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In this article, we demonstrate the use of artificial neural networks as optimal maps which are utilized for
convolution and deconvolution of coarse-grained fields to account for sub-grid scale turbulence effects. We
demonstrate that an effective eddy-viscosity is predicted by our purely data-driven large eddy simulation
framework without explicit utilization of phenomenological arguments. In addition, our data-driven frame-
work precludes the knowledge of true sub-grid stress information during the training phase due to its focus
on estimating an effective filter and its inverse so that grid-resolved variables may be related to direct nu-
merical simulation data statistically. The proposed predictive framework is also combined with a statistical
truncation mechanism for ensuring numerical realizability in an explicit formulation. Through this we seek
to unite structural and functional modeling strategies for modeling non-linear partial differential equations
using reduced degrees of freedom. Both a priori and a posteriori results are shown for a two-dimensional
decaying turbulence case in addition to a detailed description of validation and testing. A hyperparameter
sensitivity study also shows that the proposed dual network framework simplifies learning complexity and
is viable with exceedingly simple network architectures. Our findings indicate that the proposed framework
approximates a robust and stable sub-grid closure which compares favorably to the Smagorinsky and Leith
hypotheses for capturing the theoretical k−3 scaling in Kraichnan turbulence.
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I. INTRODUCTION

Over the past decade, advances in data collection and
increasing access to computational resources have led to
a revolution in the use of data-driven techniques for the
solution of intractable inverse problems1–4. One such
problem is that of turbulence, the multiscale nature of
which causes infeasible computational demands even for
the most simple systems. This behavior is shared by all
non-linear partial differential equations and necessitates
the utilization of multiple modeling approximations for
tractable compute times. One such modeling approach
is that of large eddy simulation (LES)5, which attempts
to simulate the evolution of lower wavenumber modes of
turbulence while the effects of higher wavenumber modes
are modeled by an algebraic or differential equation. The
procedure of modeling the finer scales is often denoted a
closure due to the lack of knowledge about higher-order
wavenumber interactions in the coarse-grained flow6 and
remains a critical component of accurate computational
modeling for many applications7–9. From an LES point
of view, the closure problem arises due to the fact that
low-pass spatial filtering (due to coarse-graining and dis-
crete numerical approximations) does not commute with
the non-linear term.

Within the context of the Navier-Stokes equations, it
is generally accepted that the finer scales are dissipative
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at the Kolmogorov length scales10 and therefore, most
turbulence models seek to specify a sub-grid viscosity
which mimics the dissipative behavior of the unsupported
frequencies11. Most sub-grid models can be traced back
to the seminal work of Smagorinsky12, where a model was
proposed based on the concepts of an effective eddy vis-
cosity determined by an a priori specified mixing length
and a k−5/3 scaling recovery for the kinetic energy con-
tent in the wavenumber domain. Similar hypotheses have
also been used for two-dimensional turbulence13 (often
utilized as a test-bed for geophysical scenarios, for in-
stance see works by Pearson et al.14,15), for approximat-
ing the k−3 cascade in two-dimensional turbulence and
generally have their roots in dimensional analysis related
to the cascade of enstrophy. The two aforementioned
models may be classified as functional due to the phe-
nomenological nature of their deployment and represent
the bulk of LES related turbulence models used in prac-
tical deployments.

In contrast, the structural approach to turbulence
modeling utilizes no explicit specification of an eddy-
viscosity and relies on an estimation of the low-pass spa-
tial filtering nature of coarse-graining. With this ap-
proximate knowledge of the filter, arguments for scale-
similarity16,17 or approximate-deconvolution (AD)18 are
utilized to reconstruct the true non-linear term. In case of
scale-similarity, the non-linear interactions of flow com-
ponents are estimated by grid-resolved variables while
in AD an inverse filter is estimated using iterative re-
substitutions. However, structural techniques are lim-
ited due to the fact that they approximately recover sub-
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filter stresses alone and are not dissipative enough due to
the neglect of sub-grid considerations. Therefore, they
require the specification of an additional (usually func-
tional) sub-grid model or the specification of a finer res-
olution where sub-grid terms are negligible19. Further
information about turbulence models and whether they
may be classified as functional or structural may be found
in Saugaut’s excellent text5.

A common thread that connects both functional and
structural models is the a priori specification of a model
coefficient or a characteristic filter width or ratio. Conse-
quently, the choice of such parameters become crucial in
the a posteriori performance of the deployed model. Cru-
cially, literature has consistently shown that the choice
of these coefficients are not single-valued, particularly for
off-nominal flow situations. One may refer to discussions
by Galperin and Orszag20 and Canuto and Cheng21 for
examples for the effect of varying eddy viscosity. The
effect of characteristic filter widths and the order of de-
convolution has also been explored by San et al.22 and by
Schneiderbauer and Saeedipour23. With this contextual
background, in this study, we introduce a hybrid model-
ing (physics-informed machine learning) methodology for
determining sub-grid models without any phenomenolog-
ical assumptions (in the spirit of structural models) but
with sub-grid capture ability. This is accomplished by
the use of artificial neural networks (ANNs) to establish
data-driven maps between a priori convolved and decon-
volved fields but without the use of any explicit filter.

In recent times, data-driven techniques have become
extremely popular for the spatio-temporal modeling of
dynamical systems24–37. With respect to turbulence,
some widely used strategies for inference include sym-
bolic regression38–40, where functional model-forms for
RANS deployments were generated through optimiza-
tion against high-fidelity data. Ma et al.41 utilized
compressive-sensing based machine learning for closure
of multiphase system. Gautier et al.42 utilized a ge-
netic algorithm was utilized for regression tasks in a
close-loop separation control deployment of a turbulent
mixing layer. Other techniques incorporating Bayesian
ideologies have also been used, for instance by Xiao et
al.43 where an iterative ensemble Kalman method was
used to assimilate prior data for quantifying model form
uncertainty in RANS models. In Wang et al.44,45 and
Wu et al.46, random-forest regressors were utilized for
RANS turbulence-modeling given DNS data. In Singh
and Duraisamy47 and Singh et al.48, an ANN was uti-
lized to predict a non-dimensional correction factor in
the Spalart-Allmaras turbulence model through a field-
inversion process. The field-inversion process was uti-
lized to develop optimal a priori estimates for the cor-
rection factor from experimental data. Bypassing func-
tional formulations of a turbulence model (a focus of this
study) was also studied from the RANS point of view by
Tracey et al.49. Ling and Templeton50 utilized support
vector machines, decision trees and random forest regres-
sors for identifying regions of high RANS uncertainty. A

deep-learning framework where Reynolds-stresses would
be predicted in an invariant subspace was developed by
Ling et al.51. The reader is directed to a recent review by
Duraisamy et al.4, for an excellent review of turbulence
modeling using data-driven ideas.

As shown above, the use of machine learning ideolo-
gies and in particular ANNs has generated significant
interest in the turbulence modeling community. This
is motivated by the fact that a multilayered artificial
neural network may be optimally trained to universally
approximate any non-linear function52. Greater acces-
sibility to data and the GPU revolution has also moti-
vated the development of advanced ANN architectures
for constrained learning and improved physical inter-
pretability. Within the context of LES (and associated
with the scope of this paper) there are several investi-
gations into sub-grid modeling using data-driven tech-
niques. In one of the first studies of the feasibility of
mapping to unresolved stresses using grid resolved vari-
ables by learning from high-fidelity data, Sarghini et al.53

utilized ANNs for estimating Smagorinsky model-form
coefficients within a mixed sub-grid model for a turbulent
channel flow. This may be considered similar to the field-
inversion procedure describe previously. ANNs were also
used for wall-modeling by Milano and Koumotsakos54

where it was used to reconstruct the near wall field and
compared to standard proper-orthogonal-decomposition
techniques. An alternative to ANNs for sub-grid predic-
tions was proposed by King et al.55 where a priori opti-
mization was utilized to minimize the L2-error between
true and modeled sub-grid quantities in a least-squares
sense using a parameter-free Volterra series. Maulik and
San56 utilized an extreme-learning-machine (a variant of
a single-layered ANN) to obtain maps between low-pass
spatially filtered and deconvolved variables in an a pri-
ori sense. This had implications for the use of ANNs for
turbulence modeling without model-form specification.
A similar investigation has recently been undertaken by
Fukami et al.57 where convolutional ANNs are utilized
for reconstructing downsampled snapshots of turbulence.
Gamahara and Hattori58, utilized ANNs for identifying
correlations with grid-resolved quantities for an indirect
method of model-form identification in turbulent chan-
nel flow. The study by Vollant et al.59 utilized ANNs in
conjuction with optimal estimator theory to obtain func-
tional forms for sub-grid stresses. In Beck et al.60, a vari-
ety of neural network architectures such as convolutional
and recurrent neural networks are studied for predicting
closure terms for decaying homogeneous isotropic turbu-
lence. A least-squares based truncation is specified for
stable deployments of their model-free closures. Model-
free turbulence closures are also specified by Maulik et
al.61, where sub-grid scale stresses are learned directly
from DNS data and deployed in a posteriori through a
truncation for numerical stability. King et al.62 studied
generative-adversarial networks and the LAT-NET63 for
a priori recovery of statistics such as the intermittency
of turbulent fluctuations and spectral scaling. A detailed
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discussion of the potential benefits and challenges of deep
learning for turbulence (and fluid dynamics in general)
may be found in the article by Kutz64.

While a large majority of the LES-based frameworks
presented above utilize a least-squares error minimiza-
tion technique for constructing maps to sub-grid stresses
directly, this work represents a physics-informed imple-
mentation of sub-grid source terms through the learn-
ing of convolutional and deconvolution maps between
grid-resolved and unresolved fields. In other words, our
framework is able to reproduce, approximately, a map re-
lated to the convolution associated with insufficient grid-
support in LES implementations of the Navier-Stokes
equations as well as its inverse. These optimal maps are
obtained by supervised learning from subsampled direct
numerical simulation (DNS) data and are deployed in
an a posteriori fashion for the LES of two-dimensional
turbulence. In this manner, we unite the advantages
of functional and structural modeling of turbulence in
addition to precluding the use of any phenomenological
arguments. Through this, we also aim to achieve a har-
monious combination of first-principles based physics as
well data-driven mechanisms for high accuracy. A hy-
brid formulation leveraging our knowledge of governing
equations and augmenting these with machine learning
represents a great opportunity for obtaining optimal LES
closures for multiscale physics simulations55,65–68.

Therefore, this investigation represents an advance-
ment of the concepts proposed by the authors
previously56, where solely the deconvolutional ability of
artificial neural networks was investigated in an a priori
sense for sub-filter stresses. The adaptations proposed
in our current study are targeted towards recovering the
sub-grid component of the coarse-grained LES compu-
tation. In addition, we not only address the issue of a
priori sub-grid recovery with our proposed closure, but
also demonstrate its robustness in a posteriori deploy-
ment with associated numerical challenges. While the
two-dimensional turbulence case is utilized for a proof-of-
concept as well as for its geophysical implications where
improved closure development is still sought extensively,
our generalized framework may easily be scaled up to
multiple dimensional non-linear partial differential equa-
tions. Our results indicate that the proposed framework
provides for a robust sub-grid model with a dynamically
computed effective eddy-viscosity within the structural
modeling ideology.

II. TURBULENCE MODELING EQUATIONS

We proceed with the introduction of our framework
by outlining the governing equations for two-dimensional
turbulence. These are given by the Navier-Stokes equa-
tions in the vorticity-streamfunction formulation. In
place of a primitive variable formulation, our decaying
turbulence problem is solved for using the temporal evo-
lution of the following non-dimensionalized and coupled

system of equations,

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω,

∇2ψ = −ω,
(1)

where the velocity vector components may be recovered
as

∂ψ

∂y
= u

∂ψ

∂x
= −v.

(2)

The computational necessities of coarse-graining result
in a grid-filtered system of equations

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω + Π,

∇2ψ = −ω,
(3)

where overbarred quantities imply grid-resolved vari-
ables. A resulting unclosed term is obtained, ideally rep-
resented as

Π = J(ω, ψ)− J(ω, ψ). (4)

The second term on the right-hand side of the above
equation represents the primary target of approximation
for the structural modeling mechanism. In contrast, the
functional modeling procedure is to represent Π as an
effective eddy-viscosity multiplied by Laplacian of the
vorticity. In this study, we shall utilize a data-driven
paradigm for approximating

J(ω, ψ) ≈ ˜J(ω∗, ψ∗), (5)

where asterisked quantities are those obtained by data-
driven deconvolution and the tilde represents data-driven
convolution. This procedure is similar to the AD mech-
anism which requires an a priori low-pass spatial filter
specification. Note that the proposed methodology ef-
fectively aims to approximate the operations of Fourier
cut-off filtering and its inverse which is the primary rea-
son why it blends the distinction between sub-filter and
sub-grid recovery. The former is a potential limitation of
the AD mechanism in its current implementation. Our
approximate sub-grid model is thus given by

Π̃ = J(ω̄, ψ̄)− ˜J(ω∗, ψ∗). (6)

For the purpose of comparison we also introduce the
Smagorinsky and Leith models which utilize algebraic
eddy-viscosities for sub-grid stress calculation given by

Πe = ∇. (νe∇ω̄) , (7)

where for the Smagorinsky model we have

νe = (Csδ)
2|S̄|, (8)
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and the Leith hypothesis states

νe = (Clδ)
3|∇ω̄|. (9)

Note that |S̄| =
√

2SijSij and |∇ω̄| correspond to
two commonly used kernels for eddy-viscosity approxi-
mations. Here, δ is generally assumed to be the char-
acteristic mixing length taken to be the grid size. The
online performance of our proposed framework shall be
compared to these simple, but robust closures. We
remark here that the standard procedure for closure
in the vorticity-streamfunction formulation (relevant to
two-dimensional simulations) is based on sub-grid vortic-
ity source term modeling but our generalized procedure
may be extended to the primitive variable approach as a
source term in the Navier-Stokes momentum equations.
For the convenience of the reader we also tabulate some
of the notation that will be widely used in the rest of this
article in Table II. We note that the variables outlined
in this table are all defined on a coarse(i.e, LES) grid.
Details regarding the preparation of the data for our ma-
chine learning methods shall be outlined in subsequent
sections.

Notation Category
ā Grid filtered (i.e, Fourier cut-off filtered) from DNS
ac Comb filtered (i.e, sub-sampled) from DNS
a∗ Data-driven deconvolved variable
ã Data-driven convolved variable

TABLE I. A summary of filter and deconvolutional notation

III. DATA-DRIVEN CONVOLUTION AND
DECONVOLUTION

The ANN, also known as a multilayered perceptron,
consists of a set of linear or nonlinear mathematical op-
erations on an input space vector to establish a map to an
output space. Other than the input and output spaces,
a ANN may also contain multiple hidden layers (denoted
so due to the obscure mathematical significance of the
matrix operations occurring here). Each of these layers
is an intermediate vector in a multi-step transformation
which is acted on by biasing and activation before the
next set of matrix operations. Biasing refers to an addi-
tion of a constant vector to the incident vector at each
layer, on its way to a transformed output. The process of
activation refers to an elementwise functional modifica-
tion of the incident vector to generally introduce nonlin-
earity into the eventual map. In contrast, no activation
(also referred to as a linear activation), results in the in-
cident vector being acted on solely by biasing. Note that
each component of an intermediate vector corresponds
to a unit cell also known as the neuron. The learning
in this investigation is supervised implying labeled data
used for informing the optimal map between inputs and
outputs. Mathematically, if our input vector p resides in
a P -dimensional space and our desired output q resides

in a Q-dimensional space, the ANN establishes a map M
as follows:

M : {p1, p2, . . . , pP } ∈ RP → {q1, q2, . . . , qQ} ∈ RQ.
(10)

In this study, we utilize two maps which relate to con-
volution and deconvolution of fields with grid-resolved
and sub-grid components respectively. We must caution
the reader here that the maps are not assumed to trans-
form between isomorphic spaces (considered a limitation
of structural AD19,69). This allows for the estimation
of sub-grid loss due to coarse-graining the degrees of
freedom in an LES deployment. In equation form, our
optimal map M1 relates coarse-grained field stencils to
their grid-filtered (i.e., Fourier cut-off filtered) counter-
parts and is given by

M1 : {ωc
i,j , ω

c
i,j+1, ω

c
i,j−1 . . . , ω

c
i−1,j−1 ∈ R9 → {ω̃} ∈ R1.

(11)

where ω̃ represents an approximation for ω̄.
Our second map, relates grid-filtered field stencils to

their coarse-grained counterparts given by

M2 : {ω̄i,j , ω̄i,j+1, ω̄i,j−1 . . . , ω̄i−1,j−1 ∈ R9 → {ω∗} ∈ R1.

(12)

where ω∗ represents an approximation for ωc. Note
that both maps are trained for optimal prediction using
normalized inputs. Our normalization (approximately)
rescales our data to zero mean and unit variance by us-
ing grid-resolved variable quantities. Therefore, both in-
puts and outputs to maps are normalized by quantities
available dynamically and the deployment of the network
does not require a priori storage of training parameters.
For instance, the normalization of ω̄ may be obtained by

ω̄n =
ω̄ − µ(ω̄)

σ(ω̄)
, (13)

where µ(a) and σ(a) refer to the mean and variance of
a field variable a. Similarly the normalization of ω∗ is
given by

ω∗n

=
ω∗ − µ(ω̄)

σ(ω̄)
. (14)

In this manner, no a priori training coefficients may be
recorded. In essence, we emphasize that all normalization
is carried out to ensure the mean of grid-resolved quan-
tities is zero and that the standard deviation of these
quantities is unity. Trained maps using this normaliza-
tion technique may thus be used for the convolution or
deconvolution of any coarse-grained variable.

Note that both maps are trained for optimal prediction
using normalized inputs. Our normalization (approxi-
mately) rescales our data to zero mean and unit vari-
ance by using grid-resolved variable quantities. There-
fore, both inputs and outputs to maps are normalized by
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quantities available dynamically. A key facet of our pro-
posed methodology is that our trained maps are obtained
only from vorticity data even though they need deploy-
ment for the deconvolution of the streamfunction as well
as the convolution of the Jacobian. Successful sub-grid
information recovery (described in the results section)
shows that this data-independence in training can be re-
lated to a true learning of the filtering and deconvolution
characteristics between coarse and fine grids.

The pseudocode for a deployment of our optimally
trained maps is shown in Algorithm 1 where it can be
seen that each time step (or sub-step) of an explicit flow
evolution requires the specification of a data-driven ap-
proximation to the true Jacobian J(ω, ψ). In subsequent
sections, we shall comment on the final a posteriori con-
straining for ensuring numerical realizability. Figure 1
visually outlines the two networks deployed in this study.

Algorithm 1 Proposed framework deployment

1: Given trained maps M1 and M2

2: Given ω and ψ
3: Normalize ω and ψ to get ωn and ψ

n
respectively

4: Use M2 to obtain deconvolved variables ωn∗
and ψn∗

5: Rescale to physical domain to get ω∗ and ψ∗

6: Calculate estimated coarse-grid Jacobian J(ω∗, ψ∗)
7: Normalize Jacobian J(ω∗, ψ∗) to get J(ω∗, ψ∗)n

8: Use M1 to obtain convolved variables ˜J(ω∗, ψ∗)n

9: Rescale ˜J(ω∗, ψ∗)n to physical domain to get ˜J(ω∗, ψ∗)

10: Deploy turbulence model Π̃ = J(ω̄, ψ̄)− ˜J(ω∗, ψ∗) subject
to post-processing for numerical stability given by Equa-
tion 16

As evident, implementation of the proposed frame-
work requires multiple convolutional and deconvolutional
passes over the grid-resolved variables and therefore we
refer to this framework, from henceforth, as the data-
driven convolutional and deconvolutional closure (DCD).
Both our networks utilize one hidden layer along with
the input and output layers. This hidden and output
layers have a bias vector associated with it. For faster
training, we utilize rectified linear activation functions
(ReLU) for our hidden layer and a linear activation func-
tion for the output layer. Note that input data is not
activated as it enters the network. Our hidden layer uti-
lizes 100 unit cells (i.e., neurons) which are acted on by
the ReLU transformation and biasing. The process of
bias and activation at each neuron is displayed in Fig-
ure 2 and every neuron is fully connected to its previ-
ous layer (i.e, with incident inputs from all neurons from
the previous layer). In subsequent sections, we outline
a sensitivity study of our proposed ideology for varying
architecture depths where it is proven that one-layered
networks suffice for this particular problem.

FIG. 1. A schematic of our data-driven mapping for convolu-
tion and deconvolution. Two separate ANNs are utilized for
projection to and from deconvolved variable space.

FIG. 2. A schematic of our biasing and activation at each hid-
den layer neuron. Assuming five inputs from previous layer.

IV. TRAINING AND A PRIORI VALIDATION

For the purpose of generating our optimal maps dis-
cussed in the previous section, we utilize two super-
vised learnings with sets of labeled inputs and outputs
obtained from direct numerical simulation (DNS) data
for two-dimensional Kraichnan turbulence. We have uti-
lized a second-order accurate energy-conserving Arakawa
scheme for the nonlinear Jacobian and second-order accu-
rate finite-difference discretization schemes for the Lapla-
cian of the vorticity. The Poisson update is performed us-
ing a spectrally-accurate solver and the time-integration
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is performed by a third-order accurate TVD Runge-
Kutta explicit method. Further details on the problem
setup and the implementation of an energy and enstro-
phy conserving numerical method can be found by the
authors’ previous studies70,71. Our grid-resolved vari-
ables (i.e., ω̄) are generated by a Fourier cut-off filter
so as to truncate the fully-resolved DNS fields (obtained
at 20482 degrees-of-freedom) to coarse-grained grid level
(i.e., given by 2562 degrees-of-freedom). Our subsam-
pled variables (i.e., ωc) are obtained by a comb filtering
procedure where every eighth data point is retained.

We also emphasize on the fact that, while the DNS
data generated multiple time snapshots of flow evolu-
tion, data was harvested from times t = 0, 1, 2, 3 and 4
for the purpose of training and validation. This repre-
sents a stringent subsampling of the total available data
for map optimization. Our DNS utilized an explicit for-
mulation with a constant timestep of 0.0001 implying po-
tential generation of 40000 snapshots out of which only
4 were selected at regular intervals for data harvesting.
This represents a 0.01% utilization of total potential data
during training which is particularly challenging for this
unsteady problem. The generation of data sets at the
coarse grained level is outlined in Algorithm 2.

We also note that the Reynolds number chosen for
generating the training and validation data sets is given
by Re = 32000 while deployment is tested for a higher
Reynolds number of 64000 for both a priori and a poste-
riori assessment. We remind the reader here, map train-
ing is performed solely on the vorticity field despite the
fact that trained maps are to be utilized for vorticity,
streamfunction and the Jacobian. For this reason, all
our inputs are normalized to ensure zero mean and unit
variance while our outputs are normalized in a similar
fashion but to slightly different mean and variance i.e.,

an =
a− µ(ā)

σ(ā)
, (15)

where a may either be grid-resolved or deconvolved quan-
tities. In essence, we emphasize that all normalization is
carried out to ensure the mean of grid-resolved quantities
is zero and that the standard deviation of these quantites
is unity. The aforementioned normalized quantities are
then used as input-output pairs for the two different net-
works as discussed previously. The generation of data
sets at the coarse grained level is outlined in algorithm
2.

Algorithm 2 Data harvesting from DNS

1: Obtain DNS data for vorticity ωDNS at N2 = 20482

2: Comb filter to obtain ωc from ωDNS by sub-sampling ev-
ery eighth point

3: Grid filter to obtain ω̄ from ωDNS

4: Normalize ω̄ to ω̄n using Equations 13
5: Normalize ωc to ωcn using Equation 14
6: ωcn and ω̄n are input and output pairs respectively for

map M1 optimization, where we assume true output ω̃n ≈
ω̄n according to Equation 5

7: ω̄n and ωcn are input and output pairs respectively for
map M2 optimization, where we assume true output
ω∗n ≈ ωcn

Two-thirds of the total dataset generated for optimiza-
tion is utilized for training and the rest is utilized for test
assessment. Here, training refers to the use of data for
loss calculation (which in this study is a classical mean-
squared-error) and backpropagation for parameter up-
date. The test data, however, is utilized to record the
performance of the trained network on data it was not
exposed to during training. Similar behavior in training
and test losses would imply a well-formulated learning
problem. The final ANN (obtained post-training) would
be selected according to the best loss on the test data
after a desired number of iterations which for this study
was fixed at 50. The choice for a low number of itera-
tions was observed by Pearson correlation values reaching
0.99 for both training and test data sets. We also note
that the error-minimization in the training of the ANN
utilized the Adam optimizer72 implemented in the open-
source neural network training platform TensorFlow. We
remark that while the networks may have learned the
target maps from the data they are provided for training
and test, validation would require an a posteriori exami-
nation as detailed in the following section. We note here
that data preprocessing as well as architectural modifica-
tions (for instance network depth, number of neurons and
activation types) need further investigation for improved
generalization.

We first outline an a priori study for the proposed
framework where the optimal maps are utilized for pre-
dicting probability distributions for the true Jacobian
i.e., J(ω, ψ). A pseudocode for the computation of this
true Jacobian is outlined in Algorithm 3. In other words,
we assess the turbulence model for a one snapshot pre-
diction. This study is carried out for one of our data
snapshots t = 2 but for both in and out-of-training data
sets. We remark that the maps have previously been ex-
posed to vorticity data from Re = 32000 only and our
out-of-training data set is given by a similar flow scenario
but at higher Reynolds number given by Re = 64000.
One can thus make the argument for some transfer of
learning between similar flow classes but with slight dif-
ference in physics. The performance of the framework
is shown in Figure 3 where the framework predicts the
density functions of the true Jacobian accurately for both
sets of data. We also note that this study solely utilized
a mean-squared-error minimization for the target vari-
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FIG. 3. The prediction ability of the use of both forward and
inverse maps in the calculation of the approximate underlying

Jacobian ˜J(ω∗, ψ∗) for Re = 32000 (left) and Re = 64000

(right). The true Jacobian J(ω, ψ) is also shown.

ables without any physics-based regularization. A fu-
ture study involving loss-functions devised with intuition
from the Navier-Stokes equations would potentially aid in
preserving invariance and symmetry properties between
grid-resolved and deconvolved space. In addition, while
the localized stencil based sampling for map deployments
proposed here is amenable to deployment in structured
grids, extension to arbitrary meshes would require the
use of interpolation or graph convolutional kernels for
unstructured information injection into the learning ar-
chitecture.

Algorithm 3 True Jacobian J(ω, ψ) from DNS

1: Obtain DNS data for vorticity ωDNS and streamfunction
ψDNS at N2 = 20482

2: Calculate Jacobian on DNS grid i.e., J(ωDNS , ψDNS)
3: Apply grid filter to J(ωDNS , ψDNS) in order to obtain

J(ω, ψ) at N2 = 2562.

V. A POSTERIORI TESTING

The ultimate test of any data-driven closure model is
in an a posteriori framework with subsequent assessment
for the said model’s ability to preserve coherent struc-
tures and scaling laws. While the authors have under-
taken a priori studies with promising results for data-
driven ideologies for LES56, the results of the following
section are unique in that they represent a model-free tur-
bulence model computation in temporally and spatially
dynamic fashion. This test setup is particulary challeng-
ing due to the neglected effects of numerics in the a priori
training and testing. In the following we utilize angle-
averaged kinetic energy spectra to assess the ability of
the proposed framework to preserve integral and inertial
range statistics. Theoretical comparisons with Kraichnan
turbulence73 and the expected k−3 cascade are also pro-
vided. In brief, we mention that the numerical implemen-
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FIG. 4. A visual assessment of the truncation of our numeri-
cal post-processing during deployment given by Equation 16.
Blue points indicate truncated deployment for ensuring no
negative viscosity and numerical stability. A-priori predic-
tions for Re = 32000 (top) and Re = 64000 (bottom) shown.

tation of the conservation laws are through second-order
discretizations for all spatial quantities (with a kinetic-
energy conserving Arakawa discretization for the calcu-
lation of the nonlinear Jacobian). A third-order total-
variation-diminishing Runge-Kutta method is utilized for
the vorticity evolution and a spectrally-accurate Poisson
solver is utilized for updating streamfunction values from
the vorticity. Our proposed framework is deployed point-
wise for estimating Π̃ at each explicit time-step until the
final time of t = 4 is reached. The robustness of the
network to the effects of numerics is thus examined. For
the purpose of numerical stability we ensure the following
condition before deploying our framework

Π =

{
Π̃, if (∇2ω̄)(Π̃) > 0

0, otherwise.
(16)

where the truncation explicitly ensures no negative nu-
merical viscosities due to the deployment of the sub-
grid model. We remind the reader that the Smagorin-
sky and Leith hypotheses explicitly specify positive eddy-
viscosities that are obtained by absolute value quantities
as given in Equations 8 and 9. An a priori visual quan-
tification of the truncation is shown in Figure 4 where
quantities in the first and third quadrants are retained
predictions and the others are discarded. A similar be-
havior is seen for both Re = 32000 and Re = 64000 data.
This image also highlights the challenges of translating
a priori conclusions to a posteriori implementations due
to the requirement of numerical stability.

Figure 5 displays the statistical fidelity of coarse-
grained simulations obtained with the deployment of the
proposed framework for Re = 32000. Stable realiza-
tions of the vorticity field are generated due to the com-
bination of our training and post-processing. For the
purpose of comparison, we also include coarse-grained
no-model simulations, i.e., unresolved numerical simula-
tions (UNS) which demonstrate an expected accumula-
tion of noise at grid cut-off wavenumbers. DNS spec-
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tra are also provided showing agreement with the k−3

theoretical scaling expected for two-dimensional turbu-
lence. Our proposed framework is effective at stabiliz-
ing the coarse-grained flow by estimating the effect of
sub-grid quantities and preserving trends with regards
to the inertial range scaling. Figure 6 visually quantifies
the effect of the stabilization imparted by the proposed
framework. The reader may observe that the proposed
framework recovers an excellent scaling behavior. This
is similar to the performance obtained by deploying the
Smagorinsky model at Cs = 0.2, a widely utilized pa-
rameteric choice obtained through prior numerical ex-
perimentation. The Leith performance at Cl = 0.2 is
slightly under-dissipative. The reader may notice that
an arbitrary choice of Cs = Cl = 1.0 leads to overdissi-
pative performance of the eddy-viscosity closures. Our
data-driven framework is thus more resistant to unnec-
essary dissipation. Note that choice of a higher eddy
viscosity coefficient for two-dimensional turbulence has
been detailed in previous literature74. Another quantifi-
cation of the perfomance of the DCD closure is described
in Figures 7 and 8 which juxtapose the varying perfor-
mance of these parameter-dependant eddy-viscosity hy-
pothesis (i.e., Smagorinsky and Leith respectively) to the
proposed data-driven approach. One can observe that an
optimal selection of parameters (after a posteriori exam-
ination) given by Cl = 0.5 for the Leith model recre-
ates the performance of the proposed framework well
as well. This implies that the proposed framework has
learned a similar dissipative nature through a priori op-
timization of a filter and its inverse. Indeed, the appli-
cation of the Smagorinsky model to various engineering
and geophysical flow problems has revealed that the con-
stant is not single-valued and varies depending on res-
olution and flow characteristics20,21,75 with higher val-
ues specifically for geophysical flows. In comparison, the
proposed framework has embedded the adaptive nature
of dissipation into its map which is a promising out-
come. Before proceeding, we note that default param-
eteric choices for the Smagorinsky and Leith models are
given by Cs = Cl = 0.2.

For ensuring that the training is sufficiently general-
ized for this particular problem, we establish a suite of
testing for the predictive performance and the numerical
stability of our proposed framework. We first perform
multiple forward simulations using the deployment of our
proposed closure by utilizing a different random seed in
the random-number generation required for the initial
conditions at Re = 3200071. This is to ensure that there
is no data memorization by our maps. We choose 24
random initial conditions and ensemble-average their ki-
netic energy spectra at the completion of the LES for our
model as well as the Smagorinsky, Leith and no-model
(i.e., UNS) coarse-grid runs. We have also included en-
semble results from Smagorinsky and Leith deployments
at higher values of Cs = Cl = 1.0 to describe the loss
of fidelity at the lower wavenumbers in case of incorrect
parameter specification. The resultant spectra are shown
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FIG. 5. The a posteriori performance of proposed framework
for Re = 32000 in terms of energy spectra. At each step of
sub-grid stress calculation, both forward and inverse maps are
used for convolution and deconvolution in the estimation of
the true underlying Jacobian.

in Figure 9 where one can ascertain that the prediction
quality of our framework remains identical regardless of
varying initial conditions. This is promising as it vali-
dates our hypothesis that it is the smaller scales which
are primarily affected by the proposed closure. We also
demonstrate the utility of our learned map on an a pos-
teriori simulation for Re = 64000 data where similar
trends are recovered as seen in statistical comparisons
(Figure 10) and qualitative behavior (Figure 11). This
also demonstrates an additional stringent validation of
the data-driven model for ensuring generalization.

We also seek to compare the performance of the pro-
posed framework against the dynamic formulation of the
Smagorinsky and Leith models76 modified for the vortic-
ity and streamfunction formulation as described by San
and Maulik71 where a least-squares optimization prob-
lem is solved at two scales of resolution for an optimal
value of the Smagorinsky and Leith coefficients calcu-
lated in a dynamic fashion defining a test filter. We note
that even the dynamic formulation requires the specifi-
cation of an a priori characteristic filter-width ratio (i.e.,
a ratio between test and grid filters), κ, which affects
a posteriori results. In this comparison, we have uti-
lized a filter-width ratio of κ = 2 with the use of an
explicit trapezoidal filter. The results of this comparison
with our framework are shown for Reynolds numbers of
Re = 32000 and Re = 64000 in Figures 12 and 13 re-
spectively. One can observe that the performance of the
dynamic implementations of our eddy-viscosity hypothe-
ses are recreated in a qualitative fashion. Our model may
thus be assumed to be both data-driven and dynamic in
nature.

In terms of computational cost, we remark that the
proposed framework adds a considerable computational
expenditure (a posteriori simulations led to 4 times the
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FIG. 6. Visual quantification of the a posteriori performance
of proposed framework for Re = 32000 with stabilized (top),
under-resolved (middle) and filtered DNS contours (bottom)
for vorticity.
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FIG. 7. Performance comparison of proposed framework with
co-efficient dependant Smagorinsky model. One can observe
that higher Cs values lead to over-dissipative models.

computational cost of the dynamic formulation) in the
serial formulation. However, scalable deployments of the
proposed framework in distributed environments are a
subject of ongoing investigation for reducing this cost.
While the data-driven framework promises more accu-
racy through exposure to multiple sources of turbulence
data, its scalable deployment remains an important open
question for successful integration into modern computa-
tional fluid dynamics solvers.
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FIG. 8. Performance comparison of proposed framework with
co-efficient dependant Leith model. One can observe that
higher Cl values lead to over-dissipative models.
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FIG. 9. Ensemble-averaged a posteriori performance of pro-
posed framework for Re = 32000 in terms of energy spectra.
This determines the generalizability of proposed framework.

VI. SENSITIVITY STUDY

We investigate the robustness of our framework by en-
suring that an optimal number of hidden layers or neu-
rons have been utilized through an a posteriori sensitivity
study where a varying number of layers and neurons are
tested for spectral scaling recovery. By keeping the de-
fault network architecture as a one layer, 100 neuron net-
work, we investigate the effect of reduction or increase in
neurons as well the effect of the number of hidden layers.
We note that our studies are performed for Re = 64000
as an additional cross-validation.

Figure 14 shows the effect of varying network depths,
where it can be seen that a one-layered architecture per-
forms sufficiently accurately to be considered optimal for
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FIG. 11. Visual quantification of the a posteriori performance
of proposed framework for Re = 64000 with stabilized (top),
under-resolved (middle) and filtered DNS contours (bottom)
for vorticity. Note: Training only with Re = 32000 data.

deployment. This hints at a simpler nonlinear relation-
ship between the inputs and outputs which has been
captured by our framework. Figure 15 shows the effect
of the number of neurons, where once again, it is ob-
served that reduced model complexity does not impede
performance. While this study utilized 100 neurons in
the single hidden layer, even 10 would suffice for accu-
rate scaling recovery. These observed behaviors imply
that our framework allows for reduced network depths
and reduced neurons and their associated computational

100 101 102
k

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E(
k)

DNS
Filtered DNS
UNS
Dyn. Smag rinsky
Dyn. Leith
DCD Cl sure
k−3 scaling

FIG. 12. A comparison of the proposed framework with the
Dynamic Smagorinsky and Dynamic Leith models for Re =
32000. One can see an optimal solution being obtained by the
data-driven formulation in a similar manner.
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FIG. 13. A comparison of the proposed framework with the
Dynamic Smagorinsky and Dynamic Leith models for Re =
64000. One can see an optimal solution being obtained by the
data-driven formulation in a similar manner. Training data
limited to Re = 32000 only.

advantages during training and deployment. However,
we must caution the reader that greater amounts of data
would necessitate deeper architectures for more general-
ization. In particular, our expectation is that if multiple
flow scenarios were to be learned, simple feed-forward
ANNs may prove to be inadequate. In particular, we
note that our choice of localized sampling, network ar-
chitecture and training loss-function are chosen specific
to the resolution loss and physics at hand. Greater gen-
eralization (through improved diversity of training data)
would require revised hyperparameter study.

For our problem of choice, it is evident that a 10 neu-
ron, 1 layer ANN is sufficiently viable for estimating both
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FIG. 15. Sensitivity study for proposed framework number of
layers at Re = 64000. Training data limited to Re = 32000
only and with 1 hidden layer only.

M1 and M2. This lends evidence to the fact that our dual
network formulation may also allow for simpler learning
algorithms (i.e., for this particular problem). We per-
form an a priori sensitivity study for training and test
mean-squared-error measures for three other well-known
statistical learning algorithms such as a linear regressor
(LR), a random-forest regressor (RF)77 and a decision-
tree regressor (DT)78. We utilize the open-source scikit-
learn machine learning library in python for standard im-
plementations of these techniques. A quantitative train-
ing and testing mean-squared-error performance for these
techniques in comparison to the ANN is shown in Figure
16 where it is observed that similar performance char-
acteristics are observed despite vastly different learning
methodologies for M2 optimization. It can thus be con-
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FIG. 16. Sensitivity study for machine learning algorithm for
training and testing mean-squared-errors. These errors are
shown for M2 optimization.

cluded that the utilization of our dual network framework
has led to the simplification of a highly nonlinear problem
to one that is tractable for linear learning methods.

The linear-regressor is also implemented in an a pos-
teriori manner as shown in Figures 17 and 18 for Re =
32000 and Re = 64000 respectively. The kinetic energy
spectra predictions of these linear relationships which es-
timate the convolutional and deconvolutional relation-
ships are slightly less dissipative in the inertial and grid
cut-off length scales for the Re = 32000 case. However,
very similar performance is obtained for Re = 64000.
The slightly discrepancy in the performance of the lin-
ear implementations of the convolutional and deconvolu-
tional maps may be attributed to a lower generalizabil-
ity of the simpler nature of its learning. However, we
would like to remark that this has positive implications
for the utility of these techniques for the preservation of
the solenoidal constraint and frame-invariance in higher-
dimensional flows18 on structured grids. We would also
like to note that the utilization of the same data-local
filter stencil in all locations of the specified mesh ensures
Galilean invariance79. In addition, the use of stencil in-
puts is philosophically aligned with66, where multipoint
input data are used for optimal LES formulations. How-
ever, further research is necessary for importing concepts
related to isotropization of these data-driven filter and
inverse kernels for application to general unstructured
grids. It is also necessary to explore the possibilities of
‘constrained-learning’ which may embed the preservation
of the solenoidal constraint in higher-dimensions through
penalties introduced to the loss-functions31. That is a
subject of on-going investigation.

VII. MODIFIED TRUNCATION VIA MEAN FILTERING

The truncation specified in Equation 16 and Figure 4
leads to an asymmetry in the estimation of the dissipa-
tion by finer wavenumbers. To that end, we introduce
a modified truncation kernel based on a local-averaging
for an added truncation of positive eddy-viscosity pre-
dictions to ensure a balance with backscatter. This is in-
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FIG. 17. The performance of a linear estimator (LR) for con-
volutional and deconvolutional maps in the proposed frame-
work for Re = 32000. A comparison to the default ANN is
shown.
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FIG. 18. The performance of a linear estimator (LR) for con-
volutional and deconvolutional maps in the proposed frame-
work for Re = 64000. A comparison to the default ANN is
shown. Training data limited to Re = 32000 only.

troduced through the concept of a locally-averaged eddy-
viscosity prediction, for instance, given by

νavi,j =
1

9

(
νei,j + νei,j+1 + νei,j−1 + . . .+ νei−1,j−1

)
, (17)

where

νei,j =
Π̃i,j

∇2ω̄i,j
. (18)
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FIG. 19. Transfer function for truncation kernel to preserve
statistical effects of backscatter.

The averaging procedure in Equation 17 may also be rep-
resented by a mean-filtering-kernel given as

νav =
νe

9

1 1 1
1 1 1
1 1 1

 . (19)

The transfer-function of this kernel may be visualized
as shown in Figure 19 and this averaging filter has the
effect of eliminating localized pointwise values which are
unrepresentative of their surroundings.

The quantity νavi,j is basically the averaged dissipative
(or energy-producing) nature of the local stencil of pre-
diction and the quantity νei,j is the local effective eddy-
viscosity prediction by our proposed framework. Our
truncation scheme is then expressed as

Πi,j =

{
Π̃i,j , if νavi,j > νei,j
0, otherwise.

(20)

The effect of this modified truncation is described in Fig-
ure 20 where an increased truncation is observed quite
clearly. Our model formulation may thus be assumed to
preserve the statistical nature of the negative-eddy vis-
cosities in a locally-averaged manner.

A posteriori deployments of this modified truncation
scheme are displayed in Figures 21 and 22 where an
improved capture of the inertial range is observed for
Re = 32000 and Re = 64000 respectively. This implies
that the statistical fidelity of the prediction has been im-
proved by the integration of a local backscatter estimate.
The combination of novel truncation strategies may fur-
ther be studied in the context of this data-driven frame-
work for close agreement with theoretical scaling laws.
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merical post-processing during deployment given by the BS-1
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FIG. 21. A comparison of the choice of a posteriori trunca-
tion utilized in our proposed framework. A statistical preser-
vation of backscatter enforced by our proposed kernel leads
to a better agreement with the inertial range statistics for
Re = 32000.

VIII. CONCLUDING REMARKS

In this investigation, we have put forth and analyzed
a physics-informed data-driven closure modeling frame-
work for nonlinear partial differential equations. Our
proposal is to use two single-layer feed-forward artifi-
cial neural networks for mapping transformations from
grid-resolved variables with missing wavenumber content
and subsampled direct numerical simulation data in or-
der to close the two-dimensional Navier-Stokes equations.
This investigation continues from the authors’ previous
work56, which assessed the deconvolutional ability of neu-
ral networks, by employing them for estimating sub-grid
relationships from grid-resolved variables.

Our framework is novel as it precludes the utilization
of any phenomenological arguments or model form con-
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FIG. 22. A comparison of the choice of a posteriori trunca-
tion utilized in our proposed framework. A statistical preser-
vation of backscatter enforced by our proposed kernel leads
to a better agreement with the inertial range statistics for
Re = 64000. Training data limited to Re = 32000 only.

straints and relies, instead, solely on the approximation
of the Fourier cut-off filtering inherent in coarse-graining
as well as its approximate inverse. We remark that while
there is truly no way to invert a Fourier cut-off filter,
a-priori exposure to samples from resolved and filtered
fields are used to estimate the information loss and re-
construct it. For the purpose of numerical stability, we
also employ two postprocessing strategies with the first
ensuring no aggregate negative viscosities in the compu-
tational domain and the second preserving backscatter
in a statistical sense. This ensures that the stochastic
nature of the network predictions do not trigger numeri-
cal instability amplification in an explicit flow computa-
tion. Of, the two proposed truncation mechanisms for the
preservation of backscatter, our first formulation shows a
good agreement with DNS statistics whereas the second
truncates excessively. However, we note that the many
such kernels may be investigated and we seek to under-
take this for future research.

Another important feature of this investigation is that,
despite its data-driven nature, our offline training phase
necessitates no exposure to the true sub-grid stress data
and predictions are viable simply through the estimation
of the nature of the coarse-graining process in LES. Our
sensitivity study reveals the benefits of this approach,
where it is seen that increasing network complexity leads
to no appreciable improvement in the a posteriori per-
formance for this current test case. The need for compli-
cated network architectures (and their associated com-
putational and memory burden) is thus minimized due
to the physics-informed nature of our formulation.

Comparison with other well-established linear statisti-
cal learning methods also show that the novel dual net-
work formulation presented here reduces the complexity
of learning considerably. In particular, the performance
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of a linear map representation of convolution and decon-
volution operations ensures a direct enforcement of the
solenoidal constraint on the convolved and deconvolved
fields for applicability to higher dimensions. A poste-
riori realizations of the linear mappings between grid-
resolved and sub-grid space, show an exhibition of the
bias-variance trade-off issue where the simpler nature of
the linear regressor leads to lower generalization for a
different data-set. However, an effective parameter and
model-form free closure is readily obtained in this case
as well.

We also note that the data-local nature of our frame-
work with the combination of solely one map (each
for convolution and deconvolution) ensures that frame-
invariance is respected for the specified mesh. As a fu-
ture direction, this framework shall be studied with the
view of integrating physics-based constraints in the of-
fline training phase. These may be introduced through
optimization penalties for continuity enforcement and
for isotropization on arbitrary meshes. These are nec-
essary for the generalization of this framework to higher-
dimensional flows with arbitrary boundary conditions.

While the results of this study have proven promis-
ing for the development of purely data-driven closures
for LES, the true test of these ideologies would be to
develop generalized closures for a variety of flows. In
terms of a long-term goal, the preliminary results dis-
played here must translate to a situation where a pos-
teriori closure is determined by a priori exposure to a
variety of flow classes. Additionally, the stencil based
formulation for a predictive map leads to a resolution
dependence of the trained relationships. This is because
our LES to DNS ratio is fixed during the specification of
training data. An exposure to different levels of coarse-
graining for potential predictions would also increase the
generalizability of this framework. With that in mind,
we remark that the framework proposed here represents
the advantages of implementing a data-driven paradigm
from a physics-informed point of view with consequent
benefits for framework complexity and ease of deploy-
ment.

ACKNOWLEDGMENTS

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research under Award
Number DE-SC0019290. O.S. gratefully acknowledges
their support. Direct numerical simulations for this
project were performed using resources of the Oklahoma
State University High Performance Computing Center.

1T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosen-
bloom, and A. Waibel, “Machine learning,” Annual Rev. Com-
put. Science 4, 417–433 (1990).

2D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image
analysis,” Annual Rev. Biomed. Eng. 19, 221–248 (2017).

3D. Guest, K. Cranmer, and D. Whiteson, “Deep learning and
its application to lhc physics,” Annual Review of Nuclear and
Particle Science 68, 161–181 (2018).

4K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence Modeling
in the Age of Data,” arXiv preprint arXiv:1804.00183 (2018).

5P. Sagaut, Large eddy simulation for incompressible flows: an
introduction (Springer-Verlag Berlin Heidelberg, 2006).

6L. C. Berselli, T. Iliescu, and W. J. Layton, Mathematics of
large eddy simulation of turbulent flows (Springer-Verlag, New
York, 2006).

7S. Hickel, C. P. Egerer, and J. Larsson, “Subgrid-scale model-
ing for implicit large eddy simulation of compressible flows and
shock-turbulence interaction,” Phys. Fluids 26, 106101 (2014).

8C. Yu, Z. Xiao, and X. Li, “Dynamic optimization methodol-
ogy based on subgrid-scale dissipation for large eddy simulation,”
Phys. Fluids 28, 015113 (2016).

9Z. Zhou, S. Wang, and G. Jin, “A structural subgrid-scale model
for relative dispersion in large-eddy simulation of isotropic tur-
bulent flows by coupling kinematic simulation with approximate
deconvolution method,” Phys. Fluids 30, 105110 (2018).

10A. N. Kolmogorov, “The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers,” in Dokl.
Akad. Nauk SSSR, Vol. 30 (JSTOR, 1941) pp. 301–305.

11U. Frisch, Turbulence (Cambridge University Press, Cambridge,
U.K., 1995).

12J. Smagorinsky, “General circulation experiments with the prim-
itive equations: I. the basic experiment,” Mon. Weather Rev. 91,
99–164 (1963).

13C. E. Leith, “Diffusion approximation for two-dimensional tur-
bulence,” Phys. Fluids 11, 671–672 (1968).

14B. Pearson and B. Fox-Kemper, “Log-Normal Turbulence Dissi-
pation in Global Ocean Models,” Phys. Rev. Lett. 120, 094501
(2018).

15B. Pearson, B. Fox-Kemper, S. Bachman, and F. Bryan, “Eval-
uation of scale-aware subgrid mesoscale eddy models in a global
eddy-rich model,” Ocean Model. 115, 42–58 (2017).

16J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved
subgrid-scale models for large-eddy simulation,” AIAA Paper 80-
1357 (1980).

17W. Layton and R. Lewandowski, “A simple and stable scale-
similarity model for large eddy simulation: energy balance and
existence of weak solutions,” Appl. Math. Lett. 16, 1205–1209
(2003).

18S. Stolz and N. A. Adams, “An approximate deconvolution pro-
cedure for large-eddy simulation,” Phys. Fluids 11, 1699–1701
(1999).

19M. Germano, “The similarity subgrid stresses associated to
the approximate Van Cittert deconvolutions,” Phys. Fluids 27,
035111 (2015).

20B. Galperin and S. A. Orszag, Large eddy simulation of complex
engineering and geophysical flows (Cambridge University Press,
1993).

21V. Canuto and Y. Cheng, “Determination of the Smagorinsky–
Lilly constant CS,” Phys. Fluids 9, 1368–1378 (1997).

22O. San, A. E. Staples, and T. Iliescu, “A posteriori analysis
of low-pass spatial filters for approximate deconvolution large
eddy simulations of homogeneous incompressible flows,” Int. J.
Comput Fluid D. 29, 40–66 (2015).

23S. Schneiderbauer and M. Saeedipour, “Approximate deconvolu-
tion model for the simulation of turbulent gas-solid flows: An a
priori analysis,” Phys. Fluids 30, 023301 (2018).

24M. Schmidt and H. Lipson, “Distilling free-form natural laws
from experimental data,” Science 324, 81–85 (2009).

25I. Bright, G. Lin, and J. N. Kutz, “Compressive sensing based
machine learning strategy for characterizing the flow around a
cylinder with limited pressure measurements,” Phys. Fluids 25,
127102 (2013).

26D. Xiao, F. Fang, C. Pain, and G. Hu, “Non-intrusive reduced-
order modelling of the navier–stokes equations based on rbf in-
terpolation,” Int. J. Numer. Meth. Fl. 79, 580–595 (2015).



Data-driven deconvolution for large eddy simulations of Kraichnan turbulence 15

27S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering gov-
erning equations from data by sparse identification of nonlinear
dynamical systems,” Proc. Natl. Acad. Sci. U.S.A. 113, 3932–
3937 (2016).

28H. Schaeffer, “Learning partial differential equations via data dis-
covery and sparse optimization,” Proc. R. Soc. A 473, 20160446
(2017).

29M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Machine learn-
ing of linear differential equations using gaussian processes,” J.
Comp. Phys. 348, 683–693 (2017).

30A. T. Mohan and D. V. Gaitonde, “A Deep Learning based Ap-
proach to Reduced Order Modeling for Turbulent Flow Control
using LSTM Neural Networks,” arXiv preprint arXiv:1804.09269
(2018).

31M. Raissi and G. E. Karniadakis, “Hidden physics models: Ma-
chine learning of nonlinear partial differential equations,” J.
Comp. Phys. 357, 125–141 (2018).

32S. H. Rudy, J. N. Kutz, and S. L. Brunton, “Deep learning
of dynamics and signal-noise decomposition with time-stepping
constraints,” arXiv preprint arXiv:1808.02578 (2018).

33O. San and R. Maulik, “Neural network closures for nonlinear
model order reduction,” Adv. Comput. Math , 1–34 (2018).

34Z. Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sapsis, “Data-
assisted reduced-order modeling of extreme events in complex
dynamical systems,” PloS one 13, e0197704 (2018).

35B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and
B. Solenthaler, “Deep Fluids: A Generative Network for Pa-
rameterized Fluid Simulations,” arXiv preprint arXiv:1806.02071
(2018).

36E. Muravleva, I. Oseledets, and D. Koroteev, “Application of
machine learning to viscoplastic flow modeling,” Phys. Fluids
30, 103102 (2018).

37X. Jin, P. Cheng, W.-L. Chen, and H. Li, “Prediction model of
velocity field around circular cylinder over various reynolds num-
bers by fusion convolutional neural networks based on pressure
on the cylinder,” Phys. Fluids 30, 047105 (2018).

38J. Weatheritt and R. Sandberg, “A novel evolutionary algorithm
applied to algebraic modifications of the RANS stress–strain re-
lationship,” J. Comp. Phys. 325, 22–37 (2016).

39J. Weatheritt and R. Sandberg, “The development of algebraic
stress models using a novel evolutionary algorithm,” Int. J. Heat
Fluid Fl. 68, 298–318 (2017).

40J. Weatheritt and R. D. Sandberg, “Hybrid Reynolds-
Averaged/Large-Eddy Simulation Methodology from Symbolic
Regression: Formulation and Application,” AIAA J. , 3734–3746
(2017).

41M. Ma, J. Lu, and G. Tryggvason, “Using statistical learning
to close two-fluid multiphase flow equations for a simple bubbly
system,” Phys. Fluids 27, 092101 (2015).

42N. Gautier, J.-L. Aider, T. Duriez, B. Noack, M. Segond, and
M. Abel, “Closed-loop separation control using machine learn-
ing,” Journal of Fluid Mechanics 770, 442–457 (2015).

43H. Xiao, J.-L. Wu, J.-X. Wang, R. Sun, and C. Roy, “Quantify-
ing and reducing model-form uncertainties in Reynolds-averaged
Navier–Stokes simulations: A data-driven, physics-informed
Bayesian approach,” J. Comp. Phys. 324, 115–136 (2016).

44J.-X. Wang, J.-L. Wu, and H. Xiao, “Physics-informed machine
learning approach for reconstructing reynolds stress modeling
discrepancies based on DNS data,” Phys. Rev. Fluids 2, 034603
(2017).

45J.-X. Wang, J. Wu, J. Ling, G. Iaccarino, and H. Xiao, “A com-
prehensive physics-informed machine learning framework for pre-
dictive turbulence modeling,” arXiv preprint arXiv:1701.07102
(2017).

46J.-L. Wu, H. Xiao, and E. Paterson, “Data-Driven Augmentation
of Turbulence Models with Physics-Informed Machine Learning,”
arXiv preprint arXiv:1801.02762 (2018).

47A. P. Singh and K. Duraisamy, “Using field inversion to quantify
functional errors in turbulence closures,” Phys. Fluids 28, 045110
(2016).

48A. P. Singh, S. Medida, and K. Duraisamy, “Machine-learning-
augmented predictive modeling of turbulent separated flows over
airfoils,” AIAA J. , 2215–2227 (2017).

49B. D. Tracey, K. Duraisamy, and J. J. Alonso, “A machine learn-
ing strategy to assist turbulence model development,” in 53rd
AIAA Aerospace Sciences Meeting (2015) p. 1287.

50J. Ling and J. Templeton, “Evaluation of machine learning algo-
rithms for prediction of regions of high Reynolds averaged Navier
Stokes uncertainty,” Phys. Fluids 27, 085103 (2015).

51J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged
turbulence modelling using deep neural networks with embedded
invariance,” J. Fluid Mech. 807, 155–166 (2016).

52K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed-
forward networks are universal approximators,” Neural Netw. 2,
359–366 (1989).

53F. Sarghini, G. De Felice, and S. Santini, “Neural networks based
subgrid scale modeling in large eddy simulations,” Comput. fluids
32, 97–108 (2003).

54M. Milano and P. Koumoutsakos, “Neural network modeling for
near wall turbulent flow,” J. Comp. Phys. 182, 1–26 (2002).

55R. N. King, P. E. Hamlington, and W. J. Dahm, “Autonomic
closure for turbulence simulations,” Phys. Rev. E 93, 031301
(2016).

56R. Maulik and O. San, “A neural network approach for the blind
deconvolution of turbulent flows,” J. Fluid Mech. 831, 151–181
(2017).

57K. Fukami, K. Fukagata, and K. Taira, “Super-resolution re-
construction of turbulent flows with machine learning,” arXiv
preprint arXiv:1811.11328 (2018).

58M. Gamahara and Y. Hattori, “Searching for turbulence models
by artificial neural network,” Phys. Rev. Fluids 2, 054604 (2017).

59A. Vollant, G. Balarac, and C. Corre, “Subgrid-scale scalar
flux modelling based on optimal estimation theory and machine-
learning procedures,” J. Turbul. 18, 854–878 (2017).

60A. D. Beck, D. G. Flad, and C.-D. Munz, “Neural networks for
data-based turbulence models,” arXiv preprint arXiv:1806.04482
(2018).

61R. Maulik, O. San, A. Rasheed, and P. Vedula, “Subgrid mod-
elling for two-dimensional turbulence using neural networks,” J.
Fluid Mech. 858, 122–144 (2019).

62R. King, O. Hennigh, A. Mohan, and M. Chertkov, “From Deep
to Physics-Informed Learning of Turbulence: Diagnostics,” arXiv
preprint arXiv:1810.07785 (2018).

63O. Hennigh, “Lat-net: Compressing lattice boltzmann flow
simulations using deep neural networks,” arXiv preprint
arXiv:1705.09036 (2017).

64J. N. Kutz, “Deep learning in fluid dynamics,” Journal of Fluid
Mechanics 814, 1–4 (2017).

65J. A. Langford and R. D. Moser, “Optimal LES formulations for
isotropic turbulence,” J. Fluid Mech. 398, 321–346 (1999).

66R. D. Moser, N. P. Malaya, H. Chang, P. S. Zandonade,
P. Vedula, A. Bhattacharya, and A. Haselbacher, “Theoretically
based optimal large-eddy simulation,” Phys. Fluids 21, 105104
(2009).

67A. LaBryer, P. Attar, and P. Vedula, “A framework for
large eddy simulation of burgers turbulence based upon spatial
and temporal statistical information,” Phys. Fluids 27, 035116
(2015).

68J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt,
M. Girvan, and E. Ott, “Hybrid forecasting of chaotic processes:
using machine learning in conjunction with a knowledge-based
model,” Chaos 28, 041101 (2018).

69J.-L. Guermond, J. T. Oden, and S. Prudhomme, “Mathemat-
ical perspectives on large eddy simulation models for turbulent
flows,” J. Math. Fluid Mech. 6, 194–248 (2004).

70O. San and A. E. Staples, “High-order methods for decaying two-
dimensional homogeneous isotropic turbulence,” Comput. Fluids
63, 105–127 (2012).

71R. Maulik and O. San, “A stable and scale-aware dynamic
modeling framework for subgrid-scale parameterizations of two-



Data-driven deconvolution for large eddy simulations of Kraichnan turbulence 16

dimensional turbulence,” Comput. Fluids 158, 11–38 (2017).
72D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” arXiv preprint arXiv:1412.6980 (2014).
73R. H. Kraichnan, “Inertial ranges in two-dimensional turbu-

lence,” Phys. Fluids 10, 1417–1423 (1967).
74B. Cushman-Roisin and J.-M. Beckers, Introduction to geophys-

ical fluid dynamics: physical and numerical aspects, Vol. 101
(Academic Press, Boston, MA, 2011).

75A. Vorobev and O. Zikanov, “Smagorinsky constant in LES mod-
eling of anisotropic MHD turbulence,” Theor. Comput. Fluid

Dyn. 22, 317–325 (2008).
76M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dy-

namic subgrid-scale eddy viscosity model,” Phys. Fluids 3, 1760–
1765 (1991).

77A. Liaw, M. Wiener, et al., “Classification and regression by
randomforest,” R news 2, 18–22 (2002).

78S. R. Safavian and D. Landgrebe, “A survey of decision tree
classifier methodology,” IEEE transactions on systems, man, and
cybernetics 21, 660–674 (1991).

79M. Oberlack, “Invariant modeling in large-eddy simulation of tur-
bulence,” Annual Research Briefs , 3–22 (1997).




