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Bin Picking of Reflective Steel Parts using a Dual-Resolution
Convolutional Neural Network Trained in a Simulated Environment

Jonatan S. Dyrstad1,2, Marianne Bakken3, Esten I. Grøtli3, Helene Schulerud3 and John Reidar Mathiassen1,∗

Abstract— We consider the case of robotic bin picking of
reflective steel parts, using a structured light 3D camera as a
depth imaging device. In this paper, we present a new method
for bin picking, based on a dual-resolution convolutional neural
network trained entirely in a simulated environment. The dual-
resolution network consists of a high resolution focus network
to compute the grasp and a low resolution context network to
avoid local collisions.The reflectivity of the steel parts result
in depth images that have a lot of missing data. To take this
into account, training of the neural net is done by domain
randomization on a large set of synthetic depth images that
simulate the missing data problems of the real depth images.
We demonstrate both in simulation and in a real-world test that
our method can perform bin picking of reflective steel parts.

I. INTRODUCTION

Bin picking is the problem of grasping objects randomly
placed in a bin. This is a problem that often occurs in
industrial settings where objects come out of a production
line packaged in bulk, without isolating individual objects,
and where the objects are transported to a second production
line that subsequently must isolate and process these objects
individually. Due to the importance and relevance of the
problem, bin picking has been well studied [19], [24]–[26] in
the literature. Challenges in bin picking arise when seeking
to develop a bin picking algorithm that can be automatically
customized for specific objects, and when these objects are
very reflective. We present a method for bin picking that
addresses these two challenges.

The input to the grasp detection network is a depth image
and the output is a set of possible 3D grasps (e.g. 5-DOF or
6-DOF gripper poses). The use of a dual-resolution network
enables both high accuracy in a focus region of interest for
placing the grasp and estimating the grasp pose, as well as
enabling a low-resolution context awareness that e.g. ensures
that the grasps do not collide with other objects in cluttered
scenes. Fig. 1 shows the robot and the Zivid1 3D camera
used in our experiment and the steel parts in our bin picking
case.

We first evaluate our approach on simulated test data
and then demonstrate it in an exemplary real-world scenario
involving bin picking of steel parts using a robot with 5-DOF
placement of a vacuum suction gripper. Training of the neural
network is done entirely on synthetic depth images generated
by domain randomization in a simulated environment. This
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Fig. 1. Grasping steel parts with a suction gripper (top two images). An
overview of the bin picking setup, including a Zivid 3D camera (A), a UR5
robot (B), a pneumatic suction gripper (C), a bin of reflective steel parts
(D) and a bin (E) for placing the steel parts after picking.

approach is used to generate simulated data for training of
the neural network [23] that will work well in the real world.

Our main contributions are:

• A dual-resolution convolutional neural network for end-
to-end 5-DOF grasp estimation from depth images,
which uses a high resolution focus network to compute
the grasp and a low resolution context network to avoid
local collisions.

• A simulation environment using domain randomization
to automatically generate large data sets for training the
neural network, given known reflectivity and geometric
properties of objects in the bin-picking scenario.

• Demonstrating that the dual-resolution neural network
can be trained entirely in a simulated environment
on specific objects, and be deployed in a robot that
performs bin picking of these objects in the real world.

Although our experiments are done using a suction gripper
on smooth-surfaced metal objects, the methodology of our
contributions should be applicable also for other types of



objects and grippers - as long as these can be simulated.
The rest of the paper is organized as follows: We discuss
related work in Section II. We present our grasping method
in Section III. We then describe our experimental setup and
results in Section IV. The conclusion and suggestions for
future work are in Section V.

II. RELATED WORK

Detecting robot grasps from 3D or depth images is an
active research field, both in terms of using geometry-based
methods [8]–[12], [14] and deep learning [1]–[5], [7], [13],
[20], [21]. Geometry-based methods attempt to match 3D
CAD models to point clouds to compute the object pose
[16]. Some research suggests that primates and humans have
separate neural pathways for object recognition and grasping
[17], and the object detection and pose estimation has often
been treated as an isolated problem separated from grasp se-
lection in the bin-picking literature. Geometry-based methods
have been well explored for pose estimation in bin-picking,
such as Abbeloos et al [24], that uses the popular point
pair feature approach, first presented by Drost et al. [27].
Buchhilz et al. [26] suggests a two-stage approach where the
full object pose is estimated after grasping based on inertial
features. On the other hand, Ellekilde et al. [25] focuses on
the grasp selection alone and proposes a learning framework
to improve on this part. A different approach is to detect a
valid grasp directly from 2D or 3D images without explicit
pose estimation. Domae et al. [19] estimates the graspability
of an object based on depth maps without the assumption
of a 3D model, which makes it applicable to all objects.
Saxena et al. [6] developed a grasp detection algorithm based
on extracted hand-coded features from stereoscopic cameras,
and machine learning (logistic regression). Other hand-coded
feature-based approaches using machine learning have also
been developed [11].

Instead of hand-coding features, one may use deep learn-
ing to extract the relevant features for grasping [3]–[5],
[7]. These works use deep learning on depth images and
output grasping rectangles with center points parameterized
by (x, y) and θ in the plane of the depth image, and use
the depth image values within the rectangle to compute
the distance to that point. For a parallel-plate gripper ap-
proaching perpendicular to the viewing plane of the depth
sensor, this approach works well. In general, this may not
necessarily work, and a full 3D grasp may be required. This
has previously been solved by using deep learning [1]. Here
the 6-DOF grasps are generated randomly within a volume
of interest and a convolutional neural network is used to
evaluate the grasps by inputting multiple projections of a
3D point cloud volume centered at the grasp. Levine et al.
[22] uses a convolutional neural network to learn hand-eye
coordination from a large dataset of grasp attempts with real
robots and a large variation of domestic objects in semi-
cluttered bins. In contrast to Pinto et al. [5] they use the
trained network to servo the gripper in real-time, which
makes it more robust to mistakes and moving objects. Other
approaches [2], [21] also use deep learning to evaluate the

quality of a grasp. This differs from our approach, in which
we use deep learning to compute the 3D grasp itself. In
terms of input-output domain of the neural network, the work
most related to ours is Huang et al. [13], where the output
is the robot hand position, rotation axis and angle of rota-
tion. Our approach differs, in that we use a dual-resolution
convolutional neural network. Dual-resolution networks have
successfully been used to recognize hand gestures from depth
images [15]. Relative to this, our deep learning approach is
novel in that we integrate two resolutions into fully connected
layers before computing the output, whereas [15] integrates
the final output of each resolution.

The use of a dual-resolution network enables both high
accuracy in a focus region of interest, when placing the
grasp and estimating the grasp pose, as well as enabling a
low-resolution context awareness that e.g. ensures that the
grasps do not collide with other objects in cluttered scenes.
This approach is in principle similar to the fast filter-based
bin-picking algorithm in [19], which uses binary and linear
contact and collision filters that consider the geometry of
the gripper, to filter the depth images and thereby locate
4-DOF grasps. The principle differences between our work
and [19], is that we use a neural network to provide end-
to-end training of a 5-DOF (extendable to 6-DOF) grasp
detection network that automatically designs the appropriate
general and nonlinear filters relevant to grasp estimation and
collision, in a way that considers both the geometry of the
gripper as well as the geometry and reflectivity of the objects.

One challenge with deep learning for robot grasping is the
lack of large datasets of labeled training data, especially for
depth images. Pinto et al. [5] collected grasp attempts on a
real robot to train their network. Schwarz et al. [28] take
another approach, and uses pretrained models from object
classification to output bounding boxes and object boundaries
for further grasp detection. Our solution to this problem is
to generate our own labeled depth dataset in a simulated
environment. The benefit of this approach is that it enables
us to do end-to-end learning of the grasp itself, and utilize the
depth data more directly such that we can handle challenging
surfaces.

Generation of realistic looking synthetic images is an ac-
tive research topic and [29] has proposed a method based on
an adversarial network to improve the realism of simulated
images using unlabeled real data.

Compared to the literature (e.g. [21]) our network does
not require singulating or segmentation of the objects before
estimating the grasp. Segmentation is difficult when the
objects are highly reflective, since one is not guaranteed to
have contiguous depth measurements within an object due to
missing data in the depth images. To solve this problem, our
neural network is trained entirely by domain randomization
in a simulated environment that explicitly simulates the
reflectivity of the objects in cluttered scenes by rendering
missing data in the depth images similarly to how missing
data occurs in real 3D images of reflective objects.
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Fig. 2. Overview of the dual-resolution neural network, including scaling of input image patches.
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Fig. 3. Architecture of the focus, context and output networks.

III. GRASP POSE DETECTION

We propose the use of a dual-resolution convolutional
neural network for estimation of grasps from depth images.
Combining a high-resolution with a low-resolution image
as input, provides the network with enough information to
accurately place grasps on small objects, and enough of an
overview of the scene to avoid collisions between the gripper
and the local environment.

A. Convolutional Neural Networks

The neural network architecture is illustrated in Fig. 2.
An input depth image I is used to compute a batch of image
patches Ip of size 128× 128. The neural network processes
each of these image patches independently and produces five
outputs for each image patch. The first output d, is the grasp
detector confidence and estimates the probability of a valid
grasp point in the center of the image patch. At test time, the
image patch with the corresponding highest grasp detector
confidence is selected, and from this image patch the neural
network computes the grasp that the virtual or real robot
will perform. Three outputs describe the 3D grasp vector v,
which is an approach vector for the grasp point in camera
coordinates. The last output pz , is the point estimator which
estimates the distance to the grasp point along the z-axis of
the 3D camera, at the x- and y- coordinates of the center of
the depth image patch.

From the depth image patch Ip of size 128×128 pixels, the
central 32× 32 pixels are considered the focus of the grasp
network, and are input to the convolutional focus network
fFN (x;WFN ). A second convolutional network, called the
context network fCN (x;WCN ), takes as input a 4×4 down-
sampled version of Ip. The architecture of the focus and con-
text networks are shown in Fig. 3. Each have convolutional
layers and max-pooling layers and use the rectified linear unit
(ReLu) activation function after each convolutional layer.
The vector outputs from these two networks are concatenated
and input to the output network fON (x;WON ). The output
network has three sub-networks each having two dense
layers, with each sub-network computing one of the three
outputs d, v, and pz . The first dense layer in each sub-
network uses a (ReLu) activation function. The second dense
layer uses a sigmoid activation before the output d, and ReLu
before the outputs v and pz .

B. Training

The neural network was trained end-to-end, supervised on
400 000 synthetically created training examples. Training
was done using the Adam optimizer [18]. One training
example consists of a 128× 128 image patch input Ip with
its corresponding ground-truth output y =

[
d v pz

]
. For

false examples, i.e. image patches not containing a grasp,
the target vector is set to y =

[
0 1 1 1 1

]
. Given the ground-

truth output y, and the output ŷ that the network predicts,
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Fig. 4. The simulated environment, used for generating synthetic data
set for training the neural network and for evaluating its performance on
synthetic depth images.

the cost function is a weighted sum of the detector cost Jd,
point regression cost Jpz

and the vector regression cost Jv,
expressed as

Jtotal(y, ŷ) = αJd(y, ŷ) + βJpz (y, ŷ) + γJv(y, ŷ). (1)

For the grasp detector cost, the cross entropy function is
used, giving

Jd(y, ŷ) = −d ln d̂+ (1− d) ln (1− d̂). (2)

For both the point and vector regression costs, the squared
error cost function is used. Note that for input training images
not containing a valid grasp, we do not have real targets for
the point and vector estimators. Therefore, we mask out the
point and vector costs for false examples by multiplying with
the classification label, giving us the cost functions

Jpz (y, ŷ) =
1

2
d(pz − p̂z)2 (3)

and
Jv(y, ŷ) =

1

2
d‖v − v̂‖22. (4)

C. Simulated Environment for Generating Training Data

There is a need for large amounts of data when training
deep neural networks and hand labelling of a large data set
for the bin picking task would be very time consuming. To
avoid this tedious work, we used a simulated environment,
shown in Fig. 4. Using the Unity3D game engine and its
built-in physics, we created an environment for easy data
generation.

The environment is generic and can be used to create data
sets for 6 DOF grasping tasks from depth images for any type
of rigid object. To generate a data set, a geometric model
of the graspable objects needs to be provided. Additional
information about weight, reflection and friction coefficients
is also needed. Lastly, some valid grasps for each object need
to be set. In our experiments we defined 21 preset grasps for
each of the three types of graspable metal cylinders. The
output from the simulated environment is a depth image

and a list of valid grasps in camera coordinates. The data
is generated as follows:

1) A random number of parts in the range 1 to 30 are
instantiated in mid-air with random orientations.

2) The parts are dropped and allowed to fall to a rest in
random positions in the box or on the table.

3) For each preset grasp on each instance of a part,
perform a check for collision between the gripper and
all other parts and the box. A grasp is a valid grasp if
there is no collision.

4) For each instance of a part with at least one valid
grasp, only a single valid grasp is selected. The grasp is
selected in a manner that favors grasps that are close
to the world z-axis and in the direction towards the
simulated 3D camera.

5) The simulated 3D camera is randomly rotated and
translated before an intensity image Icam and a depth
image Idepth is rendered and saved to disk along with
a single valid grasp for each part in the scene.

The neural network requires a data set of 128×128 image
patches where each patch either has a grasp in the center, or
it has no grasp. The true examples were simply created by
cropping patches from the generated depth image, centered
around each grasp. An equal amount of false examples were
created by cropping random patches from the same image.
This way of creating false examples may lead to some false
negatives. We assume that the number of possible grasps
in the image are outnumbered with a large enough margin
by the number of not possible grasps for this to not impact
training negatively.

D. Synthetic and Real 3D Camera Images

Depth information is in principle invariant to lighting and
texture, which makes it far easier to generate realistic depth
images than RGB-images. However, with a real 3D camera,
noise and missing depth data occurs even in controlled
lighting conditions.

The 3D camera used in the experiments was the Zivid
RGB-D camera based on projection of structured light. The
camera has high resolution (0.1 mm), high speed (10Hz)
and High-dynamic-range (HDR) imaging, which combat the
over/under exposure problem, to some degree. However,
the captured 3D data still suffers from noise and missing
depth data, especially in cluttered scenes with many reflective
surfaces, which leads to under exposure in some areas and
over exposure in others, as shown to the right in Fig. 5.
Additional noise comes as a result of the light from the
projector reflecting off multiple objects before reaching the
camera.

In order to generate realistic looking depth images, we
simulate the missing data in depth images resulting from
the reflectivity of the steel parts. We assume that all other
objects consist of ideal diffuse reflective surfaces and that the
structured light projector is the only light source in the scene.
Because the experiments done with the real 3D camera and
robot are done in controlled surroundings with controlled
lighting conditions, the synthetically created depth images
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image.

should sufficiently approximate real depth images. Domain
randomization over the dynamic range of the depth images
is applied to generate training and test data for the neural
network. This is done by combining an intensity image patch
Ip,int with a depth image patch Ip,depth into an final image
patch Ip defined by

Ip = Ip,depth · I(Ip,int ≥ m1 ∧ Ip,int ≤ m2) + ε (5)

where I(·) is the indicator function and ε is an image of
uniformly-distributed random noise satisfying −1 ≤ ε ≤ 1.
The dynamic range of the 3D camera is randomly adjusted by
setting m1 and m2 to uniformly-distributed random numbers
satisfying m1,min ≤ m1 ≤ m1,max and m2,min ≤ m2 ≤
m2,max. Additionally, we assume m1 � m2, so that m1

corresponds to the minimum level of intensity required to
provide a valid depth measurement, and m2 corresponds
to the maximum level, i.e. camera saturation. Examples of
synthetic images and an example of a real image can be seen
in Fig. 5. The synthetic images show the variations due to
domain randomization over the following variables of the
simulation:

• Number of steel parts
• Size of steel parts
• Position and orientation of steel parts
• Reflectivity of steel parts
• Position and orientation of the 3D camera
• Dynamic range of the 3D camera

In total, this domain randomization is expected to span the
range of scenarios sufficiently that a neural net trained on
synthetic images will work well on real images.

IV. EXPERIMENTS AND RESULTS

A. Procedure for Grasp Evaluation on Synthetic Data

In order to evaluate the performance of the neural network
on a large data set, we tested it on data from a simulation

not used during training, using a simplified simulation of a
suction gripper. The experiment was conducted as follows:

1) A random number of parts in the range 1-30 were
dropped in the box

2) The number of parts present in the scene was noted
before the neural network was used to attempt a grasp.

3) If the grasp was successful:
a) The grasp was logged as successful together with

the number of parts present before the grasp was
attempted.

b) The picked part was removed from the scene,
allowing the remaining parts to move according
to their physics.

c) If the picked part was the last part in the scene:
Go to point 1. Else: Go to point 2.

4) If the grasp was unsuccessful:
a) The grasp was logged as unsuccessful together

with the number of parts present before the grasp
was attempted.

b) The cause of the failure was logged as either:
Gripper collision (the virtual gripper collided
with the environment or other parts) or poor grasp
(outside a set tolerance).

5) Go to point 1.
The experiment in simulation was continued until 12000

parts were picked successfully. The physics of the vacuum
gripper was not simulated, instead the criteria for a valid
grasp were defined by the position of the gripper on the part
and the gripper angle relative to the surface normal on the
contact point.

B. Results of Grasp Evaluation on Synthetic Data

The grasp performance of the neural net tested in the
simulated environment shows that we achieve an overall
success rate of 83 % for the bin picking system, when using
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the dual-resolution network. The success rate varies as a
function of the number of parts remaining in the box (Fig. 6).
Most of the errors made were due to collisions between the
gripper and the environment. If these errors are ignored, i.e.
we evaluate the performance of the system solely on the basis
of correctly placed grasps on the steel parts, the success rate
is 95 %. In a robot bin picking system this issue would be
resolved by implementing a global collision check. It seems
to be a trend that the success rate drops when there are few
objects left in the box. The likely cause of this is that the
network always chooses the most certain grasp in the scene
first, leaving the most uncertain grips for last, e.g. difficult
grasps like a part in the corner of the box that is only partially
viewed by the camera.

C. Evaluation of the Context Network

To evaluate the effect of the context network we tested the
proposed dual-resolution network, which includes the context
network, and a single-resolution network without a context
network. The single-resolution network has the same overall
architecture as the dual-resolution network, with the differ-
ence being that the context network is removed entirely. A
separate training was done on the single-resolution network.
The single-resolution network without the context network
has more picking failures as the number of parts in the box
increase (Fig. 7), compared to the dual-resolution network
with the context network. The number of collision failures
are reduced by up to 34%. When there are few parts in the
box there are few local collisions and the context network
has little effect. As the number of parts in the box increases,
there are potentially more local collision between the gripper
and the parts. Overall, the use of a context network in a dual-
resolution network can improve grasping success by reducing
the number of collisions between the gripper and the parts.

D. Robot Bin Picking Data and Setup

For the bin picking experiments with a real robot we used
reflective steel parts from an industrial automation applica-
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tion. We used a set of 40 cylindrical parts with diameters
varying between 19 mm and 30.7 mm, and lengths varying
between 25.7 mm and 31.7 mm. For these experiments,
a UR5 6-DOF robotic manipulator from Universal Robots
was used. A vacuum gripper with a single suction cup was
attached to the end effector. The suction cup had a diameter
of 10 mm and could be compressed 4-5 mm in the tool
point direction. The design of the gripper puts some physical
limitations on the set of grasps that can be executed without
collision. Even though the dual-resolution neural network in-
corporates local collision checking, global collision checking
for the whole robot arm was not implemented. This could
be solved by running a global collision check (for instance
OpenRAVE) on the suggested grasp before execution.

E. Robot Bin Picking Evaluation Procedure

A box was filled with steel parts of different sizes in a
random manner. An image was captured of the box and used
as input to the system, and the grasp with highest score was
executed with the robot. If a grasp was unsuccessful, either
because of collision or an erroneous grasp estimation, the
part was removed manually. Otherwise, the robot removed
the object by grasping and picking it up and placing it in a
second box. A new image was acquired before attempting
to remove a new part. This continued until the box was
empty. The robot test was conducted on 6 different boxes,
each initialized with 30 parts randomly placed.

F. Comparing Grasp Placement Performance on Simulated
and Real Depth Images

The grasp placement performance of the dual-resolution
network was evaluated on simulated and real depth images.
In this evaluation, only the grasp placement is evaluated, and
other robot system related errors are not considered. There is
good correspondence between the results on simulated and
real depth images. The grasp placement performance on real
depth images has an overall lower success rate, see Fig. 8.
The mean grasp placement success rate for the simulated
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depth images is 95% and 85% for the real depth images. In
both cases there is a decrease in performance towards the
bottom of the box, when there are few parts left. However,
the performance drop on the real depth images is somewhat
higher. This is most likely caused by more missing data in
the real depth images, than in the simulated depth images,
see Fig. 5.

G. Robot Bin Picking Performance

In the performance evaluation of the robot bin picking
system we measure success in several ways, in order to
understand the successes and failures of the system. This
performance evaluation is summarized in Fig. 9. Picking
success is measured by the success rate of the complete
robot system performing a grasp. We also measured the
picking success that could be achieved by disregarding grasps
that could be removed by a global collision check. Finally,
we compare this to grasp placement only. Compared to

the simulation results, the robot has a very low success
rate when picking the last parts in the box. This is mostly
due to collisions between the real gripper and environment,
and these errors stem from some differences between the
physical and the virtual gripper. In addition to collisions,
in the robot test, the failed grasps were due to small errors
in grasp position or angle, resulting in failed grasps due to
lack of suction. This error happened more frequently at the
bottom of the box. The last objects are often the ones which
are most difficult to grasp (e.g. in a corner), Levine et al.
[22] reported a similar trend. Additionally, objects in the
bottom of the box have less depth data due to occlusion.
Also, parts oriented with the opening facing up occurred
more frequently in the real-world test, because of a different
weight distribution than in the simulations. Some differences
between the real-world and the simulation combined lead to
a more challenging test scenario in the real world than in
the simulation. For situations when the real-world and the
simulated environment are more similar, for instance when
there are 21-30 parts in the box, the performance in the real-
world and in simulation are equally good (81% and 82%
picking success rates respectively, see Fig. 9 and Fig. 6). This
result suggests that improvements in the simulation, to more
accurately represent the real 3D camera, robot and gripper,
will result in higher picking success in the real world.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for robotic bin pick-
ing of reflective steel parts. We proposed a dual-resolution
convolutional neural network for 5-DOF grasping, trained
entirely by domain randomization in a simulated environ-
ment. The system was tested on simulated data as well as
in the real-world using a robot with a 5-DOF placement
vacuum gripper. Using a context network improves the grasp
performance by minimizing collisions between the gripper
and the local environment. We demonstrate that training of
the neural net by domain randomization on a large set of
synthetic depth images is an effective and useful approach
when the simulated environment closely resembles the real
world. Future work will focus on more accurately simulating
the 3D camera to improve the model of missing data in the
depth images, and implementing a more accurate model of
the gripper. We will also explore how we can improve the
simulated data through Adversarial Networks.
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