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Abstract 

We present an optimization model for analysis of system development for natural gas fields, processing and transport 
infrastructure. In this paper we present our experience from performing analyses for the natural gas industry with the 
optimization model. We also present a model extension in the form of continuous investment decisions. This extension allows the 
capacity in pipelines, processing facilities and compressors to be determined within a given range by the model. We also give a 
partial model description along with a case example that demonstrates the importance of using continuous investment decisions 
when considering design in natural gas systems. 
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1. Introduction 

Thorough infrastructure design and investment analysis is crucial to the decision makers in the natural gas 
industry due to the large costs associated with production fields, processing facilities, compressor stations, pipelines 
and other infrastructure elements. The ability to value flexibility and identify bottlenecks in the system is also of 
importance due to the large value created by the production of natural gas. The decision maker needs to decide on 
which elements to invest in at what time and with what capacity, which gives a large combinatorial decision space 
that is almost impossible to explore by hand. Combinatorial optimization models are well suited to analyse such 
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problems. The optimization model that we will use as a basis for our discussion in this paper is developed with the 
Norwegian Continental Shelf as a motivating case. The results and discussions will however be valid for other gas 
production systems. The Norwegian system consists of approximately 7800 km of subsea pipelines with large 
diameters operated at high pressure levels. Another important aspect of natural gas production and transportation is 
the multi-commodity characteristic of natural gas. The gas consists of several different components, such as 
methane, propane, butane, CO2 and H2S that contribute to the properties of the gas properties in different ways. 
These properties will influence the need for processing capacity and the possibilities for blending gas to meet quality 
specifications in markets. The optimization model that we discuss in this paper can be used for analysis of multi-
commodity flows, but in this paper we will simplify the presentation by focusing on single-component flows.  

An optimization model that has been used by both authorities and companies that invest in natural gas 
infrastructure is presented in [1]. The model we use in this paper, Ramona, is presented in more detail in [2]. It 
extends the model presented in [1] with more details on the operations of the network (such as pressure-flow 
modelling and gas quality). This way it can be used to analyse projects such as branch-offs and the trade-off 
between processing plants and blending of natural gas from different fields. The basis for the modelling of natural 
gas transport is given in [3] and [4].  

The problem of designing offshore oil and gas infrastructure has received considerable attention over several 
years. Some early examples, mainly focusing on the development of reservoirs and wells of single fields, are [5] and 
[6]. [1], [7], [8], and [9] take a network perspective coordinating multiple fields. Several papers also model the 
influence of uncertainty, see for instance [10] on market uncertainty and [11] on uncertainty in reservoir properties. 
[12] use an equilibrium model for the investment planning, in contrast to most other papers that use mixed-integer 
linear or non-linear models. [13] limits the scope to the transportation network and describe the problem of optimal 
pipeline dimensioning when the network structure is given. Related problems are treated by [14] who discuss the 
problem of network expansion for a given transportation demand and [15] who combine network expansion and 
liquefied natural gas terminal location. There are two traditions for how to describe network capacity choices, while 
for instance [1], [13] and [15] model discrete capacities, [8] and [14] allow for a continuous capacity choice. 

The main contribution of this paper is a presentation of experiences with using an optimization model for 
providing decision support on natural gas infrastructure design. We will also discuss a model extension which 
allows for continuous capacity investments in pipelines, processing facilities and compressor stations. 

In the next section we will shortly describe the optimization model that we have used in our analyses, and give 
the continuous capacity extension formulation. In Section 3, we present a numerical example to illustrate the 
importance of using continuous capacity decisions for the investments. In Section 4 we discuss some of the 
experiences from real world applications of the model in general and the continuous formulation in particular. We 
conclude the paper in Section 5. 
 

2. The optimization model 

Ramona is a mixed-integer linear optimization model that includes both investment decisions and operational 
decisions. The level of detail in the operational decisions will vary with the availability of data and the size of the 
problems. Pressure-flow relationships, compressors, operation of processing facilities as well as multi-commodity 
flows are optional features in the model. The modelling of multi-commodity flows allows for inclusion of gas 
quality management also in the design decisions. For more details on this aspect, see [2] and [16].  

The investment decisions are modelled as binary variables for deciding between different alternative investments 
as well as timing for the investments. Fields have predefined production profiles, but are given some flexibility to 
withhold production capacity to adjust to the available capacities in the rest of the network, see [1] for details. For 
pipeline and processing capacity we have two alternative model formulations. The first alternative has predefined 
discrete capacity choices selected with the binary investment variables. The other formulation has a continuous 
capacity choice within given bounds. 
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2.1. Continuous capacity decisions 

To build continuous capacity decisions into the model we need an estimate of how the costs of the installed 
component vary with respect to changes in installed capacity. One example of such a relationship is provided by [17]: 

 
 
   (1) 
 

 
where C0 is the total cost of installing a capacity of x0 and C1 is the total cost of installing a capacity of x1. In general, 
such relationships between costs and capacity will only be valid within certain bounds. In our model we have added 
upper and lower limits to the capacity investment to stay within the region where Equation (1) is valid (the bounds will 
vary with the type of project). This expression can be linearised in several ways, depending on the required accuracy. 
For the analyses we have performed in the natural gas systems, the capacity choice typically range from half the design 
capacity (x0) to twice the design capacity. Given these bounds, we found that a linearisation with two line segments 
was sufficient for representing the cost function accurately (within 1% deviation). The two line segments were divided 
such that the first line segment covers the capacity between the minimum capacity and the design capacity, while the 

other line segment covers the capacity between the design capacity and the maximum capacity. An illustration of the 
linearisation is shown in Figure 1. 
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Figure 1: An illustration of the linearisation of the relationship between capacity and investment cost for a facility. 
The figure on the left exaggerates the curvature to illustrate the linearisation technique, while the figure on the right 
shows the actual linearisation used in our analyses. 
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2.2. Mathematical Formulation 

We now present the mathematical formulation used for the continuous capacity choices. This formulation 
provides the approximate relationship between capacity and cost, and also makes sure the timing of incurred cost 
and available capacity corresponds to the investment timing. We formulate the capacity choices with the help of 
additional binary variables that determine which line segment of the cost approximation is active. In addition, we 
use continuous variables that represent changes in capacity from one time period to the next. We use the following 
notation: 

 
Nomenclature 

k K    Line segment on approximate investment cost function, { ow, igh}L HK   index and set 
p P    Project/network element        index and set 
,t T   Time          indexes and set 

,k k
p pA B   Regression parameters        parameters 

,p tCP    Share of investment cost t years after start     parameter 

pX    Maximum capacity         parameter 

,p tx    Capacity in period t        decision variable 

,p tx    Changed capacity from previous period      decision variable 

,p tc    Cost in period t         decision variable 

, ,,p t p t   Investment (start) and disinvestment (stop)      binary decision 
          variables 

,
H
p tx   Changed capacity from previous period (above design capacity)   decision variable 

,
L
p tx   Changed capacity from previous period (below design capacity)   decision variable 

p   Indication on which line segment of the cost function that is active   binary decision 
          variable 

 
The constraints added to the mathematical model are: 
 
   (2) 
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   (6) 

 
 

   (7) 
 

 
Constraint (2) ensures that the change in capacity cannot be larger than zero in periods where the binary variable pt 
is not equal to 1. This binary variable can only take a non-zero value in one time period, as stated in Constraint (3), 
and this means that the full capacity decision must be made at one point in time. Constraint (4) gives the capacity in 
time period t as the sum of the capacity in time period t-1 plus the change in capacity in time period t. The change in 
capacity in time period t is divided into two parts due to the two line segments used to linearise the relationship 
between costs and capacity. Constraints (5) and (6) are used to provide the binary variable p with a value that 
indicates whether or not the capacity extension was above the design capacity for the facility. When p has a value 
of 1, the capacity extension is higher than the design capacity, whilst when it is 0, the capacity extension is lower 
than the design capacity. Constraint (7) is used to reduce the capacity in a facility to 0 from the time it is stopped 
(the variable pt equals 1) and in all subsequent periods. In the model we also include the delay between the 
investment decision and the actual start-up of production (corresponding to the time required to build and install a 
facility). This is omitted from our presentation here since it does not affect the linearisation formulation directly. To 
model the investment cost, cp,t, we use the following expression: 

 
   (8) 

 
 

3. Numerical Example 

To illustrate the effect of using continuous capacity decisions in our model, we present a simple example. The 
network topologies that we consider are illustrated in Figure 2. The network consists of 3 fields that can be 
developed, a field hub that can tie the fields together, 2 potential processing plants, a compressor station and a 
natural gas market. In addition, there are pipelines that tie the installations together. For simplicity we have only 
made the investment in processing facilities discrete in this example. That means that the compressor station, as well 
as all pipelines in the model, will have continuous capacity choices. For the processing plants however, there are 
two possible choices: one facility with a processing capacity of 16.6 MSm3 per day, and another with a capacity of 
37.45 MSm3 per day. The three fields have different production profiles and different time windows when they can 
be invested in. The largest field (Field A) has a maximum production rate of 16.6 MSm3 per day and can start 
production in 2019. Field B has a maximum production rate of 12.5 MSm3 per day and can start production in 2024, 
whilst the smallest field (Field C) has a maximum production rate of 8.3 MSm3 per day and can start production in 
2029. Figure 3 illustrates the production profiles and the earliest production start for the 3 fields. The 2 processing 
plant alternatives are designed such that either a small capacity is started together with Field A, and then 
supplemented with the other fields later, or all fields can be started simultaneously filling the large processing 
capacity. 

The investment decisions include which fields, pipelines and processing plants to invest in as well as the timing. 
The solution of the model is given in Figure 4. The figure illustrates the production from the different fields, as well 
as the timing of the investments which is given by the start of production. The chosen processing capacity is 37.45 
MSm3 per day, and the facility is fully utilized when all fields are started. The net present value for this solution is 
33.75 billion NOK. 

As an alternative, we have also solved the same network with continuous capacity choices for the processing 
facility. This leads to the network shown to the right in Figure 2, and the corresponding solution is shown in Figure 
4. The net present value in this case is 36.34 billion NOK that is 2.6 billion NOK more than in the instance where 
the discrete capacity choices were used. The capacity in the processing facility has been decreased from 37.45 
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MSm3 per day to 29.13 MSm3 per day. The main consequence of this in terms of timing is that the start of field C 
has been delayed for 2 years as compared to the solution with discrete capacity choices. The cash flow from Field C 
will then be delayed, but the cost of delaying this cash flow is more than compensated for by the lower investment 
cost in the processing facility. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Illustration of the possible investments that can be made in the numerical example. The figure on the left illustrates 
the situation with two discrete choices for the processing plant, while the figure on the right shows the situation when the 
capacity in the processing plant is a continuous variable.  

Figure 3: The production profile of the 3 fields in the numerical example. The illustration shows the resulting 
production profile if all fields were started as soon as possible and produce according to their maximal 
production profile. 
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4. Application Experiences 

In our simple numerical example it may be possible to find and test the different relevant capacity choices for the 
processing facility. That might also be possible for typical revision and expansion planning in real cases, where 
large parts of the network and production rates are fixed and the decision flexibility is limited. When designing the 
network in new areas on the other hand, a problem with a realistic size can contain substantially more investment 
options. The number of alternatives needed for such an analysis with discrete capacity choices grows rapidly in the 
number of projects. If, for instance, two pipelines supplying a processing facility have two different capacity 
alternatives each, the processing facility would need eight alternatives to match all pipeline options. Assuming 
yearly resolution with a 15 year startup window and 30 year horizon with shut-down possibilities these three 
network elements alone give 540 binary variables, as shown in Table 1. The table also shows the growth when the 
number of pipeline alternatives is increased and the resulting number of binary variables in the model given by 
multiplying the number of alternatives and the possible start or shut-down years. For the continuous formulation the 
corresponding number of network elements will be three and the number of binary variables 138. Describing 
discrete alternatives becomes even harder when fields are introduced, since the production profile of each field can 
be modified by the model (by decreasing the production rates and delaying production), which makes the theoretical 
number of possibly optimal processing and transportation capacities infinite. 

 

Table 1: Model sizes with discrete capacity choices assuming two pipelines with different capacity alternatives supplying one processing plant, 
each with 15 year start window and 30 year horizon. 

Alternatives per 
pipeline 

Process 
alternatives 

Start variables Stop variables Variables in total 

1 3 75 150 225 

2 8 180 360 540 

3 16 330 660 990 

4 32 600 1200 1800 

Figure 4: The solution for the numerical examples with discrete capacity (to the left) and continuous capacity (to the right) choices 
for the processing plant. 
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The consequence of adding a large number of alternatives are manifold. Firstly, it makes the model size, in terms 
of computational complexity, grow quickly (see Table 1). This can, to some extent, be counteracted by linking the 
variables with constraints. Secondly, a large number of alternative projects will make the visual representation of the 
investment cases almost unreadable for the users. Thirdly, adding a large number of projects will increase the 
probability of mistakes and misrepresentations in the data. Lastly, there is a large workload associated with building 
these cases, due to the large number of projects, and the need for quality assurance on all the input data. By using 
continuous capacity investments, the case specification becomes considerably more straightforward.  

In addition to the problems of quality assurance and workload in terms of building the network, there is also a 
significant risk of excluding good solutions when specifying the discrete project alternatives. Given that the number 
of alternatives that can be handled is limited, one must choose carefully which ones to include. One possible strategy 
for increasing the number of alternatives is to consider the solution from one model run, and add new projects with 
higher capacity in the areas where the capacity limit is reached. This strategy will however not work when the 
optimal solution would have been structurally different if other capacity choices had been available elsewhere in the 
network. By using continuous capacity choices in the model, we make sure that the relevant range of capacity 
investments are considered for all projects. In practice, using discrete capacity choices implies that the user needs to 
a priori choose possible network patterns to make sure that capacities all through the network matches, rather than 
concentrating on describing the single network elements and letting the model take care of the network coordination. 

Using continuous capacity decisions in a mixed-integer linear model implies approximating the investment costs 
rather than providing the exact cost, which is a disadvantage compared to discrete capacity alternatives. The cost 
functions and investment ranges used in our case gave a sufficient accuracy with only two line segments. Cost 
functions with a stronger curvature would give a poorer accuracy, as illustrated in the left part of Figure 1. As long 
as the cost function is concave this can be counteracted by using more line segments in the approximation. Naturally 
this increases the problem size in terms of more binary variables, but is should be noted that this increase is isolated 
to the element in question and would thereby give a lower overall growth rate than what is described in Table 1.     

Finding the 'optimal' investment decision is an obvious motivation when working with optimization based 
investment models. When applying such models for decision support we experience a wider range of motivations. 
For multiple reasons, the comparison of model results from different input data assumptions is at least as important 
as finding a single best solution. A model will typically not capture all aspects that affect an investment decision. 
For instance, the choice between offshore or onshore processing and the location of onshore processing can have 
substantial knock-on effects outside the model scope. By changing input data, changing model assumptions or fixing 
some variables, the model can be used to compare such choices.  Furthermore, some input data, for instance the size 
and location of natural gas reservoirs, can be highly uncertain, and solving the problem for several resource 
scenarios is a classical way to analyse the consequence of resource estimate errors. This is a much discussed strategy 
since each model run will not value solution properties like flexibility or robustness to withstand the uncertainty. On 
the other hand, such scenario analysis can evaluate the value of improved resource estimates and thereby the 
willingness to pay for further exploratory efforts. 

 

5. Conclusions 

We have presented a model extension to an existing investment analysis model for natural gas infrastructure, as 
well as experiences from using the model in real-life applications. The model extension is the use of continuous 
capacity investments in facilities in the natural gas network, such as processing plants, compressors and pipelines. 
This extension both makes the analysis more efficient and robust. The efficiency gain comes from the reduction in 
the number of projects that must be specified in the model, while the robustness comes from the improved 
specification in terms of covering the relevant ranges for capacity choices in all parts of the network. The larger 
system studies we consider, the larger the expected gain from introducing the continuous capacity investments are. 
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