
This is the Accepted version of the article 

Citation:   
NICOLAS FERRY, FRANCK CHAUVEL,  HUI SONG, ALESSANDRO ROSSINI, MAKSYM 
LUSHPENKO, ARNOR SOLBERG
(2018) CloudMF: Model-Driven Management of Multi-Cloud Applications, ACM Transactions 
on Internet Technology, 2018, 18:2, 16:1-16:24 , DOI: 10.1145/3125621

This file was downloaded from SINTEFs Open Archive, the institutional repository at SINTEF 
http://brage.bibsys.no/sintef  

This is the Accepted version.
It may contain differences form the journal's pdf version

NICOLAS FERRY, FRANCK CHAUVEL,  HUI SONG, ALESSANDRO ROSSINI, MAKSYM LUSHPENKO, 
ARNOR SOLBERG

CloudMF: Model-Driven Management of Multi-Cloud Applications



CloudMF: Model-Driven Management of Multi-Cloud Applications

NICOLAS FERRY, SINTEF, Department of Software and Service Innovation
FRANCK CHAUVEL, SINTEF, Department of Software and Service Innovation
HUI SONG, SINTEF, Department of Software and Service Innovation
ALESSANDRO ROSSINI, EVRY Cloud Services
MAKSYM LUSHPENKO, SINTEF, Department of Software and Service Innovation
ARNOR SOLBERG, SINTEF, Department of Software and Service Innovation

While the number of cloud solutions is continuously increasing, the development and operation of large-scale and distributed
cloud applications are still challenging. A major challenge is the lack of interoperability between the existing cloud solu-
tions, which increases the complexity of maintaining and evolving complex applications potentially deployed across multiple
cloud infrastructures and platforms. In this paper, we show how the Cloud Modelling Framework (CLOUDMF) leverages
model-driven engineering (MDE) and supports the DevOps ideas to tame this complexity by providing: (i) a domain-specific
language for specifying the provisioning and deployment of multi-cloud applications, and (ii) a models@run-time environ-
ment for their continuous provisioning, deployment, and adaptation.

CCS Concepts: •Networks→Cloud computing; •Software and its engineering→Model-driven software engineering;
System modeling languages;

Additional Key Words and Phrases: Cloud computing, Multi-cloud, DevOps, Model-driven engineering, Models@run-time

ACM Reference Format:
Nicolas Ferry, Franck Chauvel, Hui Song, Alessandro Rossini, Maksym Lushpenko, and Arnor Solberg, 2018. CloudMF:
Model-Driven Management of Multi-Cloud Applications. ACM Trans. Internet Technol. 18, 2, Article 16 (January 2018), 21
pages.
DOI: https://doi.org/10.1145/3125621

1. INTRODUCTION
Cloud computing provides ubiquitous access to a shared and virtualised pool of computing resources
including processing, memory, network and storage [Mell and Grance 2011]. As it becomes pos-
sible to automate the management of these resources, cloud computing should significantly reduce
operational expenses. However, in practice the development and operation of large-scale and dis-
tributed cloud applications typically face two key obstacles: (i) the lack of interoperability between
cloud solutions and (ii) complex maintenance and evolution management.

The lack of interoperability among different cloud solutions leads to vendor lock-in and prevents
the development of multi-cloud applications (i.e., applications that can be deployed across multiple
clouds) [Petcu 2014]. As stated in the CORDIS reports [SSAI Expert Group 2010; SSAI Expert
Group 2012], “whilst a distributed data environment (IaaS) cannot be easily moved to any platform
provider (PaaS) [...], it is also almost impossible to move a service/image/environment between
providers on the same level”. This prevents cloud application providers to exploit the peculiarities
of existing cloud solutions, e.g., to optimise performance, availability, and cost.
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The second challenge is to maintain and evolve such complex cloud applications, especially in a
multi-cloud DevOps context. To shorten delivery time and foster the continuous evolution of multi-
cloud applications, we should reconcile development and operation activities [Hüttermann 2012].
The DevOps movement [Humble and Farley 2010] thus calls for better collaborations between
developers and operators. It advocates to further automate resource provisioning and deployment
to improve the flexibility and efficiency of the delivery process.

This paper describes the Cloud Modelling Framework (CLOUDMF) [Ferry et al. 2014], which
fosters the design, deployment, and maintenance of multi-cloud applications. As opposed to our
previous publications [Ferry et al. 2013; Ferry et al. 2013; Ferry et al. 2014], this paper reports on its
evaluation and includes two significant extensions: (i) the support for scalability mechanisms (i.e.,
resource pool and load balancer) and (ii) a new models@run-time environment that enables parallel
deployments and provides a language together with the mechanisms to optimise the deployment and
adaptation process.

To address the interoperability challenge, CLOUDMF relies on a model-driven approach and the
principle of “model once, generate anywhere”. CLOUDMF simplifies the design and management
of applications across multiple clouds, and their migration from one cloud to another.

CLOUDMF facilitates the management of multi-cloud applications in several ways. It supports
the DevOps ideas by providing a representation of the applications that is causally connected to
the underlying running systems using models@run-time techniques [Blair et al. 2009]. We thus
offer the same concepts to developers and operators. In addition, by supporting both IaaS and PaaS,
CLOUDMF enables several levels of control of multi-cloud applications: (i) in case of execution on
IaaS or white box PaaS solutions, it offers full control with automatic resource provisioning and
deployment of the entire cloud stack from infrastructure to application; (ii) in case of execution
on black box PaaS solutions, it offers shared control of the application. Note that if parts of the
multi-cloud application execute on IaaS or white box PaaS, CLOUDMF offers full control of these
parts.

The remainder of the paper is organised as follows. Section 2 introduces SENSAPP, the multi-
cloud application used as motivating example throughout the paper. Section 3 presents our cloud
modelling language. Section 4 describes the supporting models@run-time environment before Sec-
tion 5 details the interface it offers. Section 6 reports the evaluation of CLOUDMF in various projects
as well as the status of its current reference implementation. Section 7 presents a selection of related
work. Finally, Section 8 discusses some specificities of our DSML and highlights future research
directions before Section 9 concludes.

2. MOTIVATING EXAMPLE
SENSAPP1 is a service-oriented application for storing and exploiting large data sets collected from
sensors and devices. SENSAPP offers capabilities to register sensors, store their data, and notify
clients when new data are pushed. It consists of four main components. The Registry component
stores metadata about the sensors (e.g., description and creation date). The Database component
stores raw data from the sensors in a MongoDB database. The Notifier component sends notifica-
tions to third-party applications when relevant data are pushed (e.g., when new data collected by air
quality sensors become available). Finally, the Dispatcher component orchestrates the other com-
ponents: it receives data from the sensors, stores them in the Database according to the metadata
from the Registry, and then sends notifications when necessary. SENSAPP ADMIN uses the pub-
lic REST API of SENSAPP and provides capabilities to manage sensors and visualise data using
a graphical user interface. To be deployed, SENSAPP requires a Servlet container and a database,
while SENSAPP ADMIN requires a Servlet container only.

Hereafter, we use SENSAPP to illustrate different scenarios of provisioning and deployment. For
testing, we deploy all components on our private OpenStack IaaS, with both SENSAPP compon-

1http://sensapp.org. SENSAPP is open-source software; the source code is available at https://github.com/SINTEF-9012/
sensapp.

http://sensapp.org
https://github.com/SINTEF-9012/sensapp
https://github.com/SINTEF-9012/sensapp
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ents and MongoDB on the same virtual machine (VM). In contrast, when moving to production,
we deploy the SENSAPP ADMIN components on Amazon Elastic Beanstalk, migrate the SENSAPP
components along with a load balancer to Amazon EC2, while keeping MongoDB in the private
cloud since it may store sensitive data. This example motivates for the following CLOUDMF re-
quirements:

— Cloud provider independence (R1): CLOUDMF shall support a cloud provider-agnostic specific-
ation of the provisioning and deployment. This simplifies the design of multi-cloud applications
and prevents vendor lock-in.

— Separation of concerns (R2): CLOUDMF shall support a modular, loosely-coupled specification
of the provisioning and deployment so that the modules (i.e., sub-parts of the deployment model)
can seamlessly be substituted. This facilitates the maintenance as well as the dynamic adaptation
of the deployment topology.

— Reusability (R3): CLOUDMF shall support the specification of types (or patterns) that can be
seamlessly reused. Those ease the evolution as well as the rapid development of different variants
of a system.

— Abstraction (R4): CLOUDMF shall provide a single domain-specific language to describe de-
ployments on both IaaS and PaaS in a cloud provider-independent and -specific way. In addition,
CLOUDMF shall provide a continuously up-to-date, abstract representation of the running system.
This facilitates the reasoning, simulation, and validation of operation activities.

— White- and black-box infrastructure (R5): CLOUDMF shall support IaaS and PaaS solutions.
This requires coping with various degrees of delegation of control over underlying infrastructures
and platforms of multi-cloud applications.

— Application technology independence (R6): CLOUDMF shall be agnostic to development
paradigm and technology. This enables developers to design application with their favourite pro-
gramming languages and frameworks.

— Reconcile design- and run-time activities (R7): CLOUDMF shall offer the same language for
both the design-time specification of the deployment of multi-cloud applications and their run-
time adaptation and reconfiguration. This reduces the gap between development and operation
phases.

— Fully controlled automated deployment (R8): CLOUDMF shall support the automatic deploy-
ment of multi-cloud applications on the basis of a CLOUDML deployment model only. This helps
to reduce cycle-time. In addition, CLOUDMF shall provide the ability to fully control and adapt
the deployment process, if and only if desired.

In the next section, we present how the two main components of CLOUDMF address these re-
quirements. These two components are: (i) the Cloud Modelling Language (CLOUDML), a domain-
specific modelling language (DSML) to model the provisioning and deployment of multi-cloud ap-
plications covering both IaaS and PaaS, and (ii) a models@run-time environment for automatically
enacting the provisioning, deployment, and adaptation of these systems.

3. CLOUDML
CLOUDML is a DSML that captures the topology of cloud applications including its software com-
ponents, their connections and the underlying computing resources.

CLOUDML relies on model-driven engineering (MDE), a branch of software engineering that
focuses on models rather than source code and improves the productivity, quality, and cost-
effectiveness of software development. Model transformation automatically generates (parts of)
software systems and therefore frees developers from repetitive and error-prone tasks.

In particular, the CLOUDML architecture is inspired by the OMG Model-Driven Architecture
(MDA)2. The MDA relies on three types of models representing three layers of abstractions, i.e.,
the Computational-Independent Model (CIM), the Platform-Independent Model (PIM), and the

2http://www.omg.org/mda/

http://www.omg.org/mda/
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Platform-Specific Model (PSM). From the cloud perspective, the introduction of a new layer of ab-
straction improves the portability and reusability of cloud-related concerns amongst several clouds.
Indeed, even if the system is designed for a specific platform including framework, middleware,
or cloud services, these entities often rely on similar concepts, which can be abstracted from the
specificities of each cloud provider. Typically, the topology of the system in the cloud, as well as the
minimum hardware resources required to run it (e.g., CPU and RAM), can be defined in a cloud-
agnostic way.

CLOUDML refines the PSM abstract layer and allows developers to model resource provisioning
and deployment of multi-cloud applications in both a Cloud Provider-Independent Model (CPIM)
and a Cloud Provider-Specific Model (CPSM). The CPIM specifies the provisioning and deploy-
ment in a cloud provider-agnostic way (addressing the requirement R1). The CPSM refines the
CPIM with cloud provider-specific information. This two-level approach is agnostic to any develop-
ment paradigm and technology, i.e., developers are free to design and implement their applications
using their preferred programming languages and frameworks.

CLOUDML is also inspired by component-based approaches, which isolate concerns (R2) and
ease reuse (R3). Hence, we regard deployment models as assemblies of components exposing ports
(or interfaces), with bindings between these ports.

In addition, CLOUDML implements the type-object pattern [Atkinson and Kühne 2002], which
also facilitates reusability (R3) and abstraction (R4). This pattern exploits two flavours of typing,
namely ontological and linguistic, respectively [Kühne 2006]. These typing mechanisms are relev-
ant from a language engineering perspective as the ontological typing offers support for extending
a language without modifying its definition.

CLOUDML has both a graphical and a textual notation. An Eclipse-based editor3 helps create
and edit CLOUDML models using the textual syntax and provides auto-completion and validation.
This editor is based on the Xtext framework [Eysholdt and Behrens 2010] and leverages an Ecore
representation of the CLOUDML metamodel. A web-based editor4 supports a graphical syntax and
interacts with the models@run-time environment. The models@run-time engine is a plain Java
application, which reifies internally the CLOUDML metamodel as plain Java objects, and helps
developers modify topologies programmatically. These models can be serialised in both XMI and
JSON. In addition, during the MODAClouds project5, our partner Softeam extended their modelling
tool Modelio6 to provide an alternative graphical modelling editor for CLOUDML.

3.1. CPIM
In the following, we provide a description of the most important classes and corresponding prop-
erties in the CLOUDML metamodel as well as sample models in the associated textual syntax. The
textual syntax better illustrates the various concepts and properties that can be involved in a de-
ployment model, and that can be hidden in the graphical syntax. Both the textual and the graphical
syntax offer an abstraction over multi-cloud and cloud provider-specific concepts as well as over
the deployment process. Figure 1 shows the type portion of the CLOUDML metamodel in Ecore
format7.

A CloudMLModel consists of CloudMLElements, which can be associated with Properties
and Resources. A Resource represents an artefact (e.g., scripts, binaries, or configuration files)
adopted to manage the deployment life-cycle (i.e., download, configure, install, start, and stop). The
three main types of CloudMLElements are Component, Communication, and Hosting. Note that
for readability purposes, we only depict the inheritance relation between CloudMLElement and
Component in Figure 1.

3https://github.com/SINTEF-9012/cloudml-dsl
4https://github.com/SINTEF-9012/cloudml/tree/master/ui/webeditor/src/main/webapp
5http://www.modaclouds.eu
6https://forge.modelio.org/projects/creator-4clouds/wiki/Creator4Clouds-Tutorial-CML4C
7http://www.eclipse.org/modeling/emf/

https://github.com/SINTEF-9012/cloudml-dsl
https://github.com/SINTEF-9012/cloudml/tree/master/ui/webeditor/src/main/webapp
http://www.modaclouds.eu
https://forge.modelio.org/projects/creator-4clouds/wiki/Creator4Clouds-Tutorial-CML4C
http://www.eclipse.org/modeling/emf/
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Fig. 1. Type part of the CLOUDML metamodel

A Component represents a reusable type of component of a cloud application. A Component can
be an ExternalComponent managed by an external Provider or an InternalComponent man-
aged by CLOUDMF (e.g., a Servlet container or SENSAPP). This mechanism enables supporting
both IaaS and PaaS solutions through the single abstract concept of component (R5). Listing 1 il-
lustrates the definition of an external PaaS provider. The property location represents the region
of the data centre hosting it (e.g., location="eu-west-1", short for West Europe). The properties
username and password represent the authentication information needed to access to this specific
service. The properties serviceType and environment represent the type (e.g., database, applica-
tion container) and the environment (e.g., Tomcat) of the service, respectively. Finally, the property
autoscaling indicates that the auto-scaling mechanism of the cloud platform should be used.

Listing 1. An example of an External Component type from a CPIM
1 external component BeanstalkContainer {

provider: Beanstalk , location: "eu -west -1"
3 environment: "Tomcat", autoscaling: false

provided host SCProvided {(" language ": "Java")}
5 }

An ExternalComponent can also be a VM (see Listing 2). The properties minCores, maxCores,
minRam, maxRam, minStorage, and maxStorage represent the lower and upper bounds of vir-
tual compute cores, RAM, and storage, respectively, of the required VM (e.g., minCores=1,
minRam=1024). The property OS represents the operating system to be run by the VM (e.g.,
OS="ubuntu"). All these properties, which act as constraints during the refinement of the model
toward a CPSM, are optional and do not have to be defined in the CPIM. Indeed, in case it is not
possible to fulfil these constraints, default values will automatically be selected by the deployment
engine.

Listing 2. An example of a VM type from a CPIM
1 vm SL {

provider: OpenStackNova , os: "ubuntu", os64
3 ram: 1024.. , cores: 1.., storage: 50..

securityGroup: "SensApp", sshkey: "cloudml", groupName: "sensapp"
5 provided host slProvided

}

Components are connected through two kinds of ports. A CommunicationPort repres-
ents a communication interface of a component. A ProvidedCommunication provides a
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feature to another component (e.g., SENSAPP provides a REST interface, see Listing 3),
while a RequiredCommunication consumes a feature from another component (e.g., SENS-
APP requires a MongoDB interface, see Listing 3). Only internal components can have a
RequiredCommunication since they are managed by CLOUDMF. The property isLocal in-
dicates that the component providing the feature and the component consuming the feature must
be deployed on the same external component (e.g., in the initial deployment SENSAPP and
MongoDB must be deployed on the same VM, see Listing 3). The property isMandatory of
RequiredCommunication represents that the InternalComponent depends on this feature (e.g.,
SENSAPP depends on MongoDB and hence MongoDB has to be deployed before SENSAPP, see
Listing 3).

A HostingPort represents a hosting interface of a component. Similarly, a HostingPort rep-
resents that the component provides hosting facilities (e.g., a VM running GNU/Linux provides
hosting to a Servlet container, see Listing 2), while a RequiredHost represents that the internal
component requires hosting from another component (e.g., SENSAPP requires hosting from a Ser-
vlet container, see Listing 3).

Listing 3. An example of an Internal Component type from a CPIM
internal component SensApp {

2 resource SensAppResource {
download: "wget -P ~ http :// github.com/downloads/SINTEF -9012/ sensapp/sensapp.war;
wget -P ~ http :// cloudml.org/scripts/linux/ubuntu/sensapp/sensapp.sh",

4 install: "sudo bash sensapp.sh"
}

6 provided communication restProvided {local , port: 80}
required communication mongoDBRequired {local , port: 0, mandatory}

8 required host SCRequired { (" language" : "Java") }
}

A Communication represents a reusable type of communication binding between a Required-
and a ProvidedCommunication (e.g., SENSAPP communicates with SENSAPP ADMIN through
HTTP on port 80, see Listing 4). A Communication can be associated with Resources specifying
how to configure the components so that they can communicate with each other.

Listing 4. An example of a Communication type from a CPIM
1 communication SensAppAdmin2SensApp {

from SensAppAdmin.restRequired
3 to SensApp.restProvided ,

resource SensappAdmin2SensAppResource: {
5 download: "wget -P ~ http :// cloudml.org/scripts/linux/ubuntu/sensappAdmin/

install_sensappadmin.sh",
configure : "sudo bash install_sensappadmin.sh"

7 }
}

A Hosting represents a reusable type of hosting binding between Required- and a
ProvidedHost (e.g., a Servlet container is contained by a VM running GNU/Linux, see Listing 5).
A Hosting can be associated with Resources specifying how to configure the components so that
the contained component can be deployed on the container component.

Listing 5. An example of an Hosting type from a CPIM
execution JettySC2SL {

2 from JettySC.slRequired to SL.slProvided
}

These types can be instantiated to form an assembly that can effectively be deployed. Each in-
stance is identified by a unique identifier and refers to a type (see Listing 6).

Listing 6. Example of instances from a CPIM
1 instances {

external component bc1 typed BeanstalkContainer
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3 internal component sensApp1 typed SensApp
internal component sensAppAdmin1 typed SensAppAdmin

5 internal component jettySC1 typed JettySC
vm sl1 typed SL

7 connect sensAppAdmin1.restRequired to sensApp1.restProvided typed SensAppAdmin2SensApp
host jetty1.slRequired on sl1.slProvided typed JettySC2SL

9 }

3.1.1. Exposing Deployment Data to the Application. Properties can be exploited to export en-
vironment variables on specific VMs or to PaaS application containers. In particular, such mechan-
ism can be used by application developers and operators to export data or deployment information
(e.g., IP address of a VM provisioned during deployment) that can in turn be exploited to properly
configure internal components. The export of deployment related information can be specified via a
predefined set of substitutable expressions (e.g., the id of the VM hosting the component, see List-
ing 7) or a cross-reference within the model in the format of XPath8 (e.g., the id of the SENSAPP
component, see Listing 7).

Listing 7. Example of environment variable declaration
1 properties {

env var HOST_ID: {this.host.id}
3 env var SENSAPP_ID: /componentInstances[name=’sensapp1 ’]/id

}

3.1.2. Support for Scalability. At the instance level, a ResourcesPoolInstance represents a
set of components to be scaled in or out (e.g., SensApp might be scaled out depending on the
workload, see Listing 8). The properties minReplicats and maxReplicats represent the min-
imum and maximum number of replicated instances, respectively, embedded into the pool. The
property BaseInstance represents the list of VMs that constitutes the ResourcesPoolInstance.
By default, all the InternalComponents hosted on these VMs belong the pool. The property
excludedInstances permits to exclude some.

Listing 8. Example of resource pool
resource pool sensappPool {

2 minReplicats: 1, maxReplicats: 10
base instances: sl1

4 }

ResourcePoolInstances are typically behind a load balancer. Load balancers may be internal
components fully installed and configured by CLOUDML or external components as shown in List-
ing 9.

Listing 9. Load Balancer as an external component
external component LB {

2 provider: aws -ec2 , service type: loadbalancer
endPoint: http ://ip:5000

4 provided communication lbPrv (local , port: 0)
}

3.1.3. Integration with Configuration Management Tools. CLOUDML can be extended to support
third-party cloud configuration management tools. To exploit Puppet9 for installing and configuring
part of an application on a specific VM, the metamodel includes the concept of PuppetResource,
which extends Resource as shown in Listing 10. The properties masterEndpoint and
repositoryEndpoint represent the endpoints of (i) the Puppet master node responsible for con-
figuring a Puppet client and (ii) the repository containing the Puppet manifests (describing the con-
figuration), respectively. The properties repositoryKey and username hold the credentials to be

8http://www.w3.org/TR/xpath20/
9http://puppetlabs.com

http://www.w3.org/TR/xpath20/
http://puppetlabs.com
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used to access the manifest repository. The property configurationFile holds the name of the
manifest that the Puppet master uses to perform the configuration. Finally, the configureHostname
command specifies how to modify the hostname of a VM and enables its identification by the Puppet
master.

Listing 10. Example of Puppet resource
1 puppet resource puppet_mongodb {

master endpoint: IP, username: cloudml
3 configuration file: puppetMongo

repository endpoint: ssh:// cloudml@ip //etc/puppet/manifests/sensapp -nodes
5 }

3.2. From CPIM to CPSM
In the following, we present how a CPIM can be refined into a CPSM. A deployment model at
the CPSM level consists of an enrichment of the instances of the corresponding CPIM with cloud
provider-specific information. This enrichment mainly affects external components.

The transformation from CPIM to CPSM fills in additional information regarding both the ex-
ternal resources and how to manage them. External resources depend on each provider’s offer and
vary in number of cores, RAM size, storage size, etc. In addition, each provider has a different
procedure to access and manage resources (IP, authentication protocol, endpoints, etc.), and these
details are needed to properly configure the components and their bindings. To transform CPIM into
CPSM, the CLOUDML’s models@run-time engine directly retrieves these cloud provider-specific
information from the cloud providers’ APIs. In addition, users can manually refine all or part of
the CPIM with provider-specific information such as the type of a resource to be allocated by the
provider (e.g., m1.micro on Amazon EC2).

The refinement of a CPIM into a CPSM is performed as follows. The application provider spe-
cifies the cloud provider on which the application shall be provisioned and deployed (e.g., the
sensApp1 Servlet, jettySC1 Servlet container, and the sl1 VM running GNU/Linux will be pro-
visioned and deployed in the private OpenStack IaaS). The models@run-time engine requests the
cloud providers for a list of available VMs compatible with the constraints defined in the VM type
(e.g., the list of VMs with at least 1 core, at least 1024 MiB of RAM, and at least 50 GiB of storage
available on the private OpenStack IaaS). The cloud provider responds the models@run-time en-
gine with this list along with metadata associated with each VM (e.g., a small VM instance located
in the EU). Similar metadata can be requested for PaaS (e.g., the public Amazon Elastic Beanstalk
PaaS supports Java and auto-scaling). Finally, the models@run-time engine uses this metadata to
refine the CPIM into a CPSM and enacts the actual provisioning and deployment of this CPSM.

In the following, we describe how the models@run-time environment exploits CPSMs to provi-
sion, deploy, and adapt multi-cloud applications.

4. MODELS@RUN-TIME TO SUPPORT CONTINUOUS DEPLOYMENT
The demand to evolve and update systems typically increase with multi-cloud applications, since the
cloud enables to dynamically adjust and evolve infrastructures and platforms, while in traditional
IT these are rigid or fixed. On the one hand, this indicates more opportunities and flexibility to
better evolve and adjust the systems to various needs and requirements. On the other hand, the
complexity of designing, delivering, managing, and maintaining such systems challenges current
software engineering techniques.

In particular, as stated in [Hüttermann 2012] and promoted by the DevOps movement [Humble
and Farley 2010], to reduce the delivery time and foster the continuous evolution of these systems,
there is a need to close the gap between development and operation activities. In the following, we
detail how we leverage models@run-time to address this issue and support the DevOps ideas.

Models@run-time [Blair et al. 2009] is an architectural pattern for dynamically adaptive systems.
It provides an abstract representation of the underlying running system (a model) that facilitates
reasoning, simulation, and enacting modifications. A change in the running system is automatically
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reflected in the model. Similarly, any modification to this model may be enacted on the running
system, if need be. This causal connection enables the continuous evolution of the system with no
strict boundaries between design-time and run-time activities (addressing R7).

Exploiting models@run-time for the continuous deployment of cloud applications results in the
following process. Developers specify a model of the deployment for their application (e.g., using
CLOUDML) and thus automatically deploy it on a test environment. Therefore, they exploit this test
environment to tune their application and redeploy it automatically. Any change to the deployment
model is reflected (on demand) on the running application while its status is reflected in the model.
Once a new release is mature, the developers hand-off the application and its deployment model to
the operation team, which exploits the model to deploy the new release in the production environ-
ment. The operators can tune this model to maintain and manage the running system. Because the
models shared by the developers and operators conform to the same metamodel, they can share and
exchange information at any time.

Within CLOUDMF, the models@run-time engine provides a CPSM causally connected to the
running system (R4). On the one hand, any modification to the CPIM will be reflected in the CPSM
and, in turn, automatically propagated to the running system. On the other hand, any change in the
running system will be reflected in the CPSM, which, in turn, can be assessed with respect to the
CPIM.

In the next section, we detail how the CLOUDMF models@run-time engine enables the continu-
ous deployment and adaptation of multi-cloud applications.

5. THE CLOUDMF MODELS@RUN-TIME ENVIRONMENT
Automatic deployment typically comes in two flavours: imperative and declarative [Binz et al.
2013]. The imperative approach requires a “deployment plan” that details how to reach the desired
application state, usually using a workflow language. This deployment plan defines a sequence of
atomic tasks to execute—possibly in parallel. This imperative approach gives full control over the
deployment process, but specifying and reusing such plans remains complex. In contrast, the de-
clarative approach only requires a specification of the desired application state. This state usually
captures the needed application topology using a DSL and a “deployment engine” then computes
how to reach this state. This declarative approach better supports evolving and reusing topology
models, although the deployment engine may not compute optimal plans.

Existing models@run-time engines typically follow the declarative approach. Projects such as
DiVA [Morin et al. 2009], JavAdaptor [Cazzola et al. 2013], Genie [Bencomo et al. 2008] all impli-
citly define an adaptation plan that specifies the set of actions needed to enact the changes made on
the run-time model. However, in complex systems where guarantees in the quality of services are
major concerns, we must allow customisation of the adaptation plan.

The CLOUDMF models@run-time engine combines both the declarative and imperative ap-
proaches (addressing R8). The deployment engine generates the provisioning and deployment plan
from the defined deployment model, but the user has then the ability to change it before its execu-
tion. Moreover, in the case of continuous deployment, the same process takes place. For instance,
when the user changes the topology of an application, an adaptation plan is generated, and the user
can tune it before the plan is executed.

To this end, we evolved the classical models@run-time architecture [Morin et al. 2009] as depic-
ted by the grey boxes in Figure 2. The reasoning engine reads the current CPSM (Step 1), which
describes the running system and produces a target CPSM (Step 2). When a target model is ready
(Step 3), it can be compared to the run-time model, if there is one. In contrast with the classical
approach, the target model or the result of this comparison is then fed to an adaptation plan gen-
erator (Step 4), which produces an initial adaptation plan (Step 5). This plan is exposed by the
models@run-time engine and can be modified by third parties. Once the appropriate plan is identi-
fied, it can be validated (Step 6) and finally executed (Step 7). The execution engine then triggers a
sequence of atomic actions (Step 8) on the running system (Step 9).
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Fig. 2. The CLOUDMF models@run-time architecture

5.1. Comparison Engine
The inputs to the comparison engine (also called Diff) are the current and target deployment mod-
els. The output is a list of actions to transform the current model into the target model. These
actions can result in: (i) modification of the deployment and resource provisioning topology, (ii)
modifications of the components’ properties, or (iii) modifications of their status on the basis of
their life-cycle. In particular, the status of an external component (i.e., representing a VM or a PaaS
solution) can be: running, stopped, or in error. The status of an internal component (i.e., repres-
enting the software to be deployed on an external component) can be: uninstalled, installed,
configured, running, or in error.

The comparison engine processes the entities of the deployment models in the following order:
external components, internal components, execution binding, and relationships,
according to their dependencies. Any component is therefore deployed after its dependencies. For
each of these concepts, the engine compares the instances from the current model with the instances
from the target model. This comparison matches the properties of the instances, their types, as
well as their dependencies (e.g., if the host of a component has changed, this component should be
redeployed). Each unmatched instance in the current model yields a remove action. Similarly, each
unmatched instance from the target model yields an add action.

The target model has priority over the current model. For example, any VM in the target model
that does not exist in the current model will be created, and, conversely, any VM in the current
model that does not exist in the target model will be removed. Coping with changes occurring
during reasoning could be handled in various ways, e.g., as part of a third step of the adaptation
process (model checking). Currently, the models@run-time engine does not handle such changes.

In the motivating example (cf. Section 2), the migration of SENSAPP to a new VM generates
new instances of the VM type SL and the hosting type JettySC2SL but also removes the existing
instance of the hosting type JettySC2SL. Because of the abstraction offered by CLOUDML, this
adaptation is achieved without the need for new types and resources or for redefining the existing
ones. In addition, thanks to the comparison process, the MongoDB remains available during the
adaptation process.

5.2. From CLOUDML Models to Deployment Plans
Engines that generate adaptation plans are typically dedicated to the domain of the models@run-
time environment. In our context, we created a transformation that generates an adaptation plan
from a CLOUDML model or the comparison between two of them. We model adaptation plans as
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workflows. Although existing models@run-time environments usually derive adaptation plans as a
sequence of actions, these actions may often be executed in parallel. For instance, in CLOUDMF,
adaptation actions are executed in parallel as the associated running system is inherently distributed,
and deployment actions are often time-consuming. More precisely, the plans are generated using the
language presented in Section 5.3.

The transformation consists of the following four rules that are executed sequentially. During the
execution of each rule, a set of ActivityNodes and ActivityEdges is created, together with the
data required for the proper execution of the Actions.

(1) Provision cloud resources: This rule yields the actions responsible for the parallel provisioning
of VMs or cloud services on a given cloud provider. A Fork node is created to enable parallel
provisioning.

(2) Install components: This rule creates an action for each of the upload, download, and install
commands associated with the life-cycle of each internal component. In addition, if a compon-
ent depends on another, it ensures that the related actions are created in the proper order (i.e.,
required components are installed first).

(3) Connect components: This rule creates an action for each command in the resources associated
with each communication. Moreover, it creates a Join node to synchronise install actions of the
components involved in the communication.

(4) Start components: This rule creates an action for each of the configure and start commands of
each component.
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Fig. 3. Example of adaptation plan

The comparison engine yields the adaptation plan depicted in Figure 3 when migrating SENSAPP
on a new VM. In the following, we present our DSL for specifying adaptation plans.

5.3. A DSL for Adaptation Plans
Our language to model adaptation plans has evolved from a subset of UML activity diagrams. Fig-
ure 3 reflects the synchronisation needed to migrate SENSAPP on a new VM in a new cloud. It first
provisions in parallel all the cloud resources, then stops and uninstalls the software components that
are migrated. Once the VM provisioned, it (i) installs the Jetty application container while it (ii)
retrieves in parallel the code of the application. Then, and before the migrated SENSAPP is started,
the SENSAPP ADMIN is configured to interact with the new instance of SENSAPP.
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5.3.1. Metamodel. Figure 4 shows the metamodel of our language. An adaptation plan consists
of an Activity made of ActivityNodes and ActivityEdges. An ActivityNode can be an
Action performed on the running system. For instance, in the context of CLOUDML, it represents
deployment actions such as the provisioning of a VM. ActivityNodes are depicted in the diagram
as rounded boxes. An ObjectNode is another type of ActivityNode that stores data for later
retrieval by Actions (e.g., the IP address of the provisioned VM). ObjectNodes are depicted in
the diagram as rectangles with text inside. Finally, an ActivityNode can be an ActivityInitial
or ActivityFinal node specifying the start and end of an adaptation plan, but also a Join or
Fork node to parallelise and synchronise the execution of independent Actions. These nodes are
depicted in the diagram as black circles and black rectangles, respectively. An ExpansionRegion
specifies that tasks must be executed several times in parallel or sequentially. ActivityNodes are
linked through ActivityEdges. The property objectFlow specifies that the edge represents either
the control flow orchestrating the execution of ActivityNodes or the data flow to exchange objects
between tasks. The ActivityEdges representing the control flow are depicted in the diagram as
plain arrows while the data flow ones are depicted as dashed arrows.

Fig. 4. Adaptation plans metamodel

5.3.2. Language Implementation. Our language is implemented as plain Java objects, and also
exists as an internal DSL within the CLOUDMF API. As for our SENSAPP example, a whole de-
ployment plan is represented as an Activity (see Listing 11).

Listing 11. Creating a deployment plan
Activity deploymentPlan = ActivityBuilder.getActivity ();

The minimal set of nodes required for an executable plan consists of one StartNode, one or
several ActionNodes and one StopNode (see Listing 12). The first task that has to be performed
during a deployment is the provisioning of the VMs. For each VM to provision, an action is created
in the plan. Two parameters must be defined when creating an action: (i) the name of the method
that will be used to enact the action (e.g., reflection will be used to call the “provision” method that
exploits the cloud provider API to actually provision the VM); and (ii) the necessary information to
perform the call.

Listing 12. Creating start, stop and action nodes
ActivityInitialNode start = ActivityBuilder.controlStart ();
Action provision = ActivityBuilder.actionNode("Provision",VM);
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ActivityFinalNode stop = ActivityBuilder.controlStop ();

VMs can typically be provisioned in parallel. Thus, a ForkNode must connect the provisioning
actions. A similar operation has to be performed to synchronise the tasks after provisioning (see
Listing 13). The Boolean parameter used when creating these nodes indicates if the operators are
applied to the control or data flows. In this case, they are applied to the control flow.

Listing 13. Creating synchronisation actions
Fork fork = ActivityBuilder.forkNode(false);
ActivityBuilder.connect(fork , provision , true);
Join join = ActivityBuilder.joinNode(false);
ActivityBuilder.connect(provision , join , true);

Finally, ObjectNodes can be created to store some data, such as the IPs of the provisioned VMs
(see Listing 14). An ObjectNode can be specialised into two types: DatastoreNode, which does
not allow to store duplicates or ParameterNode, which can be used to supply some data to the
deployment plan at the beginning of its execution.

Listing 14. Creating an object node
ObjectNode IP = ActivityBuilder.objectNode("IP", Type);

5.4. Execution Engine
Once an adaptation plan has been generated and validated, the adaptation engine traverses the plan
(i.e., taking into account parallelisation and synchronisation points) and executes every Action.

This engine relies on two libraries: the Java Reflection API and the Java Fork/Join framework.
The first one is used to ensure the independence of both the language and the execution engine
from the domain on which the models@run-time approach is applied. Each action within an ad-
aptation plan refers to a method that will enact the adaptation. Thus, the execution engine exploits
the reflection mechanism to trigger the call to the specified method. The second library supports the
concurrency and synchronisation, necessary to start multiple threads asynchronously and for joining
them afterwards.

Thus, the engine concurrently executes each branch: there are no time dependencies between
tasks in parallel branches. It creates new threads whenever it enters a Fork node (explicit fork) or
an Action node with multiple outgoing edges (implicit fork), and waits for these threads whenever
it reaches a Join node (explicit join) or an Action node with multiple incoming edges (implicit
join).

The execution engine also tracks the status of every adaptation action and reflects their status in
the adaptation plan. Each node and edge may be Inactive, Active, or Done (i.e., before the exe-
cution of the node/edge, during, and after the execution respectively). The adaptation plan becomes
a run-time model of the adaptation process that co-evolves with the run-time model of the running
system.

5.5. Interaction with the Models@Run-Time Environment
In addition to the run-time model, third parties can interact with the CLOUDMF models@run-time
environment using a synchronisation engine or a pre-defined set of high-level commands.

The models@run-time environment allows remote third parties (e.g., reasoning engines) to adapt
the system. This need has emerged from several use cases that apply self-adaptive mechanisms on
top of CLOUDMF. These mechanisms typically involve decision-making engines, which reason on
their views of the model of the running system. Because these views must remain synchronised with
the running system, appropriate transformations must be automatically triggered at run-time.

Such model synchronisations are implemented by propagating changes in both directions, namely
notification and command. A notification allows the models@run-time environment to propagate
changes to third parties, while a command enables modifications on the current CPSM. Because
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two models used by two parties can be isolated from each other and may not be aware of the whole
model state, only the sequence of modifications is propagated, without carrying the start state of
each change. Therefore, both notification and command are a sequence of modifications.

The communication with third parties relies on the WebSocket protocol. Events are encoded as
plain text and can be defined using a domain-specific language. This includes the text formatting, the
query and criteria to locate the relevant model element, the modification or change on the element,
and the combination of other events. We have defined the standard MOF-reflection modifications as
the primitive events, and allow developers to define further high-level events as the composition of
primitive ones. Using this language, it is also possible to define the changes on an abstract model
as the composition of events on a concrete model and thus implement event-based transformation.
After each adaptation, the engine wraps the modification events into one message and sends it to the
WebSocket port.

To handle conflicting actions from several third parties, the models@run-time environment uses
transactions. The WebSocket component creates a single transaction that contains all the modifica-
tions from a third party and passes it to a concurrency handler. The handler queues this transaction
and executes them sequentially. Since all the modifications are simply assignment or object instan-
tiation commands on the model in the form of Java objects, the time to finish a transaction of events
is significantly shorter than the adaptation process.

The deployment engine also provides operators with high-level commands that avoid direct ma-
nipulation of the models. In particular, the scale command enables scaling out a VM and the burst
command enables scaling out a VM in another cloud.

6. SYNTHESIS
In this section, we discuss how our approach addresses the requirements defined in Section 2 and
describe the CLOUDMF reference implementation.

6.1. Evaluation
CLOUDMF has been applied in a set of use cases in various research projects and in particular the
FP7 EU projects: MODAClouds, PaaSage, and Diversify. Due to size limitation, we will focus on
the evaluation performed within the MODAClouds project as it is the most advanced and complete,
while we will briefly discuss the results of the PaaSage and Diversify projects.

6.1.1. MODAClouds. MODAClouds delivers an advanced model-driven approach along with an
integrated software development environment to support engineers in building, deploying, and man-
aging multi-cloud applications, together with related data [Ardagna et al. 2012]. CLOUDMF is ex-
ploited here both at design-time to describe the deployment of multi-cloud applications at the CPIM
and CPSM levels and at run-time to manage the deployed applications. In particular, CLOUDMF
has been applied in the context of four case studies:

•Business Process Modelling System (BOC): ADOxx is a metamodelling desktop application.
The objective of this case study was to leverage the MODAclouds technology to provide this ap-
plication as SaaS. From the CLOUDMF perspective, this case study evaluated (i) the deployment
of ADOxx on an IaaS infrastructure (i.e., CloudSigma10), (ii) the integration of CLOUDMF with
Puppet, and (iii) the cloud bursting and multi-cloud load balancing features.
• Smart City Urban Safety Planner (Siemens): the objective of this system is to collect and

analyse data from various sources to validate and react to emergency events that might occur
in a city. From the CLOUDMF perspective, this case study evaluated its ability (i) to deploy
and manage application running a complex software stack (i.e., Apache Storm and Cassandra

10http://cloudsigma.com

http://cloudsigma.com
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clusters) on an IaaS infrastructure and (ii) to partially replicate the application over two clouds
(i.e., Flexiant11 and Amazon EC212).
•Health-care application (Atos): is an e-Health solution offering an integrated and online clin-

ical, educational, and social network for patient suffering from dementia. From the CLOUDMF
perspective, this case study evaluated (i) the deployment of an application on a private PaaS (i.e.,
application container and database) running Cloud Foundry13, and (ii) the bursting of the client
part of the application on a public PaaS (i.e., Pivotal14).
•Constellation (Softeam): Modelio15 is a desktop modelling tool. The objective of this case study

was to extend Modelio with new features hosted in the cloud (i.e., model versioning and sharing).
From the CLOUDMF perspective, this case study evaluated (i) the deployment of an application
on both IaaS and PaaS solutions from multiple clouds providers (i.e., Amazon RDS, Amazon
EC2, Amazon SQS, Flexiant), and (ii) the automatic scale-in and -out of part of the application
depending on the load.

The evaluation of CLOUDMF has been conducted as part of the evaluation of the overall project
results, which consisted in the following steps: (i) elicitation of the requirements following the Goal-
Question-Metric (GQM) methodology [Solingen and Berghout 1999] (see [Solberg et al. 2014]); (ii)
initial evaluation by the technical partners as well as the case study providers (see [Pop et al. 2014]);
(iii) addition of new requirements (see [Ferry et al. 2015]); and (iv) final evaluation by the technical
partners as well as the case study providers (see [Ferry et al. 2015]).

Following the GQM methodology, for each artefact of the project, goals were defined as well
as questions were used to characterise how the assessment of a specific goal will be performed.
Finally, metrics were associated with each question to answer it quantitatively. The evaluators were
not only asked to assess these questions and metrics but also to provide recommendations and to spot
deviations. Table I, extracted from [Ferry et al. 2015], summarizes the evaluation of CLOUDMF.

6.1.2. PaaSage.

Context and ecosystem. PaaSage delivers an integrated platform to support modelling and execu-
tion of cloud applications on multiple clouds, together with an accompanying methodology to allow
model-based provisioning, deployment, and adaptation of these applications independently of the
existing underlying cloud infrastructures and platforms [Jeffery et al. 2013]. To cover the necessary
aspects of the modelling and execution of multi-cloud applications, PaaSage adopts the Cloud Ap-
plication Modelling and Execution Language (CAMEL). CAMEL integrates and extends existing
DSLs, namely CLOUDML, Saloon [Quinton et al. 2013], and the organisation part of CERIF [Jef-
fery et al. 2014]. In addition, CAMEL integrates new DSLs developed within the project, such as
the Scalability Rule Language (SRL) [Kritikos et al. 2014].

Evaluators. The use case providers of PaaSage performed an evaluation of CAMEL, within
which the deployment package is based on CLOUDML. The use cases involved the provisioning, de-
ployment, and adaptation of multi-cloud applications from the heterogeneous domains of eScience,
industrial sector, public sector, and financial sector.

Overall evaluation. In summary, the participants were satisfied with the expressive power
provided by CLOUDML for specifying components as well as VMs (78% being satisfied or very
satisfied and the remaining 22% moderately satisfied). Similarly, participants were satisfied with
the expressive power for specifying hosting and communication bindings. In this respect, they only
requested the capability to distinguish between TCP and UDP ports. The interested reader may
consult [Rossini et al. 2017] for the complete evaluation of CAMEL.

11http://flexiant.com
12http://aws.amazon.com
13http://cloudfoundry.com
14https://pivotal.io
15https://www.modeliosoft.com

http://flexiant.com
http://aws.amazon.com
http://cloudfoundry.com
https://pivotal.io
https://www.modeliosoft.com
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Table I. Summary of the evaluation of CLOUDMF by the MODAClouds EU project

CLOUDML modelling capabilities Multi-cloud IaaS and PaaS deployment and adaptation
CLOUDML has been used and evaluated by all the
partners. They were all able to model the deployment
of their application on multiple clouds at both the
IaaS and PaaS level. This also includes the model-
ling of (i) Puppet resources and (ii) multi-cloud load
balancers. It is also reported in the evaluation that
the language has also been used to model different
deployment alternatives for the same application.
At design-time, it is worth noting that Modelio was
the preferred editor for specifying deployment mod-
els while the web-based graphical user interface was
preferred for the run-time monitoring of the status
of the deployment. Finally, the JSON textual syntax
was preferred by the reasoning engines.

All partners reported successful continuous deployment of
their applications on multiple clouds on both IaaS and PaaS
solutions. This also includes the deployment of the applica-
tion on top of Windows-based VMs. In particular, it is reported
that: “The fact that the models@run-time engine builds on the
CLOUDML deployment technology already tested during the
deployment use case was very beneficial. We could simply in-
crementally update the models and the deployments worked as
expected.”
One of the recommendations made after the first evaluation was
to provide mechanisms to synchronise and control deployment
actions happening in different cloud instances during deploy-
ment (e.g., specify how and when a software component should
be initialized). CLOUDMF has been successfully extended and
evaluated in this respect. In particular, in the context of the
Constellation use case, it is reported that the models@run-time
engine “allows us to automate the deployment of the Constella-
tion server on cloud environment and monitor the deployment
process. Very useful to observe the current state of the deploy-
ment and interact with it.”
The scaling and bursting commands of CLOUDMF have been
successfully exploited in the case studies.
As a limitation of the CLOUDMF models@run-time engine, it
has been suggested that, when feasible, security groups could
be automatically generated on the cloud provider site based on
the ports specified in the deployment model.

6.1.3. Diversify.

Context and ecosystem. Diversify investigates whether the diversity of a system architecture im-
prove its quality. The project focused mainly on two quality properties: the robustness to internal
failures and the flexibility to context changes. Within Diversify, CLOUDMF is exploited to assess
these two quality metrics on cloud applications. In particular, CLOUDMF is used as the basis for
automatically planning valid architectures with different diversity levels [Song et al. 2015]. In this
context, the CLOUDMF models@run-time environment is combined with different reasoning en-
gines. These engines use model transformations and constraint solving to generate valid CLOUDML
instance models, and then exploit the CLOUDMF models@run-time environment to automatically
deploy the systems according to these models.

Evaluators. CLOUDMF is used by two partners inside the Diversify project, i.e., SINTEF and
Trinity College Dublin. The experiments were conducted in the smart city domain with a system
named SmartGH and developed within the Diversify project [Nallur et al. 2015].

Overall evaluation. CLOUDMF has been successfully exploited [Chauvel et al. 2015] and while
implementing these experiments, the partners observed that CLOUDMF offers adequate support for
modelling the deployment of cloud applications and their automatic configuration and deployment.
Moreover, it appears that the proposed models@run-time approach facilitates its integration with
external reasoning engine [Chauvel et al. 2013].

6.2. Requirements Fulfilment
The following list summarises how CLOUDMF fulfils the requirements presented in Section 2.

— Cloud provider-independence (R1): The layering of the modelling stack into CPIMs and
CPSMs ensures that the provisioning and deployment templates are cloud provider-independent.

— Separation of concerns (R2): The component-based design of the CLOUDML metamodel en-
sures that the provisioning and deployment components within a model are modular and loosely
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coupled. Furthermore, the CPIM and CPSM abstraction levels effectively ensure the separation
of concerns between the cloud provider-specific and the cloud provider-independent provisioning
and deployment design.

— Reusability (R3): The type-object pattern in the CLOUDML metamodel ensures that types can
be reused across several models.

— Abstraction (R4): Our framework offers a single domain-specific language and abstraction that
enables the management of application on both IaaS and PaaS solutions. Independently of their
delivery model, these solutions can be represented in a homogeneous way as components. In
addition, the models@run-time engine provides an abstract and up-to-date representation of the
running system that can be dynamically manipulated, and the CPIM provides abstraction over
cloud provider-specific concerns.

— White- and Black-box infrastructure (R5): CLOUDMF includes concepts and mechanisms that
support both IaaS and PaaS solutions, enabling management of components where CLOUDMF
has full control of their underlying infrastructure and platforms (IaaS/white-box) and exploitation
of advanced and rigid PaaS solutions that offer little control from the outside (black-box).

— Application technology independence (R6): The concept of component within CLOUDML is
independent of the implementation of the software it represents. A component is related to the
software via the set of commands describing how to manage its deployment life-cycle.

— Reduction of the gap between design and run-time activities (R7): CLOUDMF allows exploit-
ing the same model and language (i.e., CLOUDML) for both design- and run-time activities. This
facilitates interactions between operation and development teams.

— Fully controlled automated deployment (R8): The CLOUDMF run-time environment includes
a DSL for specifying adaptation plans together with an execution engine that provides control
over the deployment process. The plans can be automatically generated providing useful insights
on how the deployment will be performed and can be tuned adequately if desired.

6.3. Reference Implementation
The CLOUDMF graphical editor is a Javascript application, the textual syntax editor16 is based on
the Xtext framework [Eysholdt and Behrens 2010] and leverages an Ecore representation of the
CLOUDML metamodel.

The models@run-time engine is a plain Java application, available as an open-source project.17

It reifies internally the CLOUDML metamodel as plain Java objects, and offers an internal DSL that
helps developers modify topologies programmatically. We serialise these internal graphs of Java
objects in JSON and XMI using the Kevoree Modeling Framework (KMF) [Fouquet et al. 2012],
which in turn leverages our Ecore representation of our CLOUDML metamodel. Our models@run-
time engine also exploits the Java reflection and the join/fork frameworks. In addition, an engine
has been created to automatically generate a DOT file from an adaptation plan together with a web
page for their run-time graphical visualisation. The adaptation plan language is implemented as
plain Java objects, and also exists as an internal DSL within the CLOUDMF API. For the IaaS level
management, the provisioning and deployment engine relies on jclouds18 plus some Iaas and PaaS
ad-hoc adaptors. This engine has been successfully tested against the following cloud solutions:
Cloud Foundry, CloudBees, Pivotal, Amazon SQS, Beanstalk, SQS and RDS, CloudSigma IaaS,
Amazon EC2, Microsoft Azure, Flexiant, and OpenStack.

7. RELATED WORK
In the literature, several efforts aimed to support the design, optimisation and management of multi-
cloud applications.

16https://github.com/SINTEF-9012/cloudml-dsl
17https://github.com/SINTEF-9012/cloudml
18http://jclouds.incubator.apache.org/

https://github.com/SINTEF-9012/cloudml-dsl
https://github.com/SINTEF-9012/cloudml
http://jclouds.incubator.apache.org/
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Cloud Modelling Languages. Several domain-specific languages exist in the literature to specify
the deployment and orchestration of cloud services. The Cloud Application Modelling Language
(CAML) [Bergmayr et al. 2014] developed during the ARTIST EU project supports the specifica-
tion of deployment topologies as well as their refinement towards concrete cloud solutions. CAML
is a UML internal language that consists of a set of UML profiles capturing cloud solutions from
different perspectives, e.g., offerings and cost. In contrast with CLOUDMF, environment-specific in-
formation is captured by UML profiles concerning well-known cloud environments (e.g., Amazon
AWS, Google Cloud Platform). CAML fosters reuse of deployments through the concept of tem-
plates. As opposed to CLOUDMF, CAML does not include an execution engine to enact the deploy-
ment of multi-cloud applications.

CloudMIG [Frey and Hasselbring 2011] focuses on the migration of legacy applications to cloud
environments. In particular, CloudMIG focuses on the reverse engineering applications into models
conforming to the Knowledge Discovery Metamodel (KDM) as well as their cloud deployment.
Cloud environments are specified using Cloud Environment Models (CEM), which offer support
for the infrastructure and platform levels. The CloudMIG Xpress tool enables the automatic com-
putation of optimal cloud deployments [Frey et al. 2013].

The Topology and Orchestration Specification for Cloud Applications (TOSCA) [Palma and Spat-
zier 2013] is a specification developed by the OASIS consortium, which provides a language for
specifying the components comprising the topology of cloud applications along with the processes
for their orchestration. TOSCA supports the specification of types and templates, but not instances
necessary to support the run-time. A TOSCA “Ad Hoc” group has been created to examine how
TOSCA could be extended to support instance modelling and run-time aspects.

In contrast with CLOUDMF, the aforementioned approaches are conceived for design-time only,
and models are not causally connected to the run-time system.

Cloud Application Management. In the cloud community, libraries such as jclouds19 or Libcloud20

provide generic APIs abstracting over the heterogeneous APIs of IaaS providers, thus reducing cost
and effort of deploying multi-cloud applications. While these libraries effectively foster the deploy-
ment of cloud applications across multiple cloud infrastructures, they remain code-level solutions,
which makes design changes difficult and error-prone. More advanced frameworks such as Cloud-
ify21, Puppet22, or Chef23 provide DSLs that facilitate the specification and enactment of provi-
sioning, deployment, monitoring, and adaptation of cloud applications, without being language-
dependent. As for the research community, the mOSAIC [Sandru et al. 2012] project tackles the
vendor lock-in problem by providing an API for provisioning and deployment of multi-cloud ap-
plications. This solution is also limited to the code level.

The literature encompasses several approaches to the management of cloud applications deployed
on PaaS environments. Sellami et al. [Sellami et al. 2013] propose a model-driven approach to
PaaS-independent provisioning and management of cloud applications. This approach includes a
language for modelling provisioning and deployment, as well as a REST API for enacting them.
The Cloud4SOA EU project24 provides a framework for facilitating the matchmaking, management,
monitoring, and migration of cloud applications on PaaS environments. In contrast with CLOUDMF,
these approaches focus on one cloud delivery model only (i.e., either IaaS or PaaS, but not both). In
addition, their models are not causally connected to the running system and may become irrelevant
as soon as the running system is changed. The approaches proposed in the CloudScale [Brataas et al.
2013] and Reservoir [Rochwerger et al. 2009] projects suffer similar limitations.

19http://jclouds.apache.org
20https://libcloud.apache.org
21http://www.cloudifysource.org/
22https://puppetlabs.com/
23http://www.opscode.com/chef/
24http://www.cloud4soa.eu
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The work of Shao et al. [Shao et al. 2010] was a first attempt to build a models@run-time platform
for the cloud, but remains restricted to monitoring, without providing support for enactment of
provisioning and deployment. To the best of our knowledge, CLOUDMF is thus the first attempt to
reconcile cloud management solutions with modelling practices through the use of models@run-
time.

8. DISCUSSION AND FUTURE WORK
The development of CLOUDMF brought new insights about the design and engineering of DSMLs.
In this section, we will briefly discuss these aspects before we present future works.

DSMLs capture information that can be observable, controllable or both. The controllability,
which reflects the extent to which we can observe and control, is inherent to the application domain
and cannot be changed. However, CLOUDMF offers a means to increase (or decrease) controllability
by migrating from a PaaS to an IaaS solution. Choosing an IaaS solution provides operations with
a higher visibility and control over the underlying software stack. In contrast, choosing a PaaS
solution delegates the management of the software stack to the PaaS provider. CloudMF allows
to combine and dynamically migrate parts of the system across the IaaS and PaaS space, which
essentially offers a slider mechanisms with respect to controllability.

From the software engineering standpoint, the design of CLOUDMF entailed the definition of a
domain-specific (object-oriented) model tailored for cloud applications. This model is implemented
as plain Java objects (POJO), which are made available through multiple “adapters”. Some adapters
convert this data model into other formats such as ECore or JSON, while other adapters connect with
specific cloud APIs. The focus on domain-specific concepts beyond any textual or graphical syntax
led to an architecture similar to those realised according to domain-driven design (DDD) [Evans
2004], which is proven to be especially successful for enterprise systems. The focus on domain
concepts brings stability, as domain concepts evolve much more slowly than the underlying techno-
logies.

Cloud computing still evolves quickly. Thus, it remains imperative for CLOUDMF to be easily
extendible to new APIs, services, and concepts. As for cloud APIs, our architecture helps to reduce
the cost of integration with new cloud providers: new adapters must be developed to synchronise
our in-memory model with these new cloud APIs. By contrast, new concepts such as “container”,
which emerged as we developed CLOUDMF, required changing the domain model itself.

Moreover, as the cloud solutions evolve, the enactment of a deployment must be tailored to best
fit with applications requirements. In complex systems such as cloud applications, where QoS is
a major concern, the deployment engine must allow for customisation of the provisioning, config-
uration, and deployment plan [Binz et al. 2013]. Typical models@run-time systems do not permit
correction of the behaviour of the models@run-time engine (i.e., to influence which actions are
triggered and in which order). In specific cases, this may lead to a non-optimal adaptation plan and
even to erroneous states during the execution of the adaptation. To overcome this limitation, we
extended the classical models@run-time pattern as follows. First, the models@run-time engine de-
rives a tentative adaptation plan from a target model describing the desired system state. Next, the
user or a reasoning engine can adjust it. Finally, the consolidated adaptation plan is fed to the ad-
aptation engine, which is responsible for its execution. From the language perspective, such feature
provides the ability to partially and dynamically adapt the operational semantic of the deployment
engine (i.e., the language interpreter).

In future work, we plan to extend CLOUDMF towards the Big Data domain. In particular, we are
interested in extending both the language and the models@run-time engine with specific support
for the deployment, configuration, and adaptation of complex big data frameworks such as Apache
Storm and Kafka. Such automation is important as, after the initial prototyping, data engineers
often need sophisticated refinement, optimisation, and management on the application. For example,
depending on the volume of the data to be processed, they often need to fine-tune the parameters of
the supportive data processing framework, add more nodes for parallel processing, or increase the
computing resources.
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We will also evolve the current CLOUDMF models@run-time architecture to facilitate the evol-
ution of its monitoring part. The monitoring transformation within a models@run-time engine ex-
ploits the APIs of the system to build a model of its internal state, which may include its main
components, their current status as well as the environment. While models@run-time help continu-
ously adjust to a changing environment, not all changes can be foreseen at design-time, and some
will eventually exceed the abilities of adaptations. For instance, in pervasive systems where mobile
devices may join or leave at any time, we must dynamically extend the metamodel to capture new
unforeseen types of devices. Besides, the API may offer different calls to retrieve data about these
new devices. Therefore, the models@run-time engine must allow for both the customisation of its
abstractions and the customisation of the monitoring of these abstractions.

9. CONCLUSION
We presented how the Cloud Modelling Framework (CLOUDMF) make the most of model-driven
techniques and methods to reduce the vendor lock-in and support the provisioning and deployment
of multi-cloud applications. On the one hand, the Cloud Modelling Language (CLOUDML) al-
lows capturing the provisioning and deployment of these applications in cloud provider-independent
models. On the other hand, the models@run-time environment brings life to these models and auto-
mates key operations such as provisioning, deployment, and adaptation. Therefore, CLOUDMF fur-
ther unifies development and operation activities, with a single set of concepts integrated within
tools supporting both activities.
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