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One of the biggest challenges in the development of offshore wind farms is the cost and 
limited opportunities for maintenance and access. This calls for new solutions when it 
comes to operation and maintenance (O&M) strategies, condition monitoring and 
logistics, just to mention some examples. To assess different solutions and to select the 
best ones, good models for maintenance and logistics decision support are required. 
This chapter provides an overview of, and a brief introduction to, O&M modelling for 
offshore wind farms, including transport and logistics for O&M. The main focus of the 
chapter is on strategic O&M modelling. An O&M simulation model and a model for 
O&M vessel fleet optimization are presented. The models can be used for analysis and 
optimization of different aspects of maintenance and logistics and the influence on the 
costs and availability during the operational phase of an offshore wind farm. Applications 
of the models are illustrated by examples, among others for cost‐benefit evaluation for 
a new solution for remote inspection of the turbine nacelle. Furthermore, the influence 
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of different logistics, maintenance and monitoring strategies on the costs is illustrated 
in the examples. In addition to these two strategic models, an operational model for 
routing and scheduling of a fleet of maintenance vessels is presented.

7.1  Introduction

Operational expenditure (OPEX) is one of the major contributions to the levelized cost 
of energy (LCoE) for offshore wind farms. OPEX includes maintenance and service 
costs in addition to other variable operational costs. Table 7.1 provides a brief overview 
of different estimates for the OPEX contribution to LCoE. The estimates are between 
12 and 32%, with a typical value around 25%. Some of the variability is due to offshore 
transmission charges, which in the United Kingdom are payed annually to an off-
shore transmission operator and, hence, included as OPEX. In other countries, these 
costs are typically included as capital expenditure (CAPEX) if the wind farm developer 
owns and operates the offshore transmission system, or are excluded if these costs are 
socialized and borne by the national or regional transmission system operator. 
Sometimes the reported OPEX figures also exclude variable operational costs, such as 
insurance, land lease and so on.

It should be noted that these estimates only consider the contribution of the direct 
O&M costs to the LCoE. More indirectly, O&M also affects the wind farm availability 
and lifetime, and, hence, the total levelized energy production entering into the calcula-
tion of the LCoE. Consequently, O&M is an important area for improvement in order 
to reach the goals and ambitions for offshore wind LCoE reduction: from around £140/
MWh in 2014 to £100/MWh in 2020, as requested by the UK Department of Energy & 
Climate Change (The Crown Estate, 2012), or – as estimated by TPWind (2014) – LCoE 
cost reduction by up to 50% over the next 20 years compared to 2008.

Reduction of O&M costs can be achieved by several measures, such as:

1) increasing the reliability of the components (e.g. by improved component and tur-
bine designs);

2) aiming for maintainability of components (i.e. using components that are easy to 
maintain);

3) increasing the performance (i.e. the organization’s effectiveness) for maintenance 
support (e.g. through optimized use of resources, and through logistics, transport 
and using solutions, maintenance techniques and strategies that reduce the down-
time when failures occur);

4) optimizing wind turbine and wind farm operation (e.g. reducing loads with improved 
control systems);

5) getting better control of technical condition and ageing (e.g. new and improved 
inspection and monitoring methods).

The above list is related to the characteristics of dependability. Dependability is 
defined as ‘ability to perform as and when required’ (IEC 60050‐192:2015) and includes 
‘availability, reliability, recoverability, maintainability and maintenance support perfor-
mance, and, in some cases, other characteristics such as durability, safety and security’.

Some of the measures in the list above are related to design improvements (e.g. 1 and 2) 
or make changes in the control systems of the turbine or plant (4). Such measures may 
require considerable technical changes in an existing turbine/wind farm. However, other 
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Table 7.1 Contribution of OPEX to LCoE.

Source
OPEX contribution 
to LCoE (%) Comments

Musial and Ram (2010, p. 117) 13–30 Survey and comparison of eight other 
sources from 2001 to 2009. Excluding 
variable costs, these sources report an O&M 
cost fraction ranging from around 13% to 
around30 %. Each of the sources built on 
different assumptions, and some additional 
assumptions were made in the comparison.

Musial and Ram (2010, p. 71) 20.5 Estimated cost of energy for a typical 
offshore turbine, based on other sources 
(cf. above).

Tavner (2012, p. 19) 18–23 ’O&M percentage costs for some European 
offshore wind farms’, sources and 
assumptions not unambiguously stated.

BVG Associates (2012, p. 199) 32 Baseline case 4‐B (4‐MW turbines) presented 
in Table C.4 and in Figure 4.4 (BVG 
Associates, 2012). Includes offshore 
transmission charges.

BVG Associates (2012) 19 Estimated by subtracting offshore 
transmission charges from the above, 
using numbers in Table 4.1 (BVG 
Associates, 2012).

GL Garrad Hassan (2013, p. 5) 25 ’O&M activity accounts for approximately 
one quarter of the life‐time cost of an 
offshore wind farm’ (apparently excluding 
offshore transmission charges).

Maples et al. (2013, p. 13) 12 Baseline scenario for 100 × 5‐MW turbines 
46 km off the coast of Virginia.

Siemens (2013) 24 Baseline for 2014, based on the SWT‐6.0‐154 
turbine for a 1000‐MW offshore wind 
project.

BVG Associates (2015, p. 11) 16 Illustrative breakdown for typical UK 
offshore wind project (for ‘operation, 
maintenance and service’, excluding offshore 
transmission costs).

Smart et al. (2016, p. 12) 17 Baseline value for 100 × 4‐MW turbines 
40 km from shore, including contributions 
from preventive and corrective maintenance 
(modelled) as well as other fixed and 
variable OPEX contributions (based on 
other sources), excluding offshore 
transmission costs.

Wiser et al. (2016) 17 Mean baseline (2014) value across all expert 
survey respondents.1

1 Estimated from Table 2 (Wiser et al., 2016) by using the LCOE calculator at http://rincon.lbl.gov/lcoe_v2/
lcoe_calculator.html and setting APEX = 0.
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measures contribute to improvements and cost reduction without requiring extensive 
design and control system changes but by implementing new maintenance strategies and 
new inspection, monitoring and maintenance methods. To find and select the most cost 
effective measures, it is necessary to have available models and tools to assess different 
strategies for O&M.

The use of models and tools supports the development and optimization of asset 
management plans as part of an asset management system, as described in BSI PAS 
55‐2 (2008) and ISO 55000 (2014). Furthermore, models are an important and 
 integrated part of the planning activities in a Plan–Do–Check–Act (PDCS) framework 
(BSI PAS 55‐1, 2008) for continuous improvement of asset management. Using models 
and tools will also help to implement key principles and attributes of asset manage-
ment as required by BSI PAS 55‐2 (2008) and described in Table 7.2.

This chapter presents three O&M models: two strategic models  –  one simulation 
model for wind farm availability and O&M cost estimation, and one mathematical opti-
mization model for determining optimal vessel fleet size and mix – and one operational 
mathematical optimization model determining optimal routes and schedules for a fleet 
of maintenance vessels servicing turbines at an offshore wind farm. Since these models 
put special emphasis on the transport and logistics aspects of O&M, the term ‘O&M 
modelling’ in this chapter also includes the modelling of transport and logistics.

The rest of this chapter is organized as follows: Section 7.2 provides an overview of 
O&M modelling for offshore wind farms. Models developed by NOWITECH and 
related projects are described in Section 7.3. Examples and case studies that illustrate 
typical applications of the models are presented in Section 7.4. Finally, future trends in 
O&M modelling, including an outlook on expected development of offshore wind 
O&M and how this will influence model development, is provided in Section 7.5.

7.2  O&M Modelling for Offshore Wind Farms

7.2.1 Classification of Models

The use of computer models for O&M and logistic activities for offshore wind farms 
can be divided into two main areas:

1) Models used as analysis tools to increase the understanding of the systems they are 
modelling: the user in this case can, for example, be a scientist interested in the 
 drivers of O&M costs and investigating, say, the effect on the maintenance logistics 
of wind farms being installed further offshore.

2) Models used as decision support tools to assist decision makers on specific challenges: 
the user in this case will be a decision maker or stakeholder in the offshore 
wind industry, such as a wind farm developer/owner/operator, maintenance vessel 
provider/shipping company or an O&M innovation and concept developer.

The primary focus in this chapter will be on the application of offshore wind 
O&M models for decision support. The terms ‘decision support tool’ and ‘model’ are, 
therefore, used interchangeably.

Decision problems can be classified based on their time scale. A common 
 classification is strategic, tactical and operational decision problems (Shafiee, 2015). 
Figure 7.1 illustrates how O&M decision problems for offshore wind can be classified 
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Table 7.2 Key principles and attributes of asset management (BSI PAS 55‐2, 2008) and specific 
contributions to these principles/attributes through O&M models and tools.

Principle/ attribute 
(BSI PAS 55‐2, 2008)

General description  
(BSI PAS 55‐2, 2008)

Specific contribution by using O&M 
models and tools

Holistic Looking at the whole picture, i.e. the 
combined implications of managing 
all aspects, rather than a 
compartmentalized approach.

Taking into account several 
different aspects of O&M such as 
different types of maintenance, 
availability of resources, 
uncertainties in weather, failure 
occurrence, electricity prices etc.

Systematic A methodical approach, promoting 
consistent, repeatable and auditable 
decisions and actions.

Using a methodical, consistent and 
repeatable approach when using 
models and tools.

Systemic Considering the assets in their asset 
system context and optimizing the 
asset systems value rather than 
optimizing individual assets in 
isolation.

Considering the whole wind farm, 
including the individual turbines, 
the balance of plant and also the 
logistics support for offshore wind 
farm O&M.

Risk‐based Focussing resources and 
expenditure, and setting priorities, 
appropriate to the identified risk and 
the associated cost/benefit.

Taking into account risks due to 
uncertainties related to future 
events and illustrate/quantify their 
effect on performance parameters 
such as costs and availability.

Optimal Establishing the best value 
compromise between competing 
factors, such as performance, cost 
and risk, associated with the assets 
overt their life cycle.

Finding optimal or near optimal 
solutions and strategies with O&M 
models and tools.

Sustainable Consider the long‐term 
consequences of short‐term 
activities to ensure that adequate 
provision is made for future 
requirements and obligations.

Strategic models and tools help 
assessing the long‐term 
consequences of O&M decisions 
and can consider the full 
operational phase of the wind farm.

Integrated Recognizing that interdependencies 
and combined effects are vital to 
success. This required a combination 
of the above attributes, coordinated 
to deliver a joined‐up approach and 
net value.

Integrating the aspects and 
properties from above in a model or 
tool, or by integrating/combining 
different models and tools.

Time
scale

(e.g. ‘where should we
locate our maintenance

base?’)

Operational
decisions

(e.g. ‘how and when
should I charter this jack-

up vessel?’)

~ 10 years~ 1 yeardays

(e.g. ‘which turbines should
we schedule to visit

tomorrow?’)

Tactical
decisions

Strategic
decisions

Figure 7.1 Decision problems classified by time scale for offshore wind O&M.
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using these three categories. The operational decision problems relate to short‐term 
decisions on a daily basis, the typical planning horizon will be one day and up to a 
couple of weeks. Tactical decision problems will have a medium‐term focus and can 
include, for  example, decisions on which vessels to charter‐in on a short‐term basis 
to handle, for example, maintenance campaigns. Strategic decision problems relate to 
decisions with long‐term implications. These decisions are often made in the develop-
ment or design phase of an offshore wind farm; each decision will often have greater 
economic implications than decisions made on an operational or tactical level. Partly 
for this reason, O&M models have, until now, mostly been applied by the offshore 
wind industry for strategic decision support. Hence, the main focus in this chapter 
is  on the strategic perspective. However, models for operational decision support 
(routing and scheduling) are also discussed.

O&M modelling tools may also be classified based on type of modelling approach; this 
chapter considers simulation and mathematical optimization approaches. Modelling 
tools may also involve approaches comprising elements from both simulation and math-
ematical optimization methods. Solving a decision problem amounts to selecting the 
best (optimal) among a set of possible (feasible) decisions (solutions). Decision problems 
can be formulated as mathematical optimization models with an objective function used 
to evaluate and find the best solution, and constraints that define the problem’s solution 
space. The objective function can be defined in various ways and depends on the prob-
lem and the objectives prioritized by the decision maker. A common objective function 
for offshore wind O&M is the sum of the (direct) O&M costs and the (indirect costs of ) 
lost revenue due to turbine downtime. This is often referred to as the total O&M cost, 
and the optimal solution is the one that minimizes this objective function.

When a simulation tool is used to analyse an optimization problem, possible 
 solutions in the solution space are evaluated, as illustrated on the left‐hand side of 
Figure  7.2. The user will then typically specify a set of solutions to consider and 
the simulation model will analyse each solution one at a time by explicitly calculating 
the value of the objective function. A comparison of the results for each solution will 
identify the optimal one. In the example illustrated in Figure 7.3, such a methodology 

Solution space Solution space

Simulation: Optimization:

Considered
solution(s)
(suboptimal)

Optimal
solution

Possible
solution

Figure 7.2 Illustration of the distinction between simulation methods and mathematical 
programming methods for solving an optimization problem.
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is used to evaluate seven different O&M strategy alternatives (solutions) and 
 alternative 4 is shown to be the one with the best trade‐off between low O&M costs 
and high wind turbine availability.

The solution space, that is the set of potential optimal solutions, may be huge, even 
infinite, and due to restricted computational resources it will often only be possible to 
consider a subspace of the solution space by a simulation model. Thus, no guarantee 
can be given that the global optimal solution is found, since this solution may not be 
included in the subspace considered in the analysis. By use of mathematical program-
ming techniques, a mathematical optimization model may be formulated and solved 
directly. The result of such a model will be the optimal solution, that is the model uses 
efficient techniques to evaluate the whole solution space and find the (proven) optimal 
solution according to the objective function value. However, depending on the level of 
detail of the model and size of the decision problem to solve, large computational efforts 
may be required before the global optimal solution is found and proven to be the global 
optimum. Hence, to make such a model computationally tractable, a simplified and less 
detailed representation of the real system is often used in a mathematical optimization 
model compared with a simulation model.

7.2.2 State‐of‐the‐art in Modelling

An overview of the current status in O&M modelling for offshore wind farms is 
 presented in this section. Findings presented in existing reviews are briefly discussed 
before results from recent publications are included. The main focus is first on strategic 
O&M simulation models, before models for selected optimization problems are 
 discussed at the end of the section.

More costly and advanced O&M strategy alternatives

Alternative1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6 Alt. 7

T
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Direct O&M costLost revenue due to downtime

Figure 7.3 Concept sketch of O&M optimization by finding the optimal trade‐off between minimizing 
O&M costs and maximizing turbine availability.
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A survey of state‐of‐the‐art in offshore wind O&M modelling was carried out in the 
initial phase of NOWITECH (Hofmann, 2010). A review of decision support tools for 
offshore wind farms with special emphasis on strategic decision problems for O&M and 
on life cycle cost estimation was subsequently presented by Hofmann (2011). A total of 
49 models and tools were surveyed, most of them simulation models, although some 
also include optimization algorithms for parts of the modelled system. 22 of the 
 surveyed models considered the maintenance strategy of the offshore wind farms, but 
most focused just on some aspects or were not able to consider the full life cycle of the 
wind farm. Furthermore, the most well developed decision support tools were either 
commercial software tools or in‐house consultancy tools, and almost none of them 
were available for use by NOWITECH researchers. This led to the conclusion that, in 
order to have research tools for studying offshore wind O&M, NOWITECH research-
ers would have to develop their own models (Hofmann, 2010). The results of this 
 development are the models described in this chapter.

Since the publication of the state‐of‐the‐art survey in 2011, the intensity of research 
efforts on offshore wind O&M modelling has remained high and a number of models 
and tools have been developed that were not included by Hofmann (2011). Shafiee 
(2015) has presented an extensive and more recent survey of research in the field of 
maintenance logistics for offshore wind farms, covering both strategic, tactical and 
operational issues. However, Shafiee (2015) did not focus on which tools or models are 
developed for the various publications and does not cover more commercial or nonaca-
demic decision support tools.

To complement Shafiee (2015) and update Hofmann (2011), a simple overview of 
strategic decision support tools for offshore wind O&M is presented in Table 7.3. Most 
of the tools in Table 7.3 have been developed after 2011, but some of the tools are older 
but were not included in the survey by Hofmann (2011). This overview – making no 
claim to be complete – is based on the experience of the authors from interaction with 
several research institutes and industry actors throughout the duration of NOWITECH. 
For instance, the overview excludes decision support tools for operational decision 
problems and it excludes other special‐purpose analysis tools. Furthermore, such over-
views are naturally biased towards the kind of models for which information is easily 
available. Most of the references are, therefore, for models developed through academic 
and student projects. Information on tools developed by consultancies, owners, opera-
tors, developers and so on is typically not that readily available. Partly for these reasons, 
references cannot always be provided, and the names used to label some of these tools 
may not be the names used internally or officially. Furthermore, different versions of the 
same tool may have been described by several references, and references may refer to 
the same tool by different names. Where this is known to be the case, the most recent 
names and references are used.

Some of the more notable tools surveyed by Hofmann (2011) that are particularly 
relevant to mention here are the O2M model of DNV GL (previously Garrad Hassan), 
the ECN O&M Tool, and the ECN O&M Calculator (previously called OMCE), because 
these are tools that have been frequently used by the industry. To the best of our 
 knowledge, all the tools mentioned above and in Table 7.3, except for 2OM DSS and the 
ECN O&M Tool, are based on discrete‐event simulation models. Some of the recently 
developed simulation models, at least the MAINTSYS model and the Fraunhofer IWES 
Multi Agent System, also employ agent‐based simulation methodologies. This overview 
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Table 7.3 Overview of strategic O&M tools not included in the review by Hofmann (2011) 
(Reproduced with permission of SAGE publications.).

Model Developer Reference

ECUME model EDF R&D (owner/operator) Douard et al. (2012)
DONG Energy’s logistics 
model for O&M

DONG Energy (owner/operator) n/a

OPUS/SIMLOX Systecon (consultancy) Johansson (2013)
Ecofys O&M Tool Ecofys (consultancy) n/a
Strathclyde University 
offshore wind OPEX 
model (Strath‐OW OM)

University of Strathclyde, also referred to as 
the Strathclyde University, Centre for Doctoral 
Training Offshore Wind OPEX Model

Dalgic et al. (2015)

MAINTSYS Shoreline (consultancy) / University of 
Stavanger (UiS), initially developed through 
the PhD study of Ole‐Erik Vestøl Endrerud 
within the NORCOWE research centre; also 
referred to as the University of Stavanger 
Offshore Wind Simulation Model

Endrerud et al. (2014)

MARINA_RAMS_
Executor

Norwegian University of Science and 
Technology, developed within the MARINA 
Platform EU FP7 project

Vatn (2014)

AAU OM discrete event 
simulator for offshore 
wind turbine blades

Aalborg University, developed through the 
PhD study of Mihai Florian within the 
NORCOWE research centre

Florian and Sørensen 
(2016)

Fraunhofer IWES 
Multi‐Agent‐System

Fraunhofer IWES Kassel Berkhout et al. (2015)

2OM DSS Developed within the 2OM Interreg project by 
the University of Portsmouth in collaboration 
with other project partners

Li et al. (2016)

University College 
London O&M Strategy 
model

University College London, developed through 
the PhD study of Alexander Karyotakis

Karyotakis (2011)

UCC life cycle cost model Developed by University College Cork, 
originated in the MARINA platform project

O’Sullivan (2014)

TU Delft Integrated 
Decision Support Tool

Developed by Delft Technical University in 
cooperation with Systems Navigator 
(consultancy)

Koopstra (2015)

Durham O&M cost 
model

Developed by Durham University, apparently 
in cooperation with Romax Technologies

Neate et al. (2014)

TU Delft Logistic and 
Service model

Delft University of Technology, developed in 
collaboration with Fraunhofer IWES through 
the master’s thesis work of Ashish Dewan

Dewan (2014)

Siemens availability 
simulator

(A master’s thesis prepared in collaboration 
with Siemens refers to a software for 
availability simulations provided by Siemens.)

Gustavsson and 
Nyberg (2014)

NOWIcob SINTEF Energy Research, developed within 
NOWITECH and related projects

Hofmann and 
Sperstad (2013)

Vessel fleet optimization 
models

MARINTEK, developed within NOWITECH 
and related projects

Stålhane et al. (2016a)
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shows that strategic decision support tools are rarely based on mathematical optimiza-
tion models. In the next two paragraphs, two typical optimization problems are dis-
cussed, namely the vessel fleet size and mix problem and the routing and scheduling 
problem, of which the former is a strategic decision problem and the latter an 
 operational problem.

The problem of determining optimal vessel fleet size and mix for O&M at offshore 
wind farms has been addressed by NOWITECH with mathematical optimization mod-
els and tools. To our knowledge, the models developed in NOWITECH and related 
projects are the first addressing this problem. Other research communities have recently 
addressed the same or similar problems (Li et al., 2016). However, there exist several 
studies on other problems related to determining optimal fleet size and mix in the 
operations research community. These studies all consider the strategic decision of 
deciding an optimal fleet of vehicles; the problem has been considered for both road‐
based and maritime transport. Proposed models often include routing decisions, as it 
will be necessary to also study the underlying structure of the operational planning 
problem, see, for example, the discussion by Christiansen et al. (2007). An extensive 
literature survey covering fleet composition and routing problems in road‐based and 
maritime transport was presented by Hoff et al. (2010). The survey also presented basic 
mathematical optimization models for the problems found in the literature. Optimization 
models for maritime fleet composition and routing problems have been presented by 
Fagerholt and Lindstad (2000), Halvorsen‐Weare et  al. (2012) and Halvorsen‐Weare 
and Fagerholt (2011).

There also exists a little research on mathematical optimization models for the 
 routing and scheduling problem for a fleet of maintenance vessels servicing an 
 offshore wind farm. In addition to the work originating from NOWITECH, Zhang 
(2014) presents a metaheuristic approach (Duo Ant Colony Optimization) and Irawan 
et al. (2017) present a mathematical optimization model solved by a Dantzig‐Wolfe 
decomposition approach (Dantzig and Wolfe, 1960). The problem can, however, be 
categorized as generalization of the well‐studied pickup and delivery problem; see 
Berbeglia et al. (2007) for a comprehensive survey and classification of such problems.

7.2.3 Decision Problems and Model Application

O&M modelling tools can be used to support many different types of decision problems 
faced by various stakeholders. Table 7.4 shows a list of typical decision problems these 
tools can help support.

The examples in Table 7.4 are restricted to typical decisions that can be addressed by 
the tools developed by NOWITECH and presented in the next section. As shown by the 
examples in the table, there are a number of stakeholders that will profit from using 
O&M modelling tools for many different decision problems.

7.3  Decision Support Tools Developed by NOWITECH

The decision support tools and concepts developed in NOWITECH and related pro-
jects include models on both the strategic, tactical and operational level. Figure  7.4 
shows the tools: NOWIcob, O&M vessel fleet optimization model, TeCoLog, Routing 
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Table 7.4 Examples of decision problems and decision support by O&M modelling tools.

Stakeholder Decision Decision support Time scale

Wind farm 
developer, 
investor

Investment decision: 
Determining if a wind farm 
project is expected to have high 
enough availability to make it 
profitable.

Calculating expected availability 
for the future wind farm.

Strategic

Wind farm 
operator

Choosing vessel fleet for 
O&M: Which vessel types and 
how many vessels of each type?

Identification of optimal vessel 
fleet size and mix – both long‐term 
and short‐term charter.

Strategic/
Tactical

Vessel 
provider

With which vessels, time 
charter periods and time 
charter rates should one enter 
into negotiations with a wind 
farm operator?

Calculating expected downtime 
losses for the operator for different 
charter alternatives.

Tactical

Vessel 
designer

Which O&M vessel concepts 
should be built to best serve 
the offshore wind market?

Identifying optimal vessel fleet for 
different wind farm scenarios/
markets; calculating expected 
increase in profitability for an 
operator using different vessel 
concepts.

Strategic

Wind farm 
developer, 
wind farm 
operator

What are the best logistics 
strategies for O&M (e.g. 
shore‐based or investing in an 
offshore O&M base)?

Calculating costs and availability 
for different strategies.

Strategic

Wind farm 
operator,
Wind farm 
O&M 
innovator

Is it worth investing in new 
O&M concepts and 
innovations (e.g. buying or 
developing an improved 
condition monitoring system)?

Calculating cost and efficiency and 
selecting the best of the potential 
innovations compared with 
existing technology.

Strategic

Wind farm 
operator

Determining operational 
day‐to‐day maintenance 
schedule for the 
maintenance fleet.

Identification of the best routing 
and scheduling of the 
maintenance fleet.

Operational

Governmental 
agencies

Which seabed areas should 
first be opened for offshore 
wind development? What 
policies would be effective in 
furthering offshore wind 
development?

Studying different cost drivers of 
offshore wind O&M and how they 
vary with, e.g., site characteristics.

Strategic

Insurance 
agency, 
investor

What is the possible variation 
of O&M costs and project 
profitability depending on 
assumptions about the wind 
turbine reliability?

Studying sensitivities of offshore 
wind farm performance 
parameters, evaluating the impact 
of uncertainties in failure rates.

Strategic

Wind farm 
operator

When should one plan a major 
replacement campaign to 
replace major components?

Calculating expected O&M costs 
and downtime losses for different 
replacement campaigns.

Tactical
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and scheduling model. The figure gives an overview over the timescales of the decision 
problems the tools are designed for and shows typical decision problems that the tools 
can help support.

In the following sections, the main models developed by NOWITECH are briefly 
described. An overview of these models and relevant publications are provided in 
Table 7.5. More detailed descriptions of TeCoLog are not included here, because the 
model is still at a conceptual stage. However, TeCoLog will close a gap between opera-
tional and strategic modelling, as indicated in Figure 7.4 and described in more detail in 
Section 7.5. The descriptions presented in this chapter are restricted to an overview 
level, but the listed publications provide more detailed model descriptions.

7.3.1 NOWIcob

The first version of the NOWIcob simulation model (Norwegian offshore wind power 
life‐cycle cost and benefit model) was created by NOWITECH in 2011 and the tool has 
since been developed by NOWITECH as well as in the spin‐off innovation project 
FAROFF2 and in the EU FP7 LEANWIND project.3 The description of the model given 
in this chapter is to a large extent based on Hofmann et al. (2015) and refers to version 
3.2 of the model (dated December 2015). The model simulates the maintenance tasks 
and related logistics of offshore wind farms over a given number of years to estimate key 
performance parameters such as wind farm availability and O&M costs.

The model is based on a time‐sequential (discrete‐event) Monte Carlo simulation 
technique, where maintenance operations at an offshore wind farm are simulated with 

2 FAROFF – Far-offshore operation and maintenance vessel concept development and optimization, 
innovation project for industry cofounded by the Research Council of Norway.
3 LEANWIND (Logistic Efficiencies And Naval architecture for Wind Installations), EU 7th framework 
program project funded under the agreement SCP2-GA-2013-614020.

Routing and
scheduling model:

• In which order
 should turbines be
 visited the next few
 days
• Which vessels
 should visit which
 turbines?

Operational
(e.g. day–week)

Tactical
(e.g. weeks–months)

Strategic
(e.g. years)

NOWIcob
(simulation model):

• What is the wind farm
 availability and O&M costs
 for a given O&M and
 logistics strategy?

TeCoLog:

• What is the best
 maintenance and logistics
 plan, given condition
 based analysis?
• What is the optimal
 chartering of vessels e.g.
 within the summer
 season?

O&M vessel fleet
optimization model:

• What is the best vessel
 fleet for O&M for a given
 wind farm scenario?

Figure 7.4 Overview over operational, tactical and strategic decision support tools and concepts 
developed in NOWITECH and related projects, with examples of what problems they can address.
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an hourly resolution. The user chooses whether to carry out a simulation of the full 
lifetime of the wind farm (e.g. 20–25 years) or to focus on just one or a few years (e.g. a 
typical year or a year of special interest). The inputs and the outputs of the model are 
illustrated schematically in Figure 7.5.

Table 7.5 General overview and relevant publications for the NOWITECH models.

Model General overview and examples of applications References

NOWIcob Discrete‐event Monte Carlo simulation model for 
estimating the long‐term average wind farm availability, 
O&M costs and other performance parameters.
The model can be used to support strategic decisions 
relating to the profitability of a certain wind farm project 
and to select the logistics solutions for O&M and other 
aspects of the O&M strategy.

Hofmann and 
Sperstad (2013)
Netland et al. (2014)
Hofmann and 
Sperstad (2014)
Sperstad et al. (2016a)

Vessel fleet 
optimization 
model

Mathematical optimization models for determining 
optimal number and types of vessels to charter for a long 
term or a short term to support maintenance tasks. Also 
determines optimal mix of maintenance bases (ports, 
offshore installations etc…).
The models can be used to support strategic decisions 
(e.g. which maintenance logistic infrastructure should be 
invested in) and tactical decisions (e.g. when to short‐term 
charter jack‐up type vessels and which vessels to short‐
term charter for maintenance campaigns).

Halvorsen‐Weare 
et al. (2013)
Gundegjerde et al. 
(2015)
Stålhane et al. (2016a)
Stålhane et al. (2016b)

Routing and 
scheduling 
model

Mathematical optimization models for determining the 
optimal routing and scheduling of a fleet of maintenance 
vessels to support a given set of maintenance tasks.
The models can be used to support operational day‐to‐day 
planning: Which turbines should be visited when by 
which maintenance vessel and which technician team?

Dai et al. (2015)
Stålhane et al. (2015)

Weather
time series

Wind
farm

O&M
model Results

Simulating

Maintenance
tasks Vessel

concepts Availability
O&M

strategy

O&M
cost split

Personnel

Vessels

Fuel

0.2
0.18
0.16
0.14
0.12
0.1

0.08
0.06
0.04
0.02

0
93.6% 94.3% 94.7% 95.0%

Histogram Electricity-based availability

95.3% 95.7% 96.0%

Vessel
chartering

Spare
parts

Personnel
resources

Figure 7.5 Schematic of inputs and outputs for the NOWIcob model.
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Several input parameters, both decision variables (e.g. the number of technicians and 
crew transfer vessels) and uncontrollable variables (e.g. weather or failure rate scenar-
ios), can be changed to assess their impact on performance parameters, such as the 
availability of the wind farm and the O&M costs. Offshore maintenance operations are 
highly weather dependent and, therefore, weather conditions and weather uncertainty 
are considered in NOWIcob by using a Monte Carlo simulation approach with a weather 
model generating new, representative weather time series for each Monte Carlo itera-
tion (simulation run). To handle uncertainties, the model can run several Monte Carlo 
iterations for each case (Figure 7.6) and present the results as histograms estimating 
probability distributions (Figure 7.5).

Before running the model, input data must be specified, imported and preprocessed. 
Then the weather is simulated for the whole lifetime of the wind farm. Maintenance 
tasks and related logistics are simulated throughout the predefined simulation period. 
Maintenance tasks are scheduled for one work shift at a time and the number and length 
of work shifts can be specified by the user. Although the resulting wind turbine availa-
bilities are calculated with a time resolution of one hour, the time resolution of the 
logistics simulation is less than one minute. After all Monte Carlo iterations are 
 executed, the results are collected, processed and presented to the user.

The stochastic model variables in this Monte Carlo simulation methodology are 
 primarily the weather time series and the times of failures for corrective and condi-
tion‐based maintenance tasks. In addition, other model variables can also be stochastic 
when a probability distribution is specified for the corresponding input parameter. 
Probability distributions can be specified for the mobilization time of chartered vessels, 
the lead‐time of spare parts, the active maintenance time of maintenance tasks and the 
prewarning time of condition‐based maintenance tasks.

Input data

Weather
simulation

Maintenance &
Logistics

Results

Each shift

Several
Monte Carlo
iterations

Figure 7.6 Simplified flow 
scheme of the model (Hofmann 
et al., 2015. Reproduced with 
permission of SINTEF.).
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7.3.2 Vessel Fleet Optimization Models

Experience from the oil and gas industry has shown that supply vessel cost is a major 
cost element in the logistic chain. Keeping an optimal fleet of supply vessels is, there-
fore, essential to reduce the logistics costs. In the same manner, one of the most 
expensive resources for maintaining an offshore wind farm is the vessels used to 
transport technicians and spare parts to the wind turbines when maintenance tasks 
are to be executed. Some of these vessels also need to be capable of carrying out heavy 
lifting when major components (e.g. turbine blades) need replacement.

To achieve cost‐effective O&M strategies it is essential to find an optimal, or close to 
optimal, vessel fleet. Hence, optimization models for determining optimal fleet size and 
mix to execute the maintenance tasks are considered to provide valuable support for 
decision makers concerned with offshore wind farm O&M and logistics. Through vari-
ous projects (NOWITECH, FAROFF, LEANWIND) vessel fleet optimization models 
have been proposed. In cooperation with NOWITECH, a deterministic and stochastic 
version of a first model type was developed (Halvorsen‐Weare et al., 2013; Gundegjerde 
et al., 2015). Later, another stochastic mathematical model was proposed by Stålhane 
et al. (2016b). A decision support tool was developed based on a more efficient mathe-
matical optimization model approach than the previous proposed models, and in close 
cooperation with industry partners (Stålhane et al., 2016a). This tool was developed 
through the NOWITECH, FAROFF and LEANWIND projects, and there exists three 
versions with different solution methodology:

1) Deterministic mathematical programming model
 ● all input parameters are considered known

2) Stochastic mathematical programming model
 ● weather data and occurrence of failures are treated as stochastic input parameters

3) Model version with heuristic solution method (i.e. method that cannot guarantee to 
find the global optimal solution)

 ● weather data and occurrence of failures are stochastic input parameters.

The problem considered by the vessel fleet optimization models is to select the best 
combination and number of different vessel types that should be available to execute 
maintenance tasks at an offshore wind farm. Typical tasks and operations that are 
 carried out at an offshore wind farm by vessels are:

 ● transfer of equipment, spare parts and technicians to wind turbines;
 ● fuel transfers;
 ● emergency responses;
 ● standby;
 ● accommodation;
 ● heavy lift operations.

Vessel types used for these operations can be, for example, smaller speed boats for 
transporting maintenance technicians, larger supply vessels and mother vessels, or 
jack‐up barges. Helicopters can also be used to transport technicians and smaller spare 
parts and equipment to the wind turbines and are, therefore, also considered as ‘vessels’ 
by the vessel fleet optimization models.

The objective of the vessel fleet optimization models for maintenance operations 
at  offshore wind farms is to determine the minimum cost fleet and maintenance 
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 infrastructure that can execute all, or most of, the maintenance tasks during the planning 
horizon. The maintenance tasks are divided into preventive (planned maintenance) tasks 
and corrective tasks (necessary, unplanned maintenance due to failures). Execution of 
preventive and corrective maintenance tasks incurs costs due to downtime and the need 
for maintenance and logistics resources (maintenance technicians, vessels, crew, spare 
parts, tools etc.). When preventive maintenance tasks cannot be executed or completed 
(e.g. due to weather restrictions or lack of necessary vessel capacity), the model assump-
tion is that a penalty cost applies which represent, for example, the potential cost of 
failures that could be avoided if maintenance was not delayed. There are a number of 
other assumptions that are either built into the optimization models implicitly, or that 
must be provided as input data before the optimization models can be run. Examples of 
assumptions and input are how maintenance tasks are executed, how vessels are oper-
ated and which restrictions they have (weather/waves, speed, lifting capacity, number of 
technicians, availability: seasonal/whole year etc.), cost data and weather data. More 
detailed overviews of input data and assumptions can be found elsewhere (Halvorsen‐
Weare et al., 2013; Gundegjerde et al., 2015; Stålhane et al., 2016a, 2016b).

The objective function of the optimization models minimizes all the fixed costs of 
vessels and vessel bases, variable costs of using the vessels at the wind farm, expected 
downtime costs of delayed preventive maintenance tasks and corrective maintenance 
tasks, penalty costs for maintenance tasks that are not executed and transport costs. 
The output of the models includes total cost, the optimal solution (number and type of 
vessels/transport resources used, maintenance bases) and expected wind farm availa-
bility of the solution. Costs are further split into the different elements: vessel cost (time 
charter cost of vessels in the fleet), maintenance base costs, preventive maintenance 
costs, corrective maintenance costs, downtime costs and penalty costs.

An overview of the vessel fleet optimization tool is provided in Figure  7.7. Input 
parameters are provided in an Excel workbook, in addition to weather data input that is 
read from separate files; one set of weather data for the deterministic version, and several 
sets for the stochastic and heuristic versions. A C# (for the deterministic/stochastic ver-
sions) or Java application (for the heuristic version) is then run to solve the vessel fleet 
optimization problem, and when the optimal solution is found, or the current program 
execution is aborted by the user, the solution will be reported back to the Excel workbook.

The deterministic and stochastic versions of the vessel fleet optimization model have 
been implemented in the optimization software FICO® Xpress Optimization Suite.4 
These models are run from an application coded in C#. To run the application, the user 
needs to have a software licence for the Xpress optimization software. The heuristic 
version of the model is coded in Java, and does not require for the user to invest in 
additional software licences. As for the deterministic and stochastic version, the model 
is run by the user from an application.

7.3.3 Routing and Scheduling

The routing and scheduling problem for O&M at offshore wind farms is a short‐term 
operational problem that considers how to execute planned maintenance tasks (the 
next day – and up to a couple of weeks) by routing and scheduling the vessels in the 
available fleet of maintenance vessels.

4 http://www.fico.com/en/analytics/optimization
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A small example problem is illustrated in Figure 7.8, where there are 10 turbines that 
require maintenance visits the next planning period. For this small example, there will 
be a huge number of options for routing and scheduling of the maintenance fleet: as a 
pickup and delivery problem (Savelsbergh and Sol, 1995, where technicians are to be 
dropped off and picked up at the turbines, there are around 20! ≈ 2.4 x 1018 different 
options. This number can, however, be substantially reduced but there will still be an 
unmanageable number of options to evaluate. Hence, an optimization model to aid in 
the decision making process will be very useful.

In collaboration with NOWITECH, two different mathematical optimization models 
for this routing and scheduling problem have been developed: an arc‐flow formulation 
(Dai et  al., 2015) and a path‐flow formulation (Stålhane et  al., 2015). The problem 
 considered consists of finding the optimal set of routes and schedules for a fleet of 
maintenance vessels to support a number of maintenance tasks at an offshore wind 
farm. The fleet of maintenance vessels needs to transport technicians and spare parts/
equipment from a maintenance base out to the turbines that require maintenance and 
then return the technicians and parts/equipment to the maintenance base after the 
maintenance tasks are finalized (or after the end of a work shift).

The objective of the models is to minimize the total cost of performing maintenance 
tasks at the offshore wind farm. All maintenance tasks need to be executed within the 
planning horizon, or can be postponed to the next planning horizon at a (high) penalty 
cost. Maintenance tasks are allowed to be postponed to ensure that the optimization 
model(s) will find a feasible solution also when the fleet of maintenance vessels cannot 
support all the maintenance tasks within the given planning horizon.

Maintenance tasks are given the following properties:

 ● expected duration of task;
 ● number of technicians needed;
 ● weight/volume of necessary spare parts and tools;
 ● whether vessels need to be at turbine during maintenance or not;
 ● penalty/expected lost income per day until maintenance task is executed.

Wind farm

Base

Repair

Replacement

Inspection

Figure 7.8 Overview of a small offshore wind farm O&M routing and scheduling problem.
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Vessels are characterized by the following:

 ● fuel costs – fuel consumption rate;
 ● transfer speed;
 ● weight/volume capacity;
 ● access and transfer time for technicians;
 ● number of hours of operation on a given day calculated based on:

 – wave criteria and weather forecast;
 – work shift length.

Based on these inputs, the overall goal is to create one vessel route and schedule for each 
vessel each day during the planning horizon while minimizing total cost (transport costs, 
downtime costs and penalty costs). From this, the maintenance task schedule (which main-
tenance tasks to execute on which day) and the technician schedule (how many technicians 
are to be delivered and picked up on which turbines when) will also be known.

A possible solution for the small example illustrated in Figure  7.8 is shown in 
Figure  7.9. Here there are two vessels available at the maintenance base. One vessel 
(stippled line) drops off a team of technicians at a turbine for inspection, then sails to 
next turbine and drops off a new team for a repair operation, before sailing to a turbine 
that needs a replacement. Then it sails to pick up the team at the first drop‐off turbine, 
before picking up the teams at the other turbines and returning to the maintenance 
base. The second vessel (solid line) drops off a team of technicians at a turbine needing 
inspection, then sails to a turbine needing repair before it visits two turbines in need of 
replacement and repair, respectively. On these turbines the vessel is required to stay by 
the turbine during maintenance, and hence waits at the turbine before sailing to the 
next. Once these two maintenance tasks are finalized, the vessel picks up the teams on 
the two other turbines before returning to the maintenance base. Three maintenance 
tasks could not be executed during the work shift by the two maintenance vessels and 
hence are postponed to next work shift.

The mathematical optimization models are implemented in FICO® Xpress 
Optimization Suite, and, hence, a licence for this software is required to run the models.

Wind farm

Repair

Replacement

InspectionBase

Figure 7.9 Possible solution for the small routing and scheduling example.
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7.3.4 Use of Different Models and Synergetic Interactions

The general differences between optimization and simulation models outlined in 
Section 7.2.1 also imply a difference in how the models developed by NOWITECH are 
used. As optimization models, such as the vessel fleet optimization models, are designed 
to identify the optimal solution, using an optimization model for this purpose is less 
time consuming for the user than manually evaluating potential optimal solutions with 
a simulation model like NOWIcob. The differences between NOWIcob and the vessel 
fleet optimization models and their intended use are summarized in Table 7.6.

As a concrete example, for each run of the simulation model it is necessary to specify 
which vessels should be used by the wind farm operator and from which maintenance 
bases or ports these vessels should operate. In contrast, when running the optimization 
models, these variables are treated as decision variables rather than input parameters. 
This means that the optimization models select the maintenance bases and vessels that 
constitute the optimal solution, and the user only specifies the range of possible values 
as input to the model. Differences in the input parameters between the simulation and 
the optimization models are summarized in Table 7.7.

Even though the efficiency of an optimization model may come at the cost of a less 
accurate representation of reality, running a simplified optimization model may be very 

Table 7.6 General differences and intended use of NOWIcob and vessel fleet optimization models.

Vessel fleet optimization models NOWIcob simulation model

Determine the optimal vessel fleet Requires simulation of many different cases 
to find a (near) optimal solution → Time 
consuming to use for optimization

Built to evaluate only optimal solution – can be 
used also to evaluate given, user specified, solutions

Straightforward to evaluate any solution

Require a lower level of detail and shorter planning 
horizon to be able to run optimization

Allows for high level of detail and long 
planning horizon

Stochastic approach – find optimal fleet over 
multiple realizations of weather and failures

Stochastic approach – statistical output over 
multiple realizations of weather and failures

Table 7.7 Differences in input parameters.

Vessel fleet optimization models NOWIcob simulation model

Possible maintenance bases (and mother vessels) Maintenance bases in use
Maximal number of vessels available from each 
base for each vessel type

Number of vessels available from 
each base for each vessel type

Penalties for not completing maintenance within a 
given time period

N/A

Options for optimization algorithm N/A
Number of scenarios Number of Monte Carlo iterations
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useful for screening purposes. Especially when the solution space is large and it is not 
evident in which part of the solution space the optimal solution (or even good solutions) 
can be found, using the solution found by the optimization model as a starting point 
helps narrowing down the search. One can then explore the neighbourhood of the solu-
tion chosen by the optimization model and evaluate different promising solutions using 
a more detailed and time‐consuming simulation model. The simulation model can thus 
add value to the optimization model if it captures and can study the impact of additional 
system features or effects (e.g. the impact of condition‐based maintenance). A simula-
tion model can also add value to the results of the optimization model if it can provide 
additional, more detailed output parameters (e.g. estimates of the probability distribu-
tion of wind farm availability). If one knows that the simulation model has a more accu-
rate representation of reality, one can use such a simulation model to validate the 
optimization model by checking whether the simplifications made significantly affect 
its conclusions. Such interactions between a simulation model and an optimization 
model and how they can be used together are illustrated in Figure 7.10. The example 
presented in Section 7.4.2 illustrates the combined use of the two different models.

7.3.5 Model Validation and Verification

Verification and validation (V&V) are essential parts of the development of computer 
models and contribute to building credibility for the users and decision makers using 
them for decision support. Based on the definitions of Sargent (2013), verification of a 
simulation model is here understood as ensuring that the computerized model is imple-
mented according to the specifications of an underlying conceptual model of the system. 
Validation of the computer model is understood as ensuring that the model is suffi-
ciently accurate for its intended applications. Whereas verification often is an internal 
process that can be carried out by the model developers themselves, validation typically 
involves the users of the model and external experts. Models can undergo conceptual 
validation by having the underlying assumptions scrutinized by domain experts. So‐
called operational validation, on the other hand involves running the models with real, 
historical input data and comparing the results with the performance of the same real 
system (Sargent, 2013).

Inputs:

Optimization
model

Simulation model

Added
value

Screening

Validation

Outputs:

Figure 7.10 Illustration of possible synergetic interaction between vessel fleet optimization models 
and simulation model (NOWIcob).
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The strategic decision support tools developed by NOWITECH have conceptually 
been validated through discussion with industry partners in NOWITECH and various 
spin‐off projects. NOWIcob has been used by Statkraft, Statoil and Kongsberg, and 
both NOWIcob and the vessel fleet optimization model were used in a project for 
Statkraft for its investment decision for the Dudgeon Offshore Wind project. NOWIcob 
was also used extensively by Statkraft in its development of other offshore wind pro-
jects. In addition, NOWIcob has been licensed to three European research institutes, 
used by a European wind farm operator and used by a number of Norwegian and 
European masters’ students for their thesis work. Through these use cases, the applica-
bility and accuracy of the NOWITECH O&M models have been tested and improve-
ments have been made accordingly. However, validation is a continuous process and, in 
practice, one can never expect any model to be validated absolutely (Sargent, 2013), so 
these validation activities in NOWITECH and related projects are still continuing at the 
time of writing.

For operational validation of an offshore O&M model, one would need real, historical 
data including spare part costs, vessel costs and statistical information on component 
reliability, as well as wind farm performance measures such as O&M costs and availabil-
ity. Developers of offshore wind O&M models typically do not have access to such data, 
hence a full operational validation is difficult to achieve. Even for model developers 
collaborating closely with offshore wind farm owners and operators, parts of the data 
are often very uncertain. Often such data are only fully known and understood by the 
wind turbine manufacturers, or they may be nonexistent for new wind turbine models.

To meet the challenges outlined above, the so‐called ‘offshore wind O&M modelling 
group’ was formed in early 2013 as an informal forum for comparing and discussing 
models and data for O&M at offshore wind farms. This collaboration eventually 
included model developers and users from SINTEF Energy Research, MARINTEK, the 
University of Strathclyde, the University of Stavanger, EDF and NREL. Table 7.8 gives an 
overview of the participants and models involved in the collaboration. As a means 
towards the goal of verifying and validating the models involved, a set of reference cases 
for benchmarking O&M models was developed. This reference data set was then used 
for a so‐called code‐to‐code comparison or cross‐validation of the O&M models involved 
in the collaboration. Although such a comparison is not an operational validation of the 

Table 7.8 Overview of participants and models in the ‘offshore wind O&M modelling group’.

Model developer/user Model Comment

SINTEF Energy Research NOWIcob Simulation model
MARINTEK Vessel fleet optimization model Optimization model
University of Strathclyde, 
Centre for Doctoral Training

Strathclyde University offshore wind 
OPEX model (Strath‐OW OM)

Simulation model

University of Stavanger / 
Shoreline

MAINTSYS / UiS Sim model Simulation model

EDF ECUME Simulation model
NREL ECN O&M Tool Spreadsheet‐based model 

developed by ECN
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models, the approach is an alternative given the lack of a data set from a real wind farm.. 
These reference cases were the first publically available data sets with reasonable and 
representative O&M data for an offshore wind project.

The reference data set and a process for using it for verification and benchmarking of 
O&M models were published in Dinwoodie et  al. (2015). This paper also presents 
results from a comparison between four different simulations models; the input data 
and results for these reference cases have since been used by several other model 
 developers and users for testing and benchmarking of their models. In this way, the 
collaboration has aided model development and verification and has contributed to 
increased understanding and confidence in the modelling of offshore wind O&M. The 
reference data set has also been used as a starting point for a more detailed data set and 
LCoE calculation involving multiple OPEX and CAPEX models (Smart et al., 2016). 
Building on the work and the reference data set, the offshore wind O&M modelling 
group has also carried out a comparison and benchmarking of O&M models as applied 
as decision support tools for O&M vessel fleet selection (Sperstad et al., 2016b). The 
main contribution of this work is to show that the uncertainties associated with such 
decision support are still considerable, implying that decision makers should use such 
tools with caution and not rely upon solutions from a single decision support tool.

7.4  Application of Models – Examples and Case Studies

In the following, two examples of applications of the O&M simulation and optimization 
tools are presented. The examples are:

1) Remote Inspection – cost‐benefit analysis of a remotely controlled robot for inspec-
tion of the components in a nacelle;

2) O&M vessel fleet optimization – use of optimization and simulation tools to find 
optimal fleet of maintenance vessels for an offshore wind farm.

7.4.1 Cost‐Benefit Evaluation of Remote Inspection

An important cost driver for O&M of offshore wind turbines is frequent manned 
 maintenance visits to the turbines. Thus, solutions for maintenance and inspection that 
would reduce the number of turbine visits could result in a significant economic benefit, 
especially for offshore wind power installations. Hence, a remote presence concept was 
developed and investigated by NOWITECH. This section describes how O&M model-
ling and NOWIcob can help to estimate quantitatively the benefits of such O&M 
 innovations as the NOWITECH remote presence concept. Parts of the content is based 
on the PhD thesis by Netland (2014); the cost‐benefit analysis has also been presented 
in Netland et al. (2014).

Within the scope of NOWITECH, the remote presence system mainly focused on 
remote inspection, meaning the ability to observe the equipment within a turbine 
nacelle for decision support. The remote inspection system consists of a remotely con-
trolled robot installed on a monorail inside the nacelle of the wind turbine (Figure 7.11). 
The goal is to provide a service that allows a wind turbine operator to look and listen 
inside a wind turbine nacelle for improved decision support without having to transport 
technicians to the turbines.
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Some of the potential uses of remote inspection, both as a standalone system and 
together with condition monitoring systems (CMS), are:

1) Inspections can be performed at almost no cost, allowing inspections to be per-
formed frequently.
a) Each inspection increases the probability that an error is detected.
b) Frequent inspections increase the probability that an inspection is performed 

after a symptom of an error becomes visible and before it causes a failure.
c) Can be used to investigate a failure and plan corrective maintenance. Getting 

correct information early can reduce downtime if spare parts have to be ordered. 
The technicians can also be better prepared when they have studied the failure 
beforehand.

2) Verify diagnoses from the CMS.
a) False positive diagnoses (i.e. false CMS alarms) can be identified with remote 

inspection, before they cause an unnecessary maintenance action.
b) If a diagnosis is confirmed, that is the requirement of a preventive maintenance 

task is confirmed by remote inspection, then remote inspection could further-
more be used in the planning of this task.

c) Since the consequence of false positives can be reduced with remote inspection, 
the CMS can lower its thresholds for giving diagnoses, thus reducing the proba-
bility that a failure will go unnoticed.

3) The sensors on the remote inspection device can supplement the sensors of a CMS.
a) CMS can use information from the sensors on the mobile inspection robot, and 

possibly reduce the number of sensors installed in the turbine. An example is that 
a thermographic camera could replace a large number of temperature sensors.

b) Sensors on the inspection robot can be used as an alternative for a failed sensor. 
Although the sample time and accuracy likely will be lower, it can at least reduce 
the urgency of replacing the sensor.

7.4.1.1 Simulation Cases in NOWIcob
NOWIcob has been used to simulate an offshore wind farm with different strategies for 
inspection and condition monitoring, and the resulting performance parameters have 
been compared. Three simulation cases have been defined for cost‐benefit evaluation 
of remote inspection. These share the same set of possible failures, their failure rates 

Figure 7.11 Concept drawing 
of remote presence system in a 
wind turbine nacelle.
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and what type of maintenance that is required. For larger maintenance tasks, a pre‐
inspection task is required as part of the planning.

In the base case, there is neither condition monitoring nor remote inspection. 
Preventive maintenance is performed yearly and corrective maintenance is performed 
when there has been a failure.

The second case includes a state‐of‐the‐art condition monitoring system that 
 provides warnings about potential future failures. If condition‐based maintenance is 
performed before the failure occurs, the task will be less expensive and time consum-
ing. However, the condition monitoring system is not perfect and it will not detect all 
failures. It is also assumed that half of the alarms are false positives and that the sensors 
of the condition monitoring system can fail and need repair.

The third case has a remote inspection system in addition to the condition monitor-
ing system. This means that pre‐inspections and investigations of false alarms can be 
done remotely. However, since remote inspections are considered more time consum-
ing than on‐site inspection, these tasks take twice as much time to complete than 
 traditional on‐site inspection tasks. There are also other potential benefits to remote 
inspections, for example reduction of failures due to inexpensive, frequent inspections. 
Since these effects are uncertain and difficult to quantify they have not been included in 
the simulations. A remote inspection system failure has also been added to the list of 
potential failures.

The investment cost of the turbines has been estimated to 2 250 000 EUR/MW, with 
an addition to the cost of 120 000 EUR for a condition monitoring system and 60 000 
EUR for a remote inspection system. A wind farm with 100 3‐MW turbines was used for 
the simulation. The wind farm was located 40 km from an onshore maintenance base, a 
reasonable distance for future wind farms. Each case was simulated with two crew 
transfer vessels equipped with advanced systems for accessing the turbines. A jack‐up 
vessel was available and could be chartered for periods of two weeks when operations 
that include heavy lifting were required.

7.4.1.2 Results of the Cost‐Benefit Analysis
For each case, a 20‐year simulation was run 20 times. The results are shown in 
Figure 7.12, as the improvement in availability and cost of energy compared to the base 
case. Relative values have been used to minimize any bias in the assumptions for the 
simulations, especially the parameters regarding cost are considered preliminary. The 
availability results are likely more reliable than the results for cost of energy, as these 
performance parameters do not rely on any assumptions about the costs.

Both condition monitoring and remote inspection show significant improvements 
compared with the base case. This is as expected, as relying on corrective maintenance 
alone is not considered a viable strategy. The results show that the improvements are 
larger for the case where remote inspection is included also than for the case where only 
condition monitoring is included. When some maintenance tasks are performed 
remotely, even trivial ones such as checking for false alarms and pre‐inspections, there 
is more time available to do other tasks, thus reducing the total downtime. The reduced 
cost of energy is mostly due to less downtime but there was also a small reduction in the 
use of both crew transfer vessels and chartering of the jack‐up vessel, which reduces 
the O&M cost.
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7.4.1.3 Laboratory Evaluation
During NOWITECH, two smaller pilot experiments and two larger tests of remote 
inspection were performed, with up to 30 participants (Netland et al., 2015). The tests 
were performed in a laboratory that consisted of generic industrial equipment as shown 
in Figure 7.13. The equipment is there to be observed, not used, so it only needs to be 
visually similar to industrial equipment to be a sufficiently realistic mock‐up of a wind 
turbine. The participants performed both manned and remote inspections, allowing for 
a direct comparison between the two inspection methods.

The participants were given the task of searching for targets. Some targets resembled 
actual errors and were intended to be as realistic as possible, and others were paper clips 
hidden in the laboratory equipment. The experiments consisted of several inspections 
performed in sequence, each with different error markers and paper clips visible.

The prototype (Figure  7.13) was used throughout the user tests, with iterative 
improvements in the control software and the user interface. The prototype moved 
along the rail installed in the laboratory and was equipped with a pan and tilt Creative 
1080p web‐camera for inspection. Pan and tilt for the camera of a telerobot have been 
found to be beneficial in several experiments. As the prototype moves on a rail, the pan 
and tilt becomes even more important as the robot cannot turn itself.

The main results from the last experiment are shown in Figure 7.14. The left‐hand 
diagram shows the detection rates for the error markers and paper clips for remote and 

0%

5%

10%

15%

20%

Time-based
availability

Electricity-based
availability

Cost of energy

Im
pr

ov
em

en
t c

om
pa

re
d 

to
 th

e
ba

se
 c

as
e 

(%
)

Condition monitoring

Remote inspection

Figure 7.12 Results from NOWIcob cost‐benefit analysis.

Figure 7.13 Left: Prototype used in usability tests, Right: Laboratory with mock‐up industrial 
equipment used in usability tests.
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manned inspections. As expected, the results for manned inspections are better, but not 
by a large margin. Also, the main problem identified with remote inspection was that it 
took more time, and the participants were often not able to investigate the whole 
 laboratory within the allotted time. The ‘Estimate’ columns are estimated results for 
remote inspection if the participants had enough time to investigate the whole 
 laboratory. The estimated results are almost identical to the manned inspections. 
Provided that the longer inspection time is accepted, the results indicate that the effec-
tiveness of remote inspection can be similar to that of manned inspections.

The right‐hand diagram shows the participants subjective assessment of their work-
load based on a NASA‐TLX test (Hart and Staveland, 1988). NASA‐TLX is a commonly 
used questionnaire for subjective evaluation of the workload experienced by users of a 
system. The test results show that the participants found remote inspections to be more 
mentally demanding and much less physical demanding, which is as expected. The tem-
poral workload is also higher for remote inspections, which reflect that many did not 
have enough time to complete.

The results from the usability tests indicate that remote inspection is a viable method 
and worth considering for applications where manned inspections are difficult or 
expensive, as at offshore wind turbines.
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Figure 7.14 Results from the last laboratory usability test. Top: Detection rates of error markers and 
paper clips for manned and remote inspections. Bottom: NASA‐TLX workload assessment results, 
where lower values indicate an advantageous low workload.

0003303265.INDD   295 9/18/2017   6:37:24 PM



Offshore Wind Energy Technology296

7.4.1.4 Remote Inspection after NOWITECH
NOWITECH’s industrial partner Norsk Automatisering AS (NAAS) has continued the 
development of remote presence towards a commercial product. Part of this work has 
been part of the LEANWIND project. A near final product prototype is shown in 
Figure 7.15 (left).

A prototype has also been installed and run for six months in an older turbine at 
Brekstad outside of Trondheim, Norway. A sample image from the information gath-
ered there is shown in Figure 7.15 (right). More pilot installations are currently under 
planning, as of September 2016.

7.4.2 O&M Vessel Fleet Optimization

To illustrate how a simulation model and an optimization model can be used together 
for an offshore wind O&M decision problem, namely the problem of selecting the vessel 
fleet for O&M at an offshore wind farm, a simple case study is presented here. Providing 
decision support for this problem is the primary application of the vessel fleet optimiza-
tion models and is also one of the main applications of the NOWIcob model and similar 
decision support tools. Since vessels and offshore logistics are major contributors to the 
O&M costs (GL Garrad Hassan, 2013; Smart et al., 2016) and are decisive factors in 
ensuring high wind farm availability, this is a highly relevant decision problem in the 
offshore wind industry.

The case study is based on Sperstad et al. (2016b), which, in turn, is based on the 
offshore wind reference data set published in Dinwoodie et al. (2015). Here, a reference 
wind farm is defined to consist of 80 3‐MW wind turbines at an offshore location with 
given metocean conditions and a distance of 50 km from an onshore maintenance base. 
The problem is to select the combination of O&M vessels that constitutes the optimal 
trade‐off between low O&M costs and high wind farm availability. For simplicity, the 
case study is restricted to two types of O&M vessels: ‘CTV’ represents a standard crew 
transfer vessel, and ‘SES’ (surface effect ship) represents a faster and more robust, but 
more costly crew transfer vessel. Even with just two types of vessels, allowing a fleet of 
up to five vessels in total gives a solution space of 20 possible vessel fleet combinations 
to consider.

Figure 7.15 Left: Latest high fidelity prototype. Right: Sample image from pilot installation.
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Applying the vessel fleet optimization model to this problem, it implicitly considers all 
the vessel fleet combinations and returns the fleet ‘2 SES’ as the optimum. Using this as a 
starting point for further investigations, the NOWIcob simulation model is then used for 
analysis of a number of similar vessel fleets consisting of two or three vessels. The results 
for the O&M costs and the lost revenue due to turbine downtime are shown in Figure 7.16. 
Here one can observe that ‘2 SES’ is, indeed, a competitive vessel fleet with a lower total 
O&M cost than most of the alternatives. However, according to NOWIcob, the vessel 
fleet ‘1 CTV + 1 SES’ performs at a slightly lower total O&M cost. A likely reason for the 
difference between the models is that, in order to make the problem computationally 
tractable, the optimization model operates with a time resolution of six hours when con-
sidering weather windows, using the worst‐case metocean conditions during each six‐
hour period. This may give somewhat less optimistic estimates for the performance of 
each vessel compared to NOWIcob, which consider metocean conditions with a time 
resolution of one hour. It should be noted that vessel fleet ‘1 CTV + 1 SES’ is not very 
robust, and hence slightly more pessimistic input data will return a solution where not all 
preventive maintenance can be executed within the planning horizon.

What this case study illustrates is that (ii) an optimization model can be useful for 
screening the solution space and (ii) a simulation model can be useful for validating the 
results from the optimization model.

7.5  Outlook

General trends for offshore wind farms relevant for the maintenance logistics are that 
both the power rating of the turbines and the number of turbines are increasing and 
new wind farms are often located further away from shore. Furthermore, the extensive 
development of offshore wind power will lead to clusters of neighbouring wind farms, 
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so it becomes more relevant to coordinate the maintenance tasks of wind turbines 
within a cluster. These developments have justified the use of larger and more costly 
O&M vessels (service operation vessels, or SOVs) in the offshore wind industry. The 
need to optimize the use of these and coordinate with smaller CTVs lead to new and 
more complicated operational patterns for the O&M vessel fleet. The complications are 
compounded by more frequent use of helicopters; this is becoming a cost‐effective 
option for large distances and tasks of high priority.

The increasing number of options to consider increases the solution space for the 
maintenance logistics strategy, and thus also increases the value of mathematical opti-
mization for selecting the best strategy. In the vessel fleet optimization example in 
Section 7.4.2 there were only some tens of potential solutions to consider, but this num-
ber easily becomes many orders of magnitudes larger for the next generation of offshore 
wind farm projects. In addition, the increasing size of individual turbines typically 
increases the distance between neighbouring turbines. Larger distances within the wind 
farms (or wind farm clusters) and larger distance from shore will, in particular, result in 
greater benefit of tools for optimal routing and scheduling of routine maintenance and 
minor corrective maintenance tasks that are carried out frequently.

Targets for O&M in 2020, 2030 and 2050 were suggested in a study by TPWind (2014) 
(Table 7.9). In the same study, the three main O&M research priority areas are given as 
(i) versatile service fleets and safe access, (ii) improving reliability and availability and 
(iii) asset management. Both as part of the research priority areas (ii) and (iii), and as a 
mean to reach several of the O&M targets, improved O&M models and tools will play a 
decisive role.

The trends and developments described above will influence modelling of offshore 
wind farm O&M. In addition, as the offshore wind industry becomes more mature, 
decisions will increasingly be based on structured decision support using objective and 

Table 7.9 Operation and maintenance – Targets for 2020, 2030 and 2050 (TPWind 2014).

2020 2030 2050

 ● Enabling easy and safe access 
for maintenance and service 
works on wind turbines under 
a broad range of relevant site 
and sea conditions

 ● Shareable failure database for 
modelling the reliability 
behaviour and benchmarking

 ● Implementation of a 
standardized reference system 
for components, failures and 
measures for offshore wind 
turbines

 ● Introduction of condition and 
risk‐based maintenance 
systems

 ● Reliability 
characteristics for key 
components used for 
load‐dependent O&M 
strategies and concepts

 ● O&M strategy will 
include experience 
based decision support 
methods for optimizing 
service routines

 ● Reduction of planned 
maintenance visits by 
50% through 
probabilistic planning 
methods

 ● Technologies and procedures that 
lead to energy based availability of 
100%

 ● Technologies and procedures that 
minimize unplanned 
maintenance. Planned 
maintenance will be scheduled in 
low wind periods to minimize 
production losses and thus 
maximize energy yield

0003303265.INDD   298 9/18/2017   6:37:25 PM



Operation and Maintenance Modelling 299

quantitative analysis. This is a trend that has been seen in mature industries as, for 
example, for aviation logistics or power production scheduling. Furthermore, availabil-
ity of more and better data will also enable the use of decision support tools with a 
higher level of detail than is currently utilized. Increasing use of, for example, probabil-
istic modelling and stochastic optimization will allow decision support tools to repre-
sent and take into account the uncertainties of real‐life offshore wind O&M. More 
detailed, accurate and reliable models and input data also facilitate the use of models for 
more operational decision problems. Compared to more long‐term decisions, opera-
tional decisions typically put even greater requirements on the decision support in 
terms of robustness and efficiency, and the decision maker needs to have great confi-
dence in a decision support tool to put it to operational use. This is the main reason why 
the state‐of‐the‐art overview in Section 7.2.2 is more focused on decision support tools 
for strategic decision problem than operational decision problems, as tools for opera-
tional decisions, such as, for example, routing and scheduling have not yet been adopted 
by the industry.

Another trend in offshore wind O&M modelling is the move towards more integrated 
analysis, in the sense that one takes into account multiple timescales, multiple life‐cycle 
phases and multiple supply chain segments when analysing the O&M strategy. Although 
integrating everything in a single holistic decision support system may become unwieldy 
for the decision maker, one would still want to avoid suboptimizing the O&M strategy 
by considering, for example, the vessel fleet selection in complete isolation from, for 
example, the scheduling of preventive maintenance tasks. An example that illustrates 
the ideas of integration is presented below, where the strategic decision support tools 
NOWIcob and the vessel fleet optimization model interact with the (operational) 
 routing and scheduling model via a tactical model (TeCoLog). TeCoLog, as briefly men-
tioned in Section  7.3, has conceptually been developed in the LEANWIND project 
based on a technical condition monitoring system (TeCoMan) (MARINTEK, 2011) and 
the vessel fleet optimization model. For TeCoLog, the principles of TeCoMan has been 
adapted to offshore wind turbines, and will provide input to a logistic module in terms 
of the need for (condition‐based) maintenance at the turbines. The logistic module will 
then determine which maintenance tasks (preventive, corrective, and condition‐based) 
to prioritize for the next tactical planning horizon that can be e.g. one week and up to a 
few months.

The integration illustrated in Figure 7.17 shows the indented use of the models on the 
three planning levels:

 ● Strategic: use vessel fleet optimization model and NOWIcob to determine the opti-
mal fleet of maintenance vessels and overall O&M strategy. Use of models can be, for 
example, yearly or whenever new strategies need to be assessed/made.

 ● Tactical: use TeCoLog to prioritize maintenance tasks based on the O&M strategy 
and number of preventive, corrective and condition‐based maintenance tasks that 
should be planned within the next planning period. Use of model can be, for example, 
weekly.

 ● Operational: use the routing and scheduling model to determine daily plans for 
operation of the fleet of maintenance vessels and teams of technicians. Use of model 
will typically be on a daily basis.
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