line failure. Furthermore, a sufficient
condition for distinguishability of any pair of hypotheses is de-
veloped. In order to validate our proposed algorithm we use a155

high fidelity nonlinear PM simulator to run a series of numer-
ical simulations to demonstrate the efficacy of the techniques
proposed.

The structure of the paper is as follows. Section 2 proposes
a representative dynamic model of a PM system. In section160

3 we calculate the conditional probabilities of line breakage
which is the core of the proposed DHT algorithm. In Section
4 we present the sufficient conditions for distinguishability of
any pair of hypotheses. The results of numerical Monte-Carlo
simulations with stochastic signals, carried out in the Marine165

Cybernetics Simulator, that illustrate the performance of devel-
oped line breakage detection algorithm are presented in Section
5. Conclusions and suggestions for future research are summa-
rized in Section 6.

2. Control Plant Model of the PM Systems170

In this section we start by introducing the vessel model de-
scribed in Hassani & Pascoal (2015). The model admits the
realization1

ξ̇ω = Aω(ω0)ξω + Eωwω (1)
ηω = R(ψL)Cωξω (2)

ḃ = −T−1b + Ebwb (3)
η̇L = R(ψL)ν (4)

Mν̇ + Dν = τm + τc + RT (ψtot)b (5)
ηtot = ηL + ηω (6)
ηy = ηtot + n (7)

where (1) and (2) capture the 1st-order wave induced motion
in surge, sway, and yaw; equation (3) represents the 1st-order
Markov process approximating the unmodelled dynamics and
the slowly varying bias forces (in surge and sway) and torques
(in yaw) due to waves (2nd order wave induced loads), wind,
and currents, where the latter are given in Earth fixed coordi-
nates but expressed in body-axis. Vector ηω ∈ R3 captures the
vessel’s wave frequency motion due to 1st-order wave-induced
disturbances, consists of wave frequency position (xW , yW ) and

1We would like to highlight the difference between the dynamic model
(1)-(7), in particular (2), with the ones presented in Fossen & Strand (1999);
Torsetnes et al. (2004); Sørensen (2011a). The evolution of the wave frequency
components of the motion in (2), are modeled as a 2nd-order linear time invari-
ant (LTI) system, derived with Gaussian white noise, in body frame while in
Fossen & Strand (1999); Torsetnes et al. (2004); Sørensen (2011a), the wave
frequency components of the motion are modeled in Earth-fixed frame. From
a physical point of view, it is obvious that the wave frequency motions depend
on the angle between the heading of the vessel and the direction of the wave.
Assuming stationary waves, one can assume that a linear approximation can
be used to described wave-induced motions in the body frame. For further de-
tails on this, readers are refereed to Hassani & Pascoal (2015); Hassani et al.
(2012c).

wave frequency heading ψW of the vessel; wω ∈ R3 and wb ∈ R3

are zero mean Gaussian white noise vectors, and

Aω =

[
03×3 I3×3
−Ω3×3 −Λ3×3

]
, Eω =

[
03×1
I3×1

]
,

Cω =
[
03×3 I3×3

]
,

with

Ω = diag{ω2
01, ω

2
02, ω

2
03},

Λ = diag{2ζ1ω01, 2ζ2ω02, 2ζ3ω03},

where ω0i and ζi are the dominant wave frequency and relative
damping ratio, respectively. Matrix T = diag(Tx,Ty,Tψ) is a
diagonal matrix of positive bias time constants and Eb ∈ R3×3

is a diagonal scaling matrix. Vector ηL ∈ R3 consists of low fre-
quency, Earth-fixed position (xL, yL) and low frequency heading175

ψL of the vessel relative to an Earth-fixed frame, ν ∈ R3 repre-
sents the velocities decomposed in a vessel-fixed reference, and
R(ψL) is the standard orthogonal yaw angle rotation matrix (see
Fossen (2011) for more details). Equation (5) describes the ves-
sels’s low frequency motion at low speed (see Fossen (2011)),180

where M ∈ R3×3 is the generalized system inertia matrix in-
cluding zero frequency added mass components, D ∈ R3×3 is
the linear damping matrix, τc ∈ R3 is a control vector of gen-
eralized forces generated by the propulsion system, which can
produce surge and sway forces as well as a yaw moment, and185

τm ∈ R3 is the generalized forces vector generated by the moor-
ing lines. Vector ηtot ∈ R3 represents the vessel’s total motion,
consisting of total position (xtot, ytot) and total heading ψtot of
the vessel. Finally, (7) represents the position and heading mea-
surement equation, where n ∈ R3 is zero-mean Gaussian white190

measurement noise.
In general, a mooring system consists of a number of moor-

ing lines that connect the vessel, directly or through a turret, to
an anchor on the sea floor. The lines are composed of synthetic
fiber rope, wire and chain or a combination of the three. The
generalized mooring force of a spread mooring system, pro-
jected in horizontal-plane, can be formulated as

τm = −RT (ψtot)gmo(ηL) − dmo(ν) (8)

where gmo ∈ R3×3 (and Gmo) is an Earth fixed restoring term
and dmo ∈ R3×3 (and Dmo) is the additional damping term due
to the mooring system. To calculate the nonlinear mooring line
characteristics the reader is referred to Aamo & Fossen (2000);
He et al. (2014) and also dedicated software programs for ma-
rine slender structures, such as RIFLEX Fylling et al. (2011).
Linearizing the generalized mooring force τm, one can model
the mooring line effects as extra damping and restoring terms
in the system in the form of2

τm ≈ −GmoRT (ψtot)ηL − Dmoν. (9)

2see Strand et al. (1998b) for details in development of linear mooring
model.
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Combining 9 and the vessels dynamic model in 1-7, the equa-
tion of the motion for PM system can be represented as

ξ̇ω = Aω(ω0)ξω + Eωwω (10)
ηω = R(ψL)Cωξω (11)

ḃ = −T−1b + Ebwb (12)
η̇L = R(ψL)ν (13)

Mν̇ + (D+Dmo)ν + GmoRT (ψtot)ηL

= τc + RT (ψtot)b (14)
ηtot = ηL + ηω (15)
ηy = ηtot + n. (16)

In what follows we use a number of assumptions (that are
commonly adopted in the literature, see Strand (1999); Strand
& Fossen (1999); Fossen (2000); Loria et al. (2000); Torsetnes
et al. (2004)):195

Assumption 1 Position and heading sensor noise are neglected,
that is n = 0, since the measurement error induced by measure-
ment noise is negligible compared to the wave-induced motion.
Assumption 2 The amplitude of the wave-induced yaw mo-
tion ψω is assumed to be small, that is, less than 2-3 degrees200

during normal operation of the vessel and less than 5 degrees
in extreme weather conditions. Hence, R(ψL) ≈ R(ψL + ψW ).
From Assumption 1 it follows that R(ψL) ≈ R(ψy), where
ψy � ψL + ψW denotes the measured heading.
Assumption 3 The time-derivative of the total heading ψ̇tot is205

small and close to zero (low speed assumption).
We will also exploit the model property that the bias time con-
stant in the x and y directions are equal, i.e., Tx = Ty.

Let us define a new coordinates of vessel parallel coordinates
as introduced in Fossen (2011); Sørensen (2011a) and Fossen
& Perez (2009a). Vessel parallel coordinates are defined in a
reference frame fixed to the vessel, with axes parallel to the
Earth-fixed frame. Vector ηp

L ∈ R
3 consists of the low frequency

position (xp
L, y

p
L) and low frequency heading ψ

p
L of the vessel

expressed in body coordinates, defined as

η
p
L = RT (ψtot)ηL. (17)

Computing its derivative with respect to time yields

η̇
p
L = ṘT (ψtot)ηL + RT (ψtot)η̇L

= ṘT (ψtot)R(ψtot)η
p
L + RT (ψtot)R(ψL)ν (18)

Using a Taylor series to expand RT (ψtot) about ψL and neglect-
ing the higher order terms, it follows that

RT (ψtot)R(ψL) � I + ψWS , (19)

where

S =

 0 1 0
−1 0 0
0 0 0

 .
Using simple algebra we obtain

ṘT (ψtot)R(ψtot) = ψ̇totS . (20)

From (18), (19) and (20) we conclude that

η̇
p
L ≈ ψ̇totS η

p
L + ν + ψWS ν. (21)

We now study the time evolution of the slowly varying bias
forces, b, expressed in the vessel parallel coordinates, bp, as
follows:

bp = RT (ψtot)b. (22)

Clearly,
b = R(ψtot)bp, (23)

and differentiating from both sides yields

ḃ = Ṙ(ψtot)bp + R(ψtot)ḃp. (24)

Recalling (12), (23) and (24) we now have

Ṙ(ψtot)bp + R(ψtot)ḃp = −T−1R(ψtot)bp + Ebwb. (25)

Reordering (25) and multiplying both sides by RT (ψtot) gives

ḃp = −RT (ψtot)T−1R(ψtot)bp − RT (ψtot)Ṙ(ψtot)bp

+ RT (ψtot)Ebwb. (26)

Using the assumption that Tx = Ty, it can be checked
that RT (ψtot)T = TRT (ψtot); simple algebra also shows that
RT (ψtot)Ṙ(ψtot) = −ψ̇totS .
Equation (26) can be expressed as

ḃp = −T−1bp + ψ̇totS bp + RT (ψtot)Ebwb. (27)

Summarizing the equations above yields

ξ̇ω = Aω(ω0)ξω + Eωwω (28)
ηω = R(ψL)Cωξω (29)

ḃp = −T−1bp + ψ̇totS bp + RT (ψtot)Ebwb (30)
η̇

p
L = ψ̇totS η

p
L + ν + ψWS ν (31)

Mν̇ + (D + Dmo)ν + Gmoη
p
L = τc + bp (32)

Moreover, using assumptions 1, 2 and 3 a linear model is ob-
tained that is given by

ξ̇ω = Aω(ω0)ξω + Eωwω (33)

ηb
ω = Cωξω (34)

ḃp = −T−1bp + w f
b (35)

η̇
p
L = ν (36)

Mν̇ + (D + Dmo)ν + Gmoη
p
L = τc + bp (37)

η
f
y = η

p
L + ηb

ω (38)

where ηb
ω are wave frequency components of motion in body-

coordinate axis, and w f
b and η

f
y consists of a new modified210

disturbance and a modified measurement defined by w f
b =

RT (ψy)Ebwb and η f
y = RT (ψy)ηy, respectively.3

3When designing observers for wave filtering in dynamic positioning, since
the controller regulates the heading of the vessel, the designer can assign a new
intensity to w f

b ; however, assigning the intensity of the noise in practice requires
considerable expertise.
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3. Dynamic Hypothesis Testing

Before starting our discussion on DHT, we represent the
equations describing the kinematics and the dynamics of the
PM system in the following standard form for multiple-input-
multiple-output (MIMO)

ẋ(t) = Ax(t) + Bu(t) + Lw(t), (39a)
y(t) = Cx(t) + n(t), (39b)

where x(t) = [ξωT (t) bpT (t) η
p
L

T (t) νT (t)]T ∈ R15 denotes
the state of the system, u(t) = M−1τc(t) ∈ R3 its control in-
put, y(t) = η

f
y (t) ∈ R3 its measured noisy output, w(t) =

[wω
T (t) w f

b
T

(t)]T ∈ R6 an input plant disturbance that can-
not be measured, and n(t) ∈ R3 is the measurement noise. The
equations in (39) are simply a compact way of presenting equa-
tions in (33)-(38); A(ω0, θ1, θ2), B, L and C are defined

A =

 Aω(ω0) O O O
O −T−1 O O
O O O I
O I −M−1Gmo −M−1(D+Dmo)

 B =

[ O
O
O
I

]
L =

[ Eω O
O I
O O
O O

]
C = [ Cω O I O ] , (40)

where O and I are null and identity matrices of proper di-
mensions. Vectors w(t) and v(t) are zero-mean white Gaussian215

signals, mutually independent with intensities E{w(t)wT (τ)} =

Qδ(t − τ) and E{v(t)vT (τ)} = Rδ(t − τ). The initial condition
x(0) of (39) is a Gaussian random vector with mean and covari-
ance given by E{x(0)} = 0 and E{x(0)xT (0)} = Σ(0), respec-
tively. Before taking the discursion a stage further, let us em-220

phasis that the matrix A depends on Dmo and Gmo. Any moor-
ing line break will change Dmo and Gmo which itself leads to a
change in matrix A. That being said, one should expect that any
changes in configuration of mooring lines, such as mooring line
breakage or change of pre-tension in mooring lines, will change225

the dynamic behavior of the PM systems (by changes in matrix
A).

In what follows, without loss of generality, we consider the
case of only single line failure4. Let us assume the PM system
consists of N−1 mooring lines; hence, the A matrix can take one
of N possible configurations (N − 1 possible line break config-
uration plus one configuration without any fault). Now we can
reformulate the problem as the case of N hypotheses Hi, i =

1, 2, ·,N among which only one is true; let Z(t) ≡ {U(t),Y(t)}
denote the time history of the observed input and output where
Y(t) ≡ {y(1), y(2), · · · , y(t)} and U(t) ≡ {u(1), u(2), · · · , u(t)}.
Let us take H as the DHT random variable which takes the
value H = Hi on the event that the hypothesis Hi is true. Let
us further assume that probability of any hypotheses being true
at t = 0 is equal, i.e. Pr{H = Hi} = 1

N for i = 1, 2, · · · ,N.
In what follows, we establish an algorithm to calculate, in real
time, the conditional probability of each hypothesis based on
the observation vector, i.e.

hi(t) := Pr{H = Hi|Z(t)} i = 1, 2, · · · ,N. (41)

4The extension of the algorithm to cover any combination of mooring line
failure is straightforward.

Rationally, as more measurement are available, one should be-
come able to to calculate conditional hypothesis probabilities
hi(t) with more accuracy, which in turn leads to more certainty230

in the choice of the true hypothesis. To calculate the conditional
probability of each hypothesis in an iterative manner, we take
a Bayesian approach such that at any sampling time instant, by
relying on our current belief about all the hypotheses, we only
study the information hidden in the most recent measurement.235

To this end, by using Bayes rule, it follows that

Pr{H = Hi

∣∣∣Z(t + 1)} =
Pr{H = Hi , Z(t + 1)}

Pr{Z(t + 1)}
(42)

=
Pr{H = Hi , z(t + 1) , Z(t)}

Pr{z(t + 1) , Z(t)}

or equivalently,

Pr{H = Hi

∣∣∣Z(t + 1)} (43)

=
Pr{z(t + 1) , H = Hi

∣∣∣Z(t)}Pr{Z(t)}

Pr{z(t + 1)
∣∣∣Z(t)}Pr{Z(t)}

=
Pr{z(t + 1) , H = Hi

∣∣∣Z(t)}

Pr{z(t + 1)
∣∣∣Z(t)}

where z(t + 1) =
(
u(t + 1), y(t + 1)

)
is the most recent measure-

ment of input and output. Applying the conditional probability
theorem to the numerator of (43) yields

Pr{H = Hi

∣∣∣Z(t + 1)} (44)

=
Pr{z(t + 1)|H = Hi , Z(t)}Pr{H = Hi|Z(t)}

Pr{z(t + 1)
∣∣∣Z(t)}

.

Furthermore, applying the total probability theorem to the de-
nominator of (44) yields

Pr{H = Hi

∣∣∣Z(t + 1)} (45)

=
Pr{z(t + 1)|H = Hi , Z(t)}Pr{H = Hi|Z(t)}∫

H
Pr{z(t + 1)

∣∣∣Z(t) , H}Pr{H
∣∣∣Z(t)} dH

,

where H is the sample space of the random variable H
and since H represents a finite set of variable, i.e. H =

{H1,H2, · · · ,HN}, equation (45) reduces to

Pr{H = Hi

∣∣∣Z(t + 1)} (46)

=
Pr{z(t + 1)|H = Hi , Z(t)}Pr{H = Hi|Z(t)}∑N

k=1 Pr{z(t + 1)
∣∣∣Z(t) , H = Hk}Pr{H = Hk

∣∣∣Z(t)}
.

Furthermore, since the control action is a deterministic signal
and known to us, equation (46) can be simplified as

hi(t + 1) =
Pr{y(t + 1)|H = Hi , Z(t)}∑N

k=1 Pr{y(t + 1)
∣∣∣Z(t) , H = Hk}hk(t)

hi(t). (47)

Before continuing our discussion on calculation of the condi-
tional probability of each hypothesis let us highlight an impor-
tant property of (47). In fact, the proposed DHT algorithm re-
lies on its current “credence” to adaptively settle on the most
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“factual” action by exploiting the information coded in the most
recent measurement. The iterative nature of (47) allows us to
calculate, at each sampling time, the conditional probability of
each hypothesis only based on the most recent measurement
and our current credence about each hypothesis, i.e. conditional
probability of the hypothesis at previous sampling time. Go-
ing back to (47), to evaluate the hi(t + 1) one need to calculate
Pr{y(t + 1)|H = Hi , Z(t)} for i = 1, 2, · · · ,N. The linearity of
the system (39) and the fact that the disturbance and measure-
ment noise are Gaussian, it is straightforward to conclude that
the probability density function Pr{y(t + 1)|H = Hi , Z(t)} for
i = 1, 2, · · · ,N is of Gaussian nature and it suffice to find its
mean and covariance to evaluate the distribution. Furthermore,
these quantities (mean and covariance matrix) can be iteratively
calculated by the Kalman filter incorporating the assumption
thatH = Hi (see Anderson & Moore (1979))5

x̂Hi (t + 1) = AHi x̂Hi (t) + Bu(t) + KHi ỹHi (t), (48a)
ỹHi (t) = y(t) − ŷHi (t) (48b)
ŷHi (t) = Cx̂Hi (t), (48c)

KHi = ΣHiC
T [CΣHiC

T + R]−1 (48d)

where x̂Hi (t + 1) is estimation of the state x(t) based on the
observation history Z(t) and assuming H = Hi (or simply
x̂Hi (t + 1) = E{x(t + 1)|H = Hi , Z(t)} where E{·} denotes
expected value operator); vector ỹHi (t) denotes the innovation
vector or one-step error in predicting the output measurement
vector, and ŷHi (t) denotes the estimation of the output vector
y(t) based on the observation history Z(t − 1) and assuming
H = Hi (or simply ŷHi (t) = E{y(t)|H = Hi , Z(t − 1)}). The
Kalman filter gain is denoted by KHi and the one-step error co-
variance matrix in estimating the states, denoted by ΣHi , is the
solution of the discrete Riccati equation

0 = − ΣHi + AHiΣHi A
T
Hi

+ LQLT

− AT
Hi

ΣHiC
T [CΣHiC

T + R]−1CΣHi AHi , (49)

and it is assumed that [AHi , L] and [AHi ,C] for i = 1, . . . ,N are
controllable and observable, respectively.

It is straightforward to verify that the covariance of the output
estimation vector can be found as

SHi = CΣHiC
T + R, (50)

from which, by using the Gaussian distribution for Pr{y(t +

1)
∣∣∣Z(t) , H = Hi}, the conditional probability of each hypothe-

sis in (47) reduces to

hi(t + 1) =

e
− 1

2 ỹT
Hi

(t+1)S−1
Hi

ỹHi
(t+1)

√
(2π)3 |SHi |∑N

k=1 hk(t) e
− 1

2 ỹT
Hk

(t+1)S−1
Hk

ỹHk
(t+1)

√
(2π)3 |SHk |

hi(t). (51)

5For simplicity in presentation of the results, we have used the formulation
for steady state Kalman Filter, however, the results are valid for time varying
kalman filter.

At this stage we would like to highlight that in order to cal-
culate the conditional probabilities of all the hypothesis in an240

iterative manner, we need to run N Kalman filters in parallel.
Each Kalman filter incorporates one of the N hypotheses. This
means that N Kalman filters are designed using the (39) for N
different realization of A matrix (N − 1 possible line break con-
figurations plus one configuration without any fault). Having245

calculated the probabilities of each hypothesis being true, one
can setup an automatic alarming system which follows the evo-
lution of the conditional probabilities and raises proper alarm
and inspection procedures as soon as a faulty condition is iden-
tified.250

In what follows we conclude this Section by proving that the
space of N hypotheses forms a finite probability space.

Theorem 1. Suppose that the initial conditions hi(0) satisfy
hi(0) ∈ (0, 1) and

∑N
i=1 hi(0) = 1. Then, for every t ≥ 0 the

sample space H = {H1,H2, . . . ,HN} together with the func-255

tion P : H −→ R+, where at time t the function P(·) is defined
as P(Hi) = hi(t), forms a finite probability space.

Proof. We need to show that ∀H ∈ H , P(H) > 0 and∑
H∈H P(H) = 1.

Defining Psum(t) :=
∑N

i=1 hi(t) and computing its time-evolution
using (51) yields

Psum(t + 1) =

N∑
i=1

e
− 1

2 ỹT
Hi

(t+1)S−1
Hi

ỹHi
(t+1)

√
(2π)3 |SHi |∑N

k=1 hk(t) e
− 1

2 ỹT
Hk

(t+1)S−1
Hk

ỹHk
(t+1)

√
(2π)3 |SHk |

hi(t)

=

∑N
i=1 hi(t) e

− 1
2 ỹT
Hi

(t+1)S−1
Hi

ỹHi
(t+1)

√
(2π)3 |SHi |∑N

k=1 hk(t) e
− 1

2 ỹT
Hk

(t+1)S−1
Hk

ỹHk
(t+1)

√
(2π)3 |SHk |

= 1.

Therefore, if Psum(0) = 1, then Psum(t) = 1, ∀t ≥ 0. We now
show, that if hi(0) > 0, then hi(t) > 0, ∀t > 0. From (51), if
hi(0) > 0, then it follows immediately that hi(t) will be always260

positive.

4. Distinguishability of Hypotheses

In this Section we study under what conditions any pair of
hypotheses are distinguishable from each other. More specifi-
cally, we examine the necessary condition under which the con-265

ditional probabilities of the true hypothesis converge to one.
The following theorem provides conditions for convergence of
the conditional probability of the true hypothesis to one.

Theorem 2. Let Hi be the true hypothesis and let H i =

{H1,H2, · · · ,HN} \ {Hi} be the set of all remaining hypothe-
sis (except Hi). Suppose that there exist positive constants n1,
t1, and ε such that for all t ≥ t1, n ≥ n1, and H j ∈ H i the
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following condition holds:

1
n

t+n−1∑
τ=t

(1
2

ỹT
Hi

(τ)S −1
Hi

ỹHi (τ)
)
−

1
2

ln |SHi | + ε

<
1
n

t+n−1∑
τ=t

(1
2

ỹT
H j

(τ)S −1
H j

ỹH j (τ)
)
−

1
2

ln |SH j | (52)

Then, conditional probability of true hypothesis, i.e. hi(t) gov-
erned by (51) converges to one as t → ∞.270

Proof. Let us define

L j
i (t) =

Pr{H = H j|Z(t)}
Pr{H = Hi|Z(t)}

=
h j(t)
hi(t)

; H j ∈H i.

Using (51) we obtain

L j
i (t + 1) =

e
− 1

2 ỹT
H j

(t+1)S−1
H j

ỹH j
(t+1)

√
|SH j |

e
− 1

2 ỹT
Hi

(t+1)S−1
Hi

ỹHi
(t+1)

√
|SHi |

L j
i (t),

from which it follows that

L j
i (t + n) =

t+n−1∏
τ=t

e
− 1

2 ỹT
H j

(τ+1)S−1
H j

ỹH j
(τ+1)

√
|SH j |

e
− 1

2 ỹT
Hi

(τ+1)S−1
Hi

ỹHi
(τ+1)

√
|SHi |

L j
i (t). (53)

Taking logarithms of both sides,

ln
L j

i (t + n)

L j
i (t)

=

t+n−1∑
τ=t

ln(
e
− 1

2 ỹT
H j

(τ+1)S −1
H j

ỹH j (τ+1)√
|SH j |

)

−

t+n−1∑
τ=t

ln(
e−

1
2 ỹT
Hi

(τ+1)S −1
Hi

ỹHi (τ+1)√
|SHi |

)

= −

t+n−1∑
τ=t

(1
2

ỹT
H j

(τ + 1)S −1
H j

ỹH j (τ + 1)
)

+
n
2

ln |SH j |

+

t+n−1∑
τ=t

(1
2

ỹT
Hi

(τ + 1)S −1
Hi

ỹHi (τ + 1)
)
−

n
2

ln |SHi |. (54)

For t ≥ t1 and n ≥ n1, by applying condition (52), we can
conclude that there exists a positive ε such that

ln
L j

i (t + n)

L j
i (t)

< −nε (55)

or, equivalently,
L j

i (t + n) < e−nεL j
i (t), (56)

from which, it follows that L j
i (t) =

Pr{H=H j |Z(t)}
Pr{H=Hi |Z(t)} converges to

zero for all H j ∈ H i, as n → ∞. Since the sample space
H = {H1,H2, . . . ,HN} together with the defined probability
function in Theorem 1 form a finite probability space, it is now
straightforward to conclude that Pr{H = Hi|Z(t)} → 1, and275

Pr{H = H j|Z(t)} → 0 ∀H j ∈H i.

Seabed

Sea level

Figure 1: Graphical presentation of a vessel with the thruster assisted position
mooring system.

Theorem 2 shows that as long as the condition (52) holds, any
pair of hypotheses are distinguishable from each other and for
sufficiently large n (number of collected measurements) the true
hypothesis will be selected. Furthermore, for for Linear Time-280

Invariant (LTI) systems (and hence, the PM system described in
(39)), the defined distinguishability condition can be verified in
advance and off-line.

5. Numerical Simulations

The proposed procedure for detection of mooring line break-285

age is now evaluated using the Marine Cybernetics Simu-
lator (MCSim) Sørensen et al. (2003); Perez et al. (2005,
2006) which is later enhanced to Marine System Simulator
(MSS) Fossen & Perez (2009b). The MCSim is a modular
multi-disciplinary simulator based on Matlab/Simulink, devel-290

oped at the Norwegian University of Science and Technology
(NTNU). It includes high fidelity environmental module, simu-
lation plants and actuators models, and guidance and navigation
control modules. The environmental section of MCSim con-
tains different wave models, surface current models, and wind295

models. The vessel dynamics module consists of a wave fre-
quency model and a low frequency model, based on the stan-
dard 6DOF vessel dynamics, whose inputs are the environmen-
tal loads and the interaction forces from thrusters and the exter-
nal connected systems. It also captures hydrodynamic effects,300

generalized coriolis and centripetal forces, nonlinear damping
and current forces, and generalized restoring forces. The actu-
ation unit of MCSim, i.e. thruster and shaft module, contains
thrust allocation routine for non-rotating thrusters, thruster dy-
namics and local thruster control. The control library contains305

different controllers, namely, nonlinear multivariable PID con-
troller, for DP.

Numerical simulations for a PM system with four mooring
lines, see Fig. 1, is conducted using MCSim. The vessel is
excited by waves, wind, and currents and mooring lines are ex-310

posed to the ocean current disturbances. The Joint North Sea

7



0

0.5

1

H
0

PrfH = HijZ(t)g

0

0.5

1

H
1

0

0.5

1

H
2

0

0.5

1

H
3

0 50 100 150 200 250 300
time (s)

0

0.5

1

H
4

Figure 2: Time evolution of the conditional probabilities of hypothesis.

Wave Project (JONSWAP) Hasselmann et al. (1973) is used to
simulate irregular waves. We construct the set of hypotheses as
H = {H0,H1,H2,H3,H4} whereH0 is the hypothesis that all
the mooring lines in the PM system are intact and H1, · · · ,H4315

denote hypotheses of mooring line 1, · · · , 4 breakage, respec-
tively.

Fig. 2 presents the results of simulations where the PM sys-
tem is initially moored by all four mooring lines and at t = 150
(sec) line number two breaks. The results show that the true320

hypotheses is identified in few seconds.

6. Conclusions and Future Research

This article presented and analyzed a new algorithm for de-
tection of mooring line breakage in thruster assisted position
mooring, with no tension measurement, based on iterative Dy-325

namic Hypothesis Testing. To this end, a set of different hy-
potheses were formed in which one hypothesis is set up assum-
ing that all mooring lines are intact and the rest of hypothe-
ses are build assuming that a single, or multiple, line breakage
has happened. After deriving a dynamic model of the thruster330

assisted position mooring system, the conditional probabilities
of each hypothesis were computed in an iterative manner. It
was shown that the set of the hypotheses and the calculated
conditional probabilities form a finite probability space. We
also studied the necessary condition under which any pair of335

hypotheses are distinguishable. Numerical simulation demon-
strated the efficacy of the proposed methodology and confirmed
that the method developed holds promise for practical applica-
tions. Application of the method developed to model test exper-
iments is planned for near future. Another topic that warrants340

consideration is that of deriving the conditional probabilities of
hypotheses under non-Gaussian disturbances.
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