
Navigating OWL 2 Ontologies through Graph
Projection?

Ahmet Soylu1,2 and Evgeny Kharlamov3

1 Norwegian University of Science and Technology, Gjøvik, Norway
ahmet.soylu@ntnu.no

2 SINTEF Digital, Oslo, Norway
3 University of Oxford, Oxford, the UK

evgeny.kharlamov@cs.ox.ac.uk

Abstract. Ontologies are powerful, yet often complex, assets for rep-
resenting, exchanging, and reasoning over data. Particularly, OWL 2
ontologies have been key for constructing semantic knowledge graphs.
Ability to navigate ontologies is essential for supporting various knowl-
edge engineering tasks such as querying and domain exploration. To this
end, in this short paper, we describe an approach for projecting the non-
hierarchical topology of an OWL 2 ontology into a graph. The approach
has been implemented in two tools, one for visual query formulation and
one for faceted search, and evaluated under different use cases.

Keywords: OWL 2 · Ontologies · Graph navigation · Knowledge graphs.

1 Introduction

Ontologies are powerful, yet often complex, assets for representing, exchanging,
and reasoning over data. Particularly, OWL 2 ontologies [4] have been key for
constructing semantic knowledge graphs (e.g., [7,8]). A knowledge graph describes
real world entities and their interrelations [17]. They have been used both in
academia, such as Yago [3] and DBpedia [9], and in industry such as Google’s
Knowledge Graph, Facebook’s Graph Search, and Microsoft’s Satori. Semantic
knowledge graphs are typically stored or exported as RDF datasets, which allow
for storing sparse and diverse data in an extensible and adaptable way [16].
Semantics of such datasets are typically encoded in OWL 2 ontologies.

Ability to navigate ontologies is essential for understanding the domain of
interest (e.g., visual exploration) [6,10], its representation, and underlying data;
and for supporting various other knowledge engineering tasks such as querying
(e.g., query by navigation) [12,14]. However, it is not straight forward to explore
implicit and explicit connections between the classes of an OWL 2 ontology, which
is basically a collection of logical axioms. To this end, in this short paper, we
describe an approach for projecting the non-hierarchical class topology of an OWL
2 ontology into a graph. This approach has been implemented in two semantic

? Funded by EU H2020 TheyBuyForYou (780247) and FP7 Optique (318338) projects.



2 Ahmet Soylu and Evgeny Kharlamov

tools, namely OptiqueVQS[11] for visual query formulation and SemFacet [1] for
faceted search and evaluated under different use cases.

The rest of the paper is structured as follows. Sect. 2 presents our graph
projection approach from ontologies, while Sect. 3 presents the tools using our
approach. Finally, Sect. 4 concludes the paper.

2 Graph Projection

Our goal for graph projection is, given an ontology, to create a directed labelled
graph, called navigation graph [1], whose nodes correspond to the named classes
and datatypes in the ontology and edges between nodes to the object properties
and datatype properties. Let C1, C2, and C3 be classes, r1, r2, and r3 object
properties, d1 a datatype property, i1 and i2 individuals, and dt1 a data type.
First, each class and datatype in the ontology is translated to a node in the
navigation graph. Then we add edges of the form r1(C1, C2) and d1(C1, dt1)
derived from the axioms of the ontology. The types of axioms resulting in an edge
are presented with examples in the followings using description logic (DL) [2].

Ontologies have a propagative effect on the amount of information to be
presented. This case is considered in two forms, namely the top-down and bottom-
up propagation of property restrictions [5,14]. The first form emerges from the
fact that, in an ontology, explicit restrictions attached to a class are inherited by
its subclasses. The second form is rooted from the fact that the interpretation of
an OWL class also includes the interpretations of all its subclasses. Therefore, for
a given class, it may also make sense to derive edges from the (potential) object
and datatype properties of its subclasses and superclasses.

2.1 Edges through Object Properties

Domains and Ranges: Domain and range axioms using named classes are
translated to an edge. For example, axioms given in Ex. 1 map to edge r1(C1, C2).

∃r1.> v C1 and> v ∀r1.C2 (1)

∃r1.> v C1 and> v ∀r1.(C2 t C3) (2)

If a complex class expression, formed through intersection (u) or union (t),
appears as a domain and/or range, then an edge is created for each pair of domain
and range classes. For example, axioms given in Ex. 2 map to edges r1(C1, C2)
and r1(C1, C3).

Object Property Restrictions: Object property restrictions used in class de-
scriptions, formed through existential quantification (∃), universal quantification
(∀), individual value restriction, max (≥), min (≤), and exactly (=), are mapped
to edges. For example, axioms given in Ex. 3 to 5 map to r1(C1, C2). Note that
in Ex. 5, there is a complex class expression on the left-hand-side.



Navigating OWL 2 Ontologies through Graph Projection 3

C1 v ∃r1.C2 (3)

C1 ≡≤n r1.C2 (4)

∀r1.C1 v C2 (5)

Axioms given in Ex. 6 include an individual value restriction and an edge is
created with the type of individual, that is r1(C1, C2).

C1 v ∃r1.{i1} , and i1 : C2 (6)

Axiom given in Ex. 7 includes a complex class expression. In this case, an
edge is created for each named class, that is r1(C1, C2) and r1(C1, C3).

C1 v ∃r1.(C2 t C3) (7)

Given an enumeration of individuals, an edge is created for each individual’s
type. For example, axioms given in Ex. 8 map to two edges, that is r1(C1, C2)
and r1(C1, C3).

C1 v ∃r1.{i1} t {i2} , i1 : C2 , and i2 : C3 (8)

Inverse Properties: Given an edge in the navigation graph such as r1(C1, C2)
and an inverse property axiom for the corresponding object property such as
given in Ex. 9, a new edge is created for the inverse property, that is r1(C2, C1).

r1 ≡ r1 (9)

Role Chains: Given two edges r1(C1, C2) and r2(C2, C3) in the navigation
graph, and a role chain axiom between r1, r2, r3 such as given in Ex. 10, a new
edge is created for r3, that is r3(C1, C3).

r1 ◦ r2 v r3 (10)

Top-down Propagation: Given an edge r1(C1, C2) in the navigation graph
and a subclass axiom such as as given in Ex. 11, a new edge is added to the
graph, that is r1(C3, C2). Similar edges could be created for subproperties.

C3 v C1 (11)

Bottom-up Propagation: Given an edge r1(C1, C2) in the navigation graph
and a subclass class axiom such as given in Ex. 12, a new edge is added to the
graph, that is r1(C3, C2). Similar edges could be created for superproperties.

C1 v C3 (12)



4 Ahmet Soylu and Evgeny Kharlamov

2.2 Edges through Datatype Properties

Domains and Ranges: Domain and range axioms using datatype properties
are translated to an edge. For example, axioms given in Ex. 13 map to an edge,
that is d1(C1, dt1).

∃d1.DatatypeLiteral v C1 and> v ∀r1.dt1 (13)

Datatype Property Restrictions: Datatype property restrictions, formed
through existential quantification (∃), universal quantification (∀), max (≥), min
(≤), exactly (=), and value are mapped to edges. For example, axiom given in
Ex. 14 maps to d1(C1, dt1).

C1 v ∃d1.dt1 (14)

Top-down Propagation: Given an edge d1(C1, dt1) in the navigation graph
and a subclass axiom such as as given in Ex. 15, a new edge is added to the
graph, that is d1(C2, dt1). Similar edges could be created for subproperties.

C2 v C1 (15)

Bottom-up Propagation: Given an edge d1(C1, dt1) in the navigation graph
and a subclass class axiom such as given in Ex. 16, a new edge is added to the
graph, that is d1(C3, dt1). Similar edges could be created for superproperties.

C1 v C3 (16)

3 Applications

Variants of this approach have been implemented and evaluated in OptiqueVQS
[11], a visual query formulation tool, and SemFacet [1], a faceted search tool.
Both interfaces support tree-shaped conjunctive queries.

OptiqueVQS (see Fig. 1) is a visual query system. It allows users to navigate
the conceptual space and each traversal from a class to another adds a typed
variable-node and object property connecting it to the query graph. OptiqueVQS
was deployed and evaluated in different use cases, including Siemens’ case for
sensor data [15], Statoil’s case for oil and gas [11], and on generic datasets [13].
SemFacet (see Fig. 2) is full-fledged general-purpose faceted search interface. In
typical faceted search, users are presented with facet-values organised in groups
according to facet-names and it is often not allowed to navigate between classes.
SemFacet allows end users to navigate between classes and browse data sets at
the same time. The interface was deployed and evaluated over a slice of Yago
database [1].



Navigating OWL 2 Ontologies through Graph Projection 5

Fig. 1. OptiqueVQS over a use case provided by Siemens.

Fig. 2. SemFacet over Yago database.



6 Ahmet Soylu and Evgeny Kharlamov

4 Conclusions

In this paper, we presented an approach, together with two example applications,
for navigating OWL 2 ontologies by projecting them into graphs through har-
vesting a set of axioms. A future challenge is to enable users to navigate distant
classes that are not directly connected but are multiple edges away. We call this
non-local navigation, which could be useful for navigating large class networks.

References

1. Arenas, M., et al.: Faceted search over RDF-based knowledge graphs. Journal of
Web Semantics 37-38, 55–74 (2016)

2. Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, New York, NY, USA (2003)

3. Biega, J., et al.: Inside YAGO2s: A Transparent Information Extraction Architecture.
In: Proceedings of the 22nd International Conference on World Wide Web (WWW
2013). pp. 325–328. ACM, New York, NY, USA (2013)

4. Grau, B.C., et al.: OWL 2: The next step for OWL. Journal of Web Semantics 6(4),
309–322 (2008)

5. Grau, B.C., et al.: Towards Query Formulation, Query-Driven Ontology Extensions
in OBDA Systems. In: Proceedings of the 10th International Workshop on OWL:
Experiences and Directions (OWLED 2013) (2013)

6. Katifori, A., et al.: Ontology Visualization Methods – a Survey. ACM Computing
Surveys 39(4) (2007)

7. Kharlamov, E., et al.: Ontology Based Data Access in Statoil. Journal of Web
Semantics 44, 3–36 (2017)

8. Kharlamov, E., et al.: Semantic access to streaming and static data at Siemens.
Journal of Web Semantics 44, 54–74 (2017)

9. Lehmann, J., et al.: DBpedia - A Large-scale, Multilingual Knowledge Base Ex-
tracted from Wikipedia. Semantic Web 6(2), 167–195 (2015)

10. Lohmann, S., et al.: Visualizing ontologies with VOWL. Semantic Web 7(4), 399–419
(2016)

11. Soylu, A., et al.: OptiqueVQS: a Visual Query System over Ontologies for Industry.
Semantic Web (to appear)

12. Soylu, A., et al.: Ubiquitous web navigation through harvesting embedded semantic
data: A mobile scenario. Integrated Computer-Aided Engineering 19(1), 93–109
(2012)

13. Soylu, A., et al.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based
visual query system for end users. Universal Access in the Information Society
15(1), 129–152 (2016)

14. Soylu, A., et al.: Ontology-based end-user visual query formulation: Why, what,
who, how, and which? Universal Access in the Information Society 16(2), 435–467
(2017)

15. Soylu, A., et al.: Querying industrial stream-temporal data: An ontology-based
visual approach. Journal of Ambient Intelligence and Smart Environments 9(1),
77–95 (2017)

16. Suchanek, F.M., et al.: Knowledge Bases in the Age of Big Data Analytics. Pro-
ceedings of the VLDB Endowment 7(13), 1713–1714 (2014)

17. Yan, J., et al.: A Retrospective of Knowledge Graphs. Frontiers of Computer Science
12(1), 55–74 (2018)


	Navigating OWL 2 Ontologies through Graph Projection

