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A major driver of planning complexity in engineer-to-order (ETO) projects
is design uncertainty far into the engineering and production processes. This
leads to uncertainty in technical information and will typically lead to a
revision of parts of the project network itself. Hence, this uncertainty is
different from standard task completion uncertainty. We build a stochastic
program to draw attention to, and analyse, the engineering-design planning
problem, and in particular, to understand what role design flexibility plays
in hedging against such uncertainty. The purpose is not to devise a general
stochastic dynamic model to be used in practice, but to demonstrate by the
use of small model instances how design flexibility actually adds value to a
project and what, exactly, it is that produces this value. This will help us
understand better where and when to develop flexibility and buffers, even
when not actually solving stochastic models.

Keywords: project scheduling, engineer-to-order, design uncertainty, de-
sign flexibility

1. Problem description
We consider a project production system following the engineer-to-order (ETO) approach
where design, engineering and production do not commence until after a customer order
is confirmed (Rudberg and Wikner, 2004). This approach is used to create products that
are tailored for each customer and is used in, for example, shipbuilding and off-shore
oil and gas installations. A typical feature of ETO projects, especially in the case of
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complex orders such as offshore ships, is a continuous dialogue with the customer after
the order has been received. This often leads to specification changes after the design
phase of the project has started, sometimes even far into the engineering and production
phases.

While the flexibility is good for the customer, for the producer it represents a source
of uncertainty in the technical information, which often leads to uncertainty in the
project network itself. This leads to continuous adjustments in procurement, engineering
and execution (Emblemsvåg, 2014), and suggests that we are dealing with a stochastic
dynamic planning problem with uncertainty at two levels. Firstly, we have that task
completion times are uncertain and usually correlated for any fixed design. Secondly,
design uncertainty is added to this. And this latter layer is not merely a scaling of the
first, but can change its structure substantially. Consequently, the resulting dependencies
become very complicated.

Design uncertainty is, therefore, a major driver of planning complexity in ETO projects
where advanced design and engineering is taking place concurrently with production.
Obviously, concurrency is challenging only when design is uncertain. Despite this, de-
sign is most commonly separated from project scheduling (Eckert and Clarkson, 2003;
Emblemsvåg, 2014), leading to plans that lack the flexibility necessary to handle the
true uncertainty.

In general, what is lacking in the classical project scheduling models is the possibility
to have decisions that are conditioned on arriving information (in our case the progress
of tasks and changes in design) as well as future decisions. The major difficulty is that
there is no arrival of information in these models. However, even though the models do
not consider re-planning, this is of course performed in reality, normally by rerunning
the existing models based on all new information, that is, reactive planning.

It is, however, well established, see for example King and Wallace (2012), that such
a sequence of decisions (plans) from static models, often referred to as rolling horizon
modelling, can lead to arbitrarily poor decisions. The reason is that each individual
plan is inflexible; it assumes the future (in terms of decisions) cannot be changed. And
a series of inflexible decisions remains inflexible.

Contrary to reactive scheduling, proactive scheduling would imply a scheduling that
takes into account both arrival of information and future decisions that might unfold.
This is discussed in Jørgensen and Wallace (2000), and might lead to plans (and deci-
sions) that are very different from those stemming from static (non-dynamic) models.
The main reason is that dynamic models will suggest decisions that are much more flex-
ible, and that lead to future situations that are much easier to handle when something
goes wrong; they include options, see Wallace (2010).

There are very few proactive approaches that discuss the two main issues, arrival of
information and future decisions (see details in Section 2), and in any case, these are
not very practical. As practitioners increasingly recognize the shortcomings of classical
project scheduling models, these are often replaced by team-based judgemental decision
processes that automatically open up for behavioural challenges (Vaagen and Aas, 2014).
Dealing with the described complexity without model-based decision support is obviously
not easier when we lack guidelines on where, when and how to develop flexibility and
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buffers. Although buffer management is commonly used to hedge against uncertainty
(Van de Vonder et al., 2006), the optimal solutions in stochastic dynamic environments
are not ‘the static solution plus something’. Rather, the two solutions are normally
structurally different; see Wallace (2010) for a detailed discussion.

This is intuitive if we consider, for example, changing an off-shore shipbuilding process
from an originally planned cable-layer to a fire-fighter, far into the production process. A
fire-fighter requires specialised solutions throughout the bow of the vessel, which implies
activity sequencing substantially different from other design solutions. Late adaptation
to such complex outfitting designs cannot be handled by fixed schedules for other design
solutions, plus some slack, as they require extensive rework.

A second, and probably less intuitive example, is uncertainty in the design of strate-
gic components, e.g., size, technical specifications or supplier of the engine for sea ex-
ploration operations. The alternative designs often require very different piping and
electro solutions, with different tasks and sequencing. Handling this type of change
by adding time buffers to the design-dependent tasks is certainly possible, given that
the uncertainty is identified and the buffers are sufficiently large. But with many low-
probability/high-impact changes throughout the project life-cycle, in an environment
where short delivery time is critical for competitiveness, adding time buffers is obviously
a sub-optimal countermeasure.

This leads to our main concern: handling the uncertainty and dynamics generated
by frequent design changes, where a particular technical solution may be selected/de-
selected by the customer, even far into the production. For a given design, task durations
are inherently uncertain and often assumed to follow known and rather simple distribu-
tions, e.g., uniform or exponential (Lambrechts et al., 2010), and are frequently handled
by time buffers in proactive-reactive approaches (Van de Vonder et al., 2006). But de-
sign uncertainty differs from uncertainty in task durations, as it affects the choice (and
technical sequencing) of the tasks to be executed. This suggests that the most critical
variation is actually caused by design uncertainty. Obviously, this poses challenges when
the managerial objective of reducing delivery times triggers concurrency in engineering
and execution activities, in projects with frequent low probability/ high impact design
changes. This is the case we study.

The purpose of this paper is, therefore, to understand better how engineering design
uncertainty affects project planning complexity and how this uncertainty leads to differ-
ent plans and decisions when taken explicitly into account in the decision models. This
will help us understand better where and when to develop flexibility and buffers, even
when not actually solving stochastic models. In real projects these models will be far too
heavy. We do this by solving small model instances, showing how design flexibility adds
value to a project and what this flexibility actually comes from. Within this framework,
we seek a methodology that captures the value of future choices on design alternatives.
Stochastic programming is, in our view, a good approach for this task, despite its com-
plexities. As we deal with a stochastic dynamic problem not yet solved in the literature,
the challenges in formulating and solving the problem necessarily have to be discussed,
but that is not the message of this paper. Our main concern is what we can learn about
the impact of design uncertainty on planning, by analysing small model instances.
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The paper is organized as follows. Section 2 discusses relevant attempts to handle un-
certainty in the engineering design process, with particular focus on project management
and scheduling. The stochastic modelling approach is described in Section 3. The fol-
lowing two sections present and analyze two test cases. The first is a design-engineering
planning case that focuses on the value of flexible (two-step) design strategies. The
second test case is set up to help us characterize good plans when these flexible design
strategies are not available. Insights from analyzing the test cases come in Section 6,
before we conclude the paper in Section 7. The detailed mathematical formulation of
the stochastic dynamic project scheduling model, needed for our analysis, is given in the
appendix.

2. Existing literature
The engineering design process connects the phases of basic (preliminary) design with de-
tailed design and project planning and scheduling, where one design alternative normally
excludes other alternatives. Most commonly, design planning and project scheduling are
treated as separated stages. This separation is problematic in an uncertain world where
speed to market drives competitiveness, and design activities are necessarily performed
concurrently with planning and execution (Eckert and Clarkson, 2003; Emblemsvåg,
2014).

Decision-making trends in project management and advances in scheduling techniques
are reviewed in Rolstadås et al. (2014), highlighting the need for increased use of ana-
lytical approaches to handle project uncertainty. That said, the number of model-based
approaches to support project planning is substantial, but with important shortcom-
ings in handling uncertainty, dependencies and dynamics (Herroelen, 2007; Vaagen and
Aas, 2014; Van de Vonder et al., 2006). Most importantly, a large share of the research
assumes a static and deterministic environment, while real project activities often are
subject to substantial uncertainty, leading to schedule disruptions.

But also approaches developed to handle uncertainty fail to properly handle project
uncertainty and dynamics, e.g., proactive or reactive scheduling dealing with a sequence
of decisions from static models. For important work on generating robust (deterministic)
baseline schedules that are sufficiently protected against (anticipated) uncertainty, and
reactive policies deployed to adjust the baseline schedules after uncertainty is revealed,
see Van de Vonder et al. (2006) and Herroelen (2007). Here, statistical information
about possible disruptions is used to create baseline (deterministic) schedules, which are
revised/reoptimized when necessary. The underlying idea is to create a ‘solution robust’
baseline schedule, normally by adding time buffers (Herroelen and Leus, 2005), or by
developing multiple baselines before and during the project execution, and responding
to anticipated events by switching to the schedule that corresponds to the event that
occurred (see, e.g., Artigues et al., 2005). The latter is also called contingent scheduling,
as it focuses on alternatives. These solutions are, however, not flexible, despite the
alternatives provided, as the approach applied consists of a series of inflexible decisions.

A second research path to handle uncertainty is the stochastic resource-constrained
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project scheduling problem, with the most common objective to minimize the project
completion time (see the classification of Herroelen et al. (2001)), determining at each
stage which activities are to be started next. The most known proactive baseline schedul-
ing approach is perhaps the critical path method, CPM (Morris, 1994), balancing time
and cost while resource-oriented, and the rather similar PERT, with a focus on stochas-
tic activity durations. The PERT method aims to assist managers by identifying the
activities with greatest impact on overall project duration. The potentials and short-
comings of these methods are discussed in, e.g., Herroelen et al. (2002), concluding that
the insertion of time buffers on critical chains may generate unnecessarily high project
due dates, and may also fail to prevent the propagation of uncertainty throughout the
schedule. Related to this, Wynn and Clarkson (2009) show how simulation can be
used to align design activities and information flow with project targets (e.g., milestone
delivery dates), and how monitoring and re-planning is supported by using non-ideal
practitioner metrics, revealed by the study. PERT and other simulation approaches
provide a picture of project risk and simulate the effects of options for decisions (before
decisions are made). These facilitate better planning, but still lack decisions. Wynn
and Clarkson (2009) point to the need for future research on how to select the ‘best’
schedule from a set of alternatives (i.e., contingent scheduling) generated by simulation
approaches. Most decision makers still choose the decisions that fit the expected (or
sometimes most likely) outcome, and overlook the potentially high costs of adapting to
a different scenario.

Attempts to overcome these shortcomings exist by adding decisions within the simu-
lation model: e.g., the decision of increasing resources if we are late relative to the plan
(Steinhauer and Soyka, 2012; Steinhauer and Wagner, 2008). Future decisions, e.g., on
a future design alternative, are however not explicitly taken into account, as this cannot
be done within a simulation model. To do this, stochastic dynamic decision models are
needed.

An interesting alternative can be found in Deblaere et al. (2011). They operate with
a decision rule, and use simulation to estimate the effects of specific parameter settings.
By intelligently updating the parameters, near-optimal settings can be found. Obviously,
it is not possible to say exactly how good an optimized decision rule is, one can only
compare with others. They show, however, that their approach beats many alternatives.
More importantly for us, such an approach handles the two issues we are concerned
with: arrival of information and future decisions. This comes at the cost of not knowing
how good the decision rule is. Our approach needs optimal decisions, otherwise it is not
clear if we discuss the model at hand or the decision rule, but for us it comes at the
price of not having a model that is usable in practice. Rather, we end up with a tool for
a principal study of the problems at hand.

Finding a way to formulate the general stochastic dynamic scheduling problem is
difficult (Jørgensen and Wallace, 2000), mainly because the order of decisions is not
fixed but depends on previous decisions and the realization of random variables (Kall
and Wallace, 1994). Jørgensen and Wallace (1998) present a stochastic dynamic model
with an independent decision maker allocated to each node, with information only about
the local (nodal) state of the project; i.e., no information about the actual decision of
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the other decision makers. This model is solved for a small example in Jørgensen and
Wallace (2000), concluding that little is gained by the proactive schedule compared to
the stochastic static model in reactive fashion.

None of the referred papers considers a two-level uncertainty problem identified in
this paper, where design uncertainty influences the project network itself. A two-level
stochastic problem of conceptual relevance for this paper is treated in Vaagen et al.
(2011), showing that hedging in a product portfolio problem with substantial uncer-
tainty is mainly driven by the two possible design states (preferred/not preferred by the
market), which is very similar to our choice of design.

The difficulties in modelling and solving large mixed integer stochastic problems also
motivated academics to discuss whether uncertainty should be ignored in planning, or,
if not, when and how it should be included in the planning process. Discussion on the
use of deterministic solutions in stochastic settings are provided in Thapalia et al. (2011,
2012a,b) and Maggioni and Wallace (2012). Within the setting of a stochastic mixed-
integer network design model, the authors show that deterministically chosen edges,
combined with edge capacities set by a stochastic linear model, can lead to very good
solutions of the overall stochastic mixed-integer model. The planning problem of this
paper can be seen as a related scheduling problem, and it may be tempting to look at
similar approaches. We deal, however, with a two-level uncertainty structure, where we
anticipate deterministically-chosen sequences not to deliver good solutions for different
design alternatives, and our focus is on the design uncertainty, not the task uncertainty
for a given design.

3. Stochastic programming formulation
In this section, we build a model for the case of stochastic changes in design specifications,
while keeping the task durations deterministic. The main reason for this separation is
that our goal is to study the impact of design uncertainty on planning, and adding
uncertainty in task durations would just make the results more difficult to interpret. As
discussed in Section 1, our problem understanding (supported by contextual exploratory
studies) suggests that the most critical variation is caused by design uncertainty, as a
particular technical solution may be selected/de-selected by the customer, even far into
the production, resulting in a change in the network itself.

The study of how design uncertainty and uncertain task durations together affect
plans is left for future research. For valuable insights into how task duration uncertainty
affects plans for a given design, as well as for more general proactive approaches to handle
this type of uncertainty, we refer at this point to the body of literature on proactive-
reactive project scheduling discussed in Van de Vonder et al. (2006), Herroelen (2007)
and Deblaere et al. (2011).
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Figure 1: Step-by-step construction of the motivating example. Real activities are
depicted by ellipses, indicator activities with and-dependency by dia-
monds, or-dependency by rectangles, and the stochastic dependency by a
combination of the two.

3.1. Motivating example
We introduce the most important problem elements and concepts by constructing an
example project, which we support by a real-life example from shipbuilding for complex
sea-exploration operations. Consider uncertainty in engine design, an example intro-
duced in Section 1. Assume we are in the engineering design phase, a phase which is
divided into basic and detail design. The overall hull structure, with strategic scope
outfitting (like the engine), is modelled in 3D and split into blocks/units by the basic
design team. Units are then complemented with production details (e.g., piping, electro)
by the detail design team.

We start with a simple project, installation of the engine, consisting of three activities
(tasks), namely piping (P), electro (D) and accommodation (K), depicted in Figure 1a.
There, we have introduced an indicator activity F depending on the three tasks, P, D
and K. The diamond shape shows that the dependency is of type ‘and’, i.e., the activity
needs all its predecessors to finish in order to start.

Now, let us assume that the activities piping (P) and electro (D) are design-dependent,
and the customer can choose between two design alternatives, A and B (referring to
different sizes and technical specifications, from distinct suppliers), but the choice is not
taken at the time the basic design model is transferred to the detail design team. We
are, hence, facing design-dependent uncertainty in tasks P and D.

This gives the network in Figure 1b, where we have introduced three new indicator
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activities A, B, and S. The latter is of a special type, since S depends on either A or B,
dependent on what the customer decides. For example, if the customer chooses design
A, this would translate into activity S depending on activity A and hence on activities
PA and DA.

Finally, we assume that the design-dependent activities P and D can be run as ac-
tivities specialized for a given design from the start (call it the ‘one-step’ version), or
in a modularized fashion with some common parts for the two designs A and B, where
we can start with the common part and postpone the specialization1 (call it the flexible
two-step version). For project P, this means replacing nodes PA and PB from Figure 1b
by the network of nodes depicted in Figure 1c. There, activities PA and PB become
indicator activities with dependencies of type ‘or’, i.e., they can start when at least one
of their predecessors has finished. Figure 1d shows the corresponding network for activ-
ity D. The complete project graph is shown in Figure 2 at the start of Section 4, where
we use this project for our numerical tests.

3.2. Modelling requirements
Based on the example presented above, we can now create a list of features that our
model has to have in order to be able to model the described project:

• Indicator (dummy) activities, i.e., activities that take zero time and consume no
resources.

• Activity dependencies of type ‘and’ (wait for all the specified activities) and ‘or’
(wait for at least one activity).

• Design dependencies, controlled by the customer. We will come back to these
later, when we discuss uncertainty.

• The possibility to stop an ongoing activity, so we can react to design changes.

• The ability to require that we undo one activity before we can start another one.
This is needed for activities representing different designs/solutions of the same
element. For example, in the network from Figure 1c, we might require that
to start P0B, one has to undo P0A and P2A, if any of them has been started.
Moreover, since it is possible to stop an activity before it finishes, the duration of
an undo activity should depend on how far we have come with the activity being
undone.

In addition, we need a convex resource-cost function to model the possibility of hiring
extra resources at extra costs. However, unlike Jørgensen and Wallace (2000), we let
the resource-usage per activity be fixed. If we want to have the option to speed up
an activity using extra resources, we have to create a copy of the activity with higher
resource usage and shorter duration, and connect it to the original version with an ‘or’

1In most cases, this extra flexibility will come at a cost
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dependency. In other words, the extra resources that we model, can be used to run more
activities, or more resource-hungry activities, but they do not change the duration of
the activities.

Therefore, we add the following requirements, not directly deducible from the example:

• Each activity has a specified resource usage per period, to model access to labour,
space, and equipment.

• The possibility to use a convex resource-cost function, to model the ability to hire
extra resources at extra costs.

These requirements result in a rather complex stochastic mixed-integer optimization
model. Since its formulation is not necessary for understanding the results, we present
it in Appendix A. The model has been implemented in the GNU MathProg modelling
language and the test instances were solved using Fico™ Xpress Optimizer.

4. Test case 1 – The value of flexible (two-step) designs

A

S

B FPA

PB

DA

DB

P0A

P1

P2A

P2B

P0B

D0A

D1
D2A

D2B

D0B

K

Figure 2: Example engineering-design planning problem. Real tasks are depicted
by ellipses, indicator tasks with and-dependency by diamonds, or-
dependency by rectangles, and the stochastic dependency by a combi-
nation of the two.

For the first test case, we use the project presented in Section 3.1. The dependency
graph is presented in Figure 2, where we omit all the undo activities for the sake of
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Table 1: Activity durations of the base case.

activity P0A P0B P1 P2A P2B D0A D0B D1 D2A D2B K
duration 4 3 2 3 2 3 4 2 2 3 2

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34 B

B

B

A

Figure 3: Scenario tree for text case 1, with specified design variant next to each
scenario. The dotted part represents two periods added to the last scenario
in some of the tests.

readability. The activities’ durations are presented in Table 1. Note that the flexible
two-step paths to PA, PB, DA, and DB take one period longer than the non-flexible
direct activities.

The planning horizon consists of 11 half-week periods, so the maximal duration is
5.5 weeks. We assume that the customer has asked for design variant A, but there is a
chance that the specification can be changed to B during the duration of the project.
We allow the change to happen after one, two, and three weeks, i.e., after periods 2, 4,
and 6. The resulting scenario tree is presented in Figure 3.

We have only one resource r and each real activity uses one unit of the resource per
period. We can use up to four units of the resource in each period, where the first two
units cost 1.0, the third unit 1.5, and the fourth 2.0.2

Since we want the project to finish as soon as possible, we use an increasing penalty
for the overall finish time: the penalty is zero for the first five periods, then increases by
0.5 for the next two periods, and after that continues to increase with a gradient that
doubles every two periods. See Figure 4 for the resulting penalty function.

0 5 10

0

5

10

15 gradient
penalty

Figure 4: Penalty for finishing the project in a given period.

We have run the test with an increasing probability of a switch to B: 1%, 5%, 10%
and 20% at each branching. This means that the probability of no change decreases

2Using the model notation from Appendix A, this means L̄r,1 = 2, CR
r,1 = 1.0, L̄r,2 = 1, CR

r,2 = 1.5,
L̄r,3 = 1, and CR

r,3 = 2.0.
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from 97% to 85.7%, 72.9%, and finally 51.2% in the last case. We have also solved the
case without uncertainty, i.e., with only the first scenario. In this case, the total project
cost is 9. This is a lower bound on the expected projects cost in the stochastic case, as
any late design change can only increase costs, given the data and structures we have
presented.

4.1. Comparing the proactive and reactive strategy
The reactive strategy amounts to starting with the plan corresponding to design A and
updating it whenever new information arrives, i.e., in scenario-tree nodes 12, 21, and
28 (see Figure 3). The proactive strategy corresponds to solving the complete stochastic
model. This strategy not only adapts to changes as they arrive, but anticipates them and
is prepared to react to them. In other words, this strategy takes the future uncertainty
into account from the very beginning, while the reactive approach only reacts to it when
something happens, without any preparations.

It turns out that the reactive strategy is infeasible in the last scenarios, since five
periods is not enough time to both unistall A and install B. We therefore add two
periods (one week) to the last scenario, as depicted in Figure 3.

0.01 0.05 0.1 0.2
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Cond. probability of design B

E
x
p
ec
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d
to
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l
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st
s

reactive
proactive

Figure 5: Comparison of the expected total costs of the reactive (deterministic) and
proactive (stochastic) strategies, for the case with an extra week in the
last scenario.

The total expected costs of both strategies are presented in Figure 5. There, we can
see the cost of the reactive strategy increases from 9 in the case of no design changes
to 10.6 in the case of a 1% probability of a switch to design B, and then increases to
18.8 as the switch probability approaches 20% per branching. That is, we observe more
than 100% increase in costs, a potentially severe situation, as we move from full
certainty (which rarely, if at all, happens) to a significant uncertainty in design, in a
reactive fashion. Recall that in the scenario tree in Figure 4, we allow a switch from A
to B after 2, 4 or 6 periods, which means that with 20% chance for B per branching, the
probability of no change is only 51.2%, i.e., the designs are almost equally likely.
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The proactive strategy, on the other hand, handles the uncertainty much better, since
the expected costs with 20% design-switch probability are only 12.3, an increase of
36% compared to the case without uncertainty. In total, this means that the proactive
strategy results in about 35% lower expected costs than the reactive strategy, when
the probability of a switch to design B is 20% per branching—this is the value of the
proactive strategy.

Looking at the optimal solutions, the major difference between the reactive and proac-
tive approach is that the former starts with the one-step versions of design A (activities
P0A and D0A) and changes to design B when necessary—regardless of the probability
of change. The proactive version, on the other hand, reacts to the increasing uncertainty
by postponement and by switching to the flexible two-step version P1 and D1.

4.2. The impact of an extended time horizon
To analyse the expected project costs when we have more freedom with respect to
completion time (i.e., time is not critical), we compare the costs of the base case with
and without the extra week in the last scenario. The results are presented in Figure 6a.
Observe that without an extra week, the expected costs are stable around 12, for all the
tested probabilities of design B. When we add the extra week (as we did in the previous
test), the expected costs fall significantly with a decreasing probability of a switch to
design B. This indicates that under relatively low design uncertainty, the potential to
reduce costs is high if we allow for a less tight time horizon, but only if we apply the
flexible versions of the design dependent activities P and D.
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(a) Base case
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(b) Non-parallel P and D

Figure 6: Comparison of the expected total costs of the first data variant of the base
case and the case with an extra week in the last scenario, for the base case
(6a) and the variant where P and D cannot run in parallel (6b).
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4.3. The impact of non-parallel activities
In this test, we added the requirement that no activities related to the uncertain-design
specific tasks P and D can run in parallel (at the same time). This is done to avoid colli-
sions between virtual or real objects in space; on the 3D model in the design-engineering
phase, or on parts of the vessel in the production. This challenge is imposed by the con-
nection of uncertain design to project scheduling. One example of activities requiring
this type of constraint is the design of engine-specific piping and electro solutions in the
motor casing (i.e., two systems occupying the same physical space), when the design of
the engine is not predefined.

The expected total costs for this case, both with and without the extra week in the
last scenario, are presented in Figure 6b. We can see that the advantage of the extra
week is similar as in the base case, while the total costs are, naturally, higher than they
were in the base case.

A closer look at the solution shows that the extra requirement leads to increased
use of the flexible two-step version of the design-dependent activities; even when the
probability of B is as low as 5% per branching. The extra constraints make it harder
to finish the project within the deadline, and without this flexibility we would face
infeasibility within the defined time limit. A second consequence is that the reactive
approach becomes infeasible (again, within the defined time limit) in all the stochastic
cases, even those with an extra week. This shows that using the flexible approaches of
the design-dependent activities is the only way to meet the deadline in this version of
the problem.

4.4. Additional tests with differentiated completion times of the
two-step design variants

We have repeated all the above test with a variant of the test case where the first step of
the flexible design-dependent activities P and D takes one period more, while the second
steps are correspondingly shorter:

activity P0A P0B P1 P2A P2B D0A D0B D1 D2A D2B K
base case 4 3 2 3 2 3 4 2 2 3 2variant 3 2 1 3 1 2

Our results show that a long completion time of the 1st step (common for both designs
A and B), combined with a short completion time of the 2nd step (short reaction time
for specialisation) implies more use of flexible approaches. On the other hand, when the
time used on the 1st step is low and the completion time of the 2nd step specialisation
(reactivity) is high, postponement is preferred with one-step (non-flexible) versions and
time buffers.

The model was also tested with a symmetric case with postponed specification. For
this case we built a scenario tree with 50% probability of design A and B per branching.
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Figure 7: Test case 2 – structure of the project.

We compared the results with those using the Figure 3 scenario tree under 20% proba-
bility for B per branching, as this case gives a total probability of 51.2% of no change
from design A. The test results did not provide us with additional findings, so we leave
it out of the paper.

Summarizing the findings of test case 1, in most situations, the flexible two-step ver-
sions of the design-dependent activities are preferred to postponements combined with
one-step versions; this is true particularly when design uncertainty is high and time is
critical. Under low design uncertainty (the probability of a switch to B is below 5%
per branching), we observe non-flexible one-step versions that are un-installed when the
design is changed from A to B. This can only be observed in the base case with an extra
week, as without this time buffer there is not enough time to un-install the ‘wrong’
activities, and two-step approaches become the only way to achieve solution within the
defined time frame. Flexible two-step versions of the design-dependent activities are,
therefore, more valued when time is critical.

5. Test case 2 – Flexible (two-step) design is not
available

Our second test case is motivated by a situation where we are planning outfitting a vessel
with four possible equipment designs A, B, C, and D, but we lack the option of a flexible
(two-step) design solution. This can be seen as an example of uncertainty where the
outfitting equipment differs substantially with respect to the scope of the vessel. This
is a situation faced by shipowners when ordering a vessel before the exact nature of the
sea operations is fixed. Assume we know that the shipowner will choose one of A and B
(modelled as a logical node AB), and one of C and D (modelled as a logical node CD);
see Figure 7. The exact choice is not known and will be revealed first some time after
the project start.

Unlike the first test case, the activities differ not only in duration, but also in their
resource usage. We use a single resource, labour, and the activities resource usage and
durations are presented in Table 2. The numbers have been chosen such that the choice
between A and B implies uncertainty in duration, with the expected value equal to the
duration of C and D. Analogously, the choice between C and D represents uncertainty
in labour usage, again with the expected usage equal to the one of A and B. Note that A
and C are the simpler options, while B and D are the more complex variants; B taking
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scen. 1: A+C

scen. 2: A+D

scen. 3: B+C

scen. 4: B+D

scen. 5: A+C

scen. 6: A+D

scen. 7: B+C

scen. 8: B+D

Figure 8: Scenario tree for test case 2, with selected activities in each scenario.

more time than A and D requiring more labour than C. In other words, B and D are
high-impact variants, while A and C are low impact.

Table 2: Activity properties for test case 2.

task A B C D
duration 2 4 3 3
labour 2 2 1 3

There are four units of labour available in each period, the first two costing 1 per period
and the rest respectively 1.5 and 2 per period. Note that this implies that activity D
cannot run in parallel with activities A or B. The model has nine periods. To encourage
early finish, there is a penalty of 0.5 for finishing in the penultimate period and 1.0 for
the last one.

The uncertainty can be revealed either after two or after four periods, with both being
equally likely. Furthermore, all the four variants (A+C, A+D, B+C, and B+D) are
equally likely. This implies eight scenarios with probability 0.125 each and scenario-tree
structure as shown in Figure 8.

Because of the tight schedule, we have to consider a situation where we have started
work on an activity, only to find that it is no longer needed. For this, we add extra
undo-tasks for each of the main activities A, B, C, and D. These use the same amount
of resources as the activities they undo and their duration is equal to the time spent on
the activity. In addition, there is a penalty of 10 for not undoing an unwanted activity.
The value has been chosen so high that this option is used only as a last resource.

5.1. Results
The optimal expected costs of the proactive strategy (the stochastic dynamic case) are
presented in Table 3. There, we show costs for the base version described above, as well
as versions where we have reduced the time horizon to 8 and 7 periods, by increasing
the relevant finish-time penalties to infinity. In addition, we present the optimal costs
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of each of the variant solved deterministically. Note that the average of those costs is
12.75, so the expected cost of uncertainty is 16.19− 12.75 = 3.44.

Table 3: Optimal expected costs of the proactive strategies with different time hori-
zons, and deterministic solutions with known designs.

variant base 8 per. 7 per. A+C A+D B+C B+D
exp. cost 16.19 21.38 24.13 7 14.5 11 18.5

The optimal proactive strategy in the base case starts with postponement, i.e., we
do nothing in the first two periods, waiting for the possibility to learn the preferred
equipment design after two periods. If this happens, we simply install two selected
designs, in an arbitrary order. If we do not learn, i.e., if we move to node 3 of the
scenario tree, we start with activity B (one of the high-impact variants) and wait until
we learn more in period 5. Then, if the selection happens to be A+C or A+D, we have
to undo B in addition to finishing the selected activities.

When we reduce the project time to 8 periods (11% reduction in project completion
time), the optimal solution starts with postponement for one period and then initiates
activity D (the other high-impact variant). This should be undone and replaced by C in
all odd-numbered scenarios, but there is not time for that in scenarios 1 and 3. In those
cases, we have to leave D in place and pay the penalty, hence the increase in costs.

With time horizon reduced to 7 periods (22% reduction in project completion time)
there is not enough time to postpone, and we start with activity B already in the first
period. Another change is that we start A in node 3, so by the end of the fourth period
in node 4, we have both A and B in place, even if we know we will need only one of
them. The unwanted activity gets undone only in scenario 3 (case B+C), while in the
other three it is left in place.

We have also tested the cost of the reactive strategy, i.e., implementing a deterministic
solution and adjusting it as the information changes. This is easily done by solving the
stochastic model with fixed decisions in nodes 1–4 (before revealing the uncertainty).
Since we assume that all four variants are equally likely, there is no single ‘deterministic
solution’. Instead, we test solutions for each of the four cases. Moreover, since the order
of the activities does not matter in the deterministic solutions, we test both variants of
each case, eight variants in total.

The results are presented in Table 4. There, we see that three of the variants do not
have a feasible solution at all and the rest are significantly more expensive than the
stochastic solution. This again shows that ignoring the uncertainty and adjusting first
when something changes is a costly approach. Note that all the tree infeasible variants
start with a low-impact activity. Moreover, the fourth variant starting with a low-impact
activity, ‘A,D’, is feasible only because it initializes a high-impact activity (D) already
in the third period.

Finally, we test what happens when we decrease the probability of activity B, i.e.,
the activity that we otherwise start with, for the case with 9 periods. The results are
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Table 4: Expected costs of the reactive strategy of Test case 2

solution A,C A,D B,C B,D C,A C,B D,A D,B
exp. cost inf. 22.75 19.88 19.88 inf. inf. 24.25 23.75
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Figure 9: Expected costs of proactive strategies starting with the two high-impact
activities B and D, as a function of the probability of activity B (vs. A).

presented in Figure 9. We can see that starting with B (after the initial postponement)
stays optimal as long as its probability is high enough, in our case above 25%). Below
this threshold, the optimal strategy switches to starting with D, the second high-impact
activity. Note that even though decreasing the probability of B means a decrease in the
overall uncertainty, the expected costs increase as long as we keep the same solution.
This is natural, since the solution is ‘betting’ on a variant that is less and less likely.
The fact that the same solution nevertheless prevails for such a range of probabilities
indicates that prioritizing this high-impact activity is indeed advantageous.

Summarizing Test case 2, we conclude, again, that proactive and reactive approaches
are different from the very beginning. In proactive scheduling, postponement is preferred
whenever possible, combined with prioritization of activities with high impact on the
project. The reactive strategy, on the other hand, starts with the assumed design com-
bination and then adapts to the chosen design when necessary. In other words, neither
postponement nor impact-based prioritization has value in a deterministic setting.

6. Managerial implications – Guidelines on where and
when to develop flexibility and time buffers

The results indicate that the optimal objective function value in a static scheduling model
cannot be trusted as a reliable estimate for project costs. An update to new customer
requirements is obviously necessary, and using deterministic static models for budgeting
and scheduling purposes will lead to potentially high cost overruns (up to 100% in our
cases). A proactive strategy that captures the value of future design decisions improves
the expected project costs, and we show such cost improvements of up to 50%; i.e., the
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value of a proactive strategy is high. As ‘costs’ in our model reflect engineering time
used, the implications for human resource planning are important.

High value of a proactive strategy is not unexpected from a stochastic programming
point of view. From a project management and practitioner point of view, it motivates
further efforts to understand better where to develop flexibility in plans to handle design
uncertainty. As the model we developed is far too heavy to implement in real projects,
our goal is to understand under which circumstances what kind of flexibility would
perform better and by how much, and how design flexibility adds value to the project
and what, exactly, it is that produces this value. We discuss this below.

We show that good approaches to situations with uncertain designs are flexible hedging
strategies, where ‘hedging’ means developing activities that are common for alternative
designs, and ‘flexible’ refers to the option to postpone design specific decisions to a
later point in time. Strategies with options have higher initial costs than those without
options (i.e., creating flexibility is usually not for free), but enable adaptation to the
different future situations with lower total expected costs (in our case, up to 50% lower,
as compared to a deterministic reactive strategy). Note that the trade-off between the
fixed costs of creating flexibility (e.g., the costs of developing a modular architecture
based design) and the benefits of such a strategy is not considered in this paper.

In a deterministic setting, flexibility and hedging designs do not have any value (and
meaning), as we know from the start that one of the ‘investments’ will be discarded.
This becomes obvious if we evaluate the strategy after the fact, that is, once we know
which design was chosen. Then the direct (inflexible) way of implementing that design
will be seen as the best thing we could have done. Ahead of planning, though, we don’t
know which one will be chosen, and flexibility created by a proactive strategy allows for
both feasibility and reduced adaptation costs.

In most cases, the flexible two-step versions of the design-dependent activities are
preferred to postponement combined with one-step versions; this is true particularly
when design uncertainty is high and time is critical. Under low design uncertainty, we
observe non-flexible one-step versions that are un-installed when the design is changed.

Guidelines derived from our results on what kind of flexibility would perform better
in which circumstances are summarized below.

Flexibility enabled by two-step versions of the design-dependent activities – with a
first step common for both design alternatives and specialization in a second step; e.g.,
modular design – has high value under the following conditions:

• When time to market is critical. This confirms research on the value of modularized
design (or processes) to enable shorter lead times.

• Under requirements that some uncertain design-specific activities cannot be run
in parallel. In such cases, flexible versions of these activities may be the only way
to meet the project deadline.

• When two-step versions of the uncertain activities ensure high reactivity, by rela-
tively low completion times of the specialization (step 2) tasks, compared to the
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common platform (step 1) tasks.

Postponement of design specific decisions combined with one-step versions of the un-
certain tasks (e.g., integral design) is to be preferred under the following conditions:

• When completion time of the specialization (step 2) tasks is high, compared to
the common platform (step 1) tasks. In other words, a flexible design approach
has low value when the specialization time is high.

• When the uncertainty in design is relatively low.

• When time buffers can be added to the project completion time.

When a modular design-strategy is not available, or not wanted (e.g., because of
high development costs), flexibility through postponement of uncertain decisions com-
bined with prioritization of the activities with highest impact on the project shows to be
valuable. Postponement is preferred to impact-based prioritization whenever possible.
For an innovative methodology to develop impact-based prioritization rules to handle
uncertainty that is difficult to quantify and therefore difficult to manage (e.g., low proba-
bility/high impact design changes discussed in this paper), see Simchi-Levi et al. (2015).
Although this method is not developed within a project (but in a global automotive sup-
ply chain context), it augments our findings on prioritizing high impact activities when
uncertainty is a major element of the planning problem but its probability difficult to
estimate.

Finally, although we indicate high potential to reduce the expected project costs by a
less tight time horizon, industry trends move in the opposite direction by a continuous
urge to reduce lead times. Turning, therefore, our results for the first example from
Section 5.2 the other way around, we demonstrate the impact of design uncertainty on
plans when the reduction of project completion time is a managerial objective: We show
that such strategies (i) may be costly (here, about 20% cost increase for about 15%
reduction in completion time), and (ii) may require prior investments in flexible versions
of the uncertain design specific activities, as there is no way to achieve solutions within
the defined time limit, without this type of flexibility. These implications trigger a move
from integral design to platform based modular design, and emphasize the necessary
extra costs imposed by a shorter building period. In our second example, these extra
costs are 32% and 49% for project time decrease of 11% and 22%, respectively.

7. Conclusions
With this paper we extended the scope of research on project scheduling, by connect-
ing design to project planning in a stochastic dynamic model, representing a proactive
strategy. Our main motivation was to understand the impact of design uncertainty on
project planning, as without this knowledge it is difficult to achieve good solutions for
concurrency in design, engineering and execution. To deal with the problem, we devel-
oped a stochastic programming model. For practical reasons, we focused on small model
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instances of the true problem, to demonstrate how design flexibility adds value to the
project and what, exactly, it is that produces this value. This has helped us understand
better where and when to develop flexibility and buffers, even when not actually solv-
ing stochastic models. Citing King and Wallace (2012): “Understanding why we need
stochastic programs, being able to formulate them, and, finally, finding out what it is
that makes solutions good can help us find good solutions without actually solving the
stochastic programs.”

Since such models are difficult to solve for large projects, the insights presented in this
paper are potentially valuable to improve judgemental decision-making when planning
dynamic and uncertain projects. In practice, many companies need planning guidelines
to understand where to develop flexibility. The insights also provide useful learning to
simulation approaches, as we show what solution structures are important to investigate
when a full scenario tree evaluation is impossible due to the size of the problem.

The solutions imply high value in an early identification of design alternatives and
activities that have most impact on project completion time. These often carry the
most uncertainty and may require flexibility in task solutions and hedging plans in early
phases.

Our goal is to extend the model with uncertainty in completion times (even for a
fixed design) and correlations, to understand what type of uncertainty has high impact
on plans.
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A. Model formulation
As usual, we formulate the model on a scenario tree that describes the development of
uncertainty, such as the one in Figure 10. There are two different ways of associating
the scenario-tree nodes to the time periods. One way is to let the nodes correspond the
points in time when the decisions are made, so that time flows between the nodes (on the
arcs of the scenario tree). This is a common practise in, for example, financial models,
where the decision variables correspond to instantaneous decisions (buy/sell). There, it
is also common to use the last-period nodes purely for accounting, i.e., no investments
are done in these nodes. Hence, if we have the tree from Figure 10 with one-day periods,
then node 1 corresponds to today morning, 2 and 5 to tomorrow morning, and the rest
of the nodes (the leaves of the tree) to the morning after that—so the total time horizon
is two days.

In our case, on the other hand, the model’s variables represent actions that cover
the whole period: start/stop decisions at the start of the period, resource-usage during
the period, and variables describing the end-of-period status. In this case, it is more
natural to associate the nodes with the periods, i.e., let the time flow inside the nodes,
not between them. In this setting, there is no need for special nodes at the end of the
horizon, since we have the end-of-period status variables. With this interpretation, the
tree from Figure 10, with one-day periods, would mean that node 1 represents the whole
first day, nodes 2 and 5 the second day, and the leaf nodes the third day—so the total
time horizon is three days.

A.1. Notation
First, we have to decide how to address the nodes in the scenario tree. For this, there are
two basic approaches: we can use the node number n directly, or we can use the time and
scenario number (t, s) instead. The latter case has the advantage that the model looks
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just like a standard deterministic one, with an extra scenario index. On the other hand,
we create unnecessary copies of the variables that have to be ‘bound together’ using
the so-called nonanticipativity constraints. For example, node 2 in Figure 10 belongs to
scenarios 1 and 2, so we would need constraints x(2,1) = x(2,2), for all decision variables
x in the node.

For this reason, we have chosen the node-based (also called compact) formulation for
our model. In this case, the structure of the scenario tree is described by providing, for
each node of the tree, its parent node and probability (either absolute or relative to the
parent). In addition, the expected value in the objective function is simply a sum of the
nodes’ contributions, weighted by their conditional probabilities.

A.1.1. Sets

Name Description
A set of all activities
N set of all scenario-tree nodes
R set of all resources
AI ⊂ A indicator activities – no duration
AR ⊂ A real activities (with duration); AR = A \ AI

AU ⊂ AR activities that undo/reverse the results of other
AC(a) ⊂ AR activities that a ∈ AR conflicts with (must be undone for a to start)
D∩

a set of activities that a ∈ A depends on; all must be finished
D∪

a set of activities that a ∈ A depends on; at least one must be finished
NL ⊂ A set of leaf nodes, i.e., nodes without children
N P

l ⊂ A set of nodes on path from the root to leaf node l ∈ NL

Lr a set of intervals for piecewise-linear costs of resource r ∈ R

A.1.2. Parameters

Name Description
Da duration of activity a in scenario s

P(n) Probability of node n ∈ N .
n .−∆t predecessor of node n, ∆t periods before node n
n

.− parent node of n; special case of n .−∆t with ∆t = 1
t(n) period of node n
T0 the first period
AF the final activity – finishing this marks the end of the project
L̄r,l upper bound of resource r in cost level l ∈ Lr

Ra,r amount of resource r ∈ R used by activity a ∈ AR in each per.
AU(a) ∈ A for a ∈ AU, this is the activity a undoes/reverts
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periods
var. 1 2 3 4
xa,n 0 1 0 0
ya,n 0 1 0 0
za,n 0 0 0 0
ua,n 0 0 1 1
va,n 0 0 0 0

(a) Indicator act.

time periods
var. 1 2 3 4 5 6
xa,n 0 1 0 0 0 0
ya,n 0 0 0 1 0 0
za,n 0 1 1 1 0 0
ua,n 0 0 0 0 1 1
va,n 0 0 0 0 0 0

(b) Real activity

time periods
var. 1 2 3 4 5 6
xa,n 0 1 0 0 0 0
ya,n 0 0 0 0 0 0
za,n 0 1 1 0 0 0
ua,n 0 0 0 0 0 0
va,n 0 0 0 1 0 0

(c) Stopped activity

Figure 11: Illustration of the main binary variables. Fig. 11a illustrates an indicator
activity triggered at the end of period 2, Fig. 11b a real activity of
duration 3, started at period 2, and Fig. 11c the same activity, this time
forced to stop after two periods.

Ua Multiplier for duration of undo-activities
CR

r,l cost of using resource r ∈ R with cost level l ∈ Lr

CE
t cost of finishing the whole project at the end of t

A.1.3. Variables

Name Description Range
xa,n has activity a started at the start of the period of node n? {0, 1}
ya,n has activity a finished at the end of the period of node n? {0, 1}
za,n is activity a running during the period of node n? {0, 1}
ua,n has activity a been finished by the start of the period of node n? {0, 1}
va,n has activity a been stopped at start of the period of node n? {0, 1}
wl

r,n amount of resource r at cost-level l used in node n ≥ 0

The function of these variables is illustrated in Figure 11. Note that indicator activities
have zero durations and therefore za,n = 0 for all nodes. In addition, ya,n = 1 only in
the node where the project has successfully finished, while ua,n = 1 also in all the node’s
successors. Finally, since the decision to stop is done at the start of the period, va,n = 1
implies za,n = 0. In addition, a stopped activity does not get marked as finished, i.e.,
ua,n = 0 in all nodes.

From a conceptual point of view, it is important to realize that the only ‘real’ decision
variables are xa,n and va,n; the rest are auxiliary variables whose values are determined
by the ‘real’ ones.
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A.2. The model
In this section we provide the complete formulation of the optimization model. In the
model, we use the following notation: ⌈x⌉ denotes the value of x rounded up to the
nearest integer, |S| denotes the cardinality (size) of set S and if

(
A |x | y

)
means ‘if A

then x else y’.
Furthermore, we use the convention that invalid subscripts evaluate to zero; for ex-

ample xa,n .−∆t = 0 for nodes n with t(n) − ∆t < T0. We also omit ‘n ∈ N ’ from the
constraint descriptions, since all constraints are valid for all nodes. This is to increase
readability.

A.2.1. Objective function

The objective is to minimize the expected costs, consisting of the resource-usage costs
and extra penalty term depending on the finishing time of the whole project, i.e., end
time of the final activity AF.

minimize
∑
n∈N

P(n)
[∑

r∈R
l∈Lr

CR
r,l w

l
r,n + CE

t(n) yAF,n

]
(1)

A.2.2. Activity-tracking constraints

ya,n = xa,n a ∈ AI (2)
ya,n ≤ xa,n .−(Da−1) a ∈ AR \ AU (3)

ya,n ≤ 1−
Da−1∑
∆t=0

va,n .−∆t a ∈ AR \ AU (4)

ya,n ≤
⌈Ub Db⌉∑
∆t=1

xa,n .−∆t a ∈ AU, b = AU(a) (5)

Ub Db ya,n ≤
⌈Ub Db⌉−1∑

∆t=0

za,n .−∆t − Ub

t(n)−T0∑
∆t=1

zb,n .−∆t +UbDb a ∈ AU, b = AU(a) (6)

xa,n ≤ ub,n +

t(n)−T0−1∑
∆t=0

vb,n .−∆t a ∈ AU, b = AU(a) (7)

ua,n = ua,n
.− + ya,n.− a ∈ A (8)

za,n = xa,n − va,n + za,n.− − ya,n.− a ∈ AR (9)
va,n ≤ za,n.− a ∈ AR \ AU (10)

Constraints (2)–(5) determine the activity end: (2) for indicator activities that have
zero duration and (3)–(4) for real activities, except for the undo-activities modelled by
constraints (5)–(6). Constraints (3) and (5) link the activity end to its start time, while
(4) ensures that a stopped activity does not get marked as finished and (6) models the
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dynamic duration of the undo-activities. In addition, (7) ensures that an undo activity
can start only if the activity it reverts has finished or been stopped. Note that if an
activity cannot be stopped, we can drop (4) and restate (3) as an equality.

Constraint (8) controls the indicator ua,n, saying that an activity is finished in a node
if it was finished in the node’s parent, or if it ended there.

Similarly, constraint (9) states that an activity runs in a node if it either started there,
or was running in the parent node and neither finished nor stopped. Finally, (10) says
that an activity can be stopped only if it runs.

A.2.3. Dependencies and conflicts between activities

xa,n ≤ub,n + if
(
a ∈ AI | yb,n | 0

)
+ if

(
b ∈ AU | 1−

t(n)−T0∑
∆t=1

xAU(b),n .−∆t | 0
)

a ∈ A \ AU, b ∈ D∩
a (11)

xa,n ≤
∑
b∈D∪

a

[
ub,n + if

(
a ∈ AI | yb,n | 0

)
+ if

(
b ∈ AU | 1−

t(n)−T0∑
∆t=1

xAU(b),n .−∆t | 0
)]

a ∈ A \ AU : |D∪
a | > 0 (12)

xa,n ≤ub,n +

t(n)−T0∑
∆t=0

vb,n .−∆t a ∈ AU, b ∈ AU(a) (13)

xa,n ≤ub,n + 1−
t(n)−T0∑
∆t=0

xc,n .−∆t a ∈ A, c ∈ AC(a), b ∈ AU : AU(b) = c (14)

Constraints (11)–(12) control the start of dependent activities for the two types of de-
pendencies: the dependent activity can start if the activities it depends on have finished
and we have not started undoing/reverting them (if applicable). The first conditional
part in each right-hand side is there because an indicator activity has zero duration, so
it can start (and end) in the same period where the activity it depends on ended.

Constraints (13)–(14) model conflicts between activities: (13) states that the undo-
activity can start only if the activity being undone either finished or was stopped and
(14) ensures that activity a cannot start if we had started any conflicting activity c,
unless c was undone using the appropriate activity b.
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A.2.4. Stochastic dependencies

xa,n ≤ub,n + if
(
a ∈ AI | yb,n | 0

)
a ∈ A, b ∈ D∩

a,n (15)

xa,n ≤
∑

b∈D∩
a,n

[
ub,n + if

(
a ∈ AI | yb,n | 0

)]
a ∈ A : |D∪

a,n| > 0 (16)

xa,n =0 a ∈ A, b ∈ D∩
a,n :

∣∣l ∈ NL : n ∈ N P
l & b ∈ D∩

a,l

∣∣
<

∣∣l ∈ NL : n ∈ N P
l

∣∣ (17)

Constraints (15) and (16) are the stochastic counterparts of (11) and (12), simplified
with an assumption that the activities a depends on cannot be undone. This is because
in our examples, the stochastic dependency is on indicator activities that cannot be
undone3.

Constraint (17) prevents the situation where the stochastically-dependent activity is
declared finished before the stochasticity is fully revealed, i.e., if there is a non-zero
probability of an incoming design change.

A.2.5. Resources and timing∑
a∈AR

Ra,r za,n ≤
∑
l∈Lr

wl
r,n r ∈ R (18)

uAF,l + yAF,l = 1 l ∈ NL (19)

Constraint (18) ensures that all the resources used by activities get counted by the
resource-usage variables, and hence appear in the objective function. Finally, (19) re-
quires the final activity AF, and therefore the whole project, to finish in each scenario—
otherwise, the model would not do anything, since we are minimizing the costs.

3If one had stochastic dependence on a real activity, one would have to expand the constraints or
introduce an extra indicator variable
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