
This is the Accepted version of the article

Safety Critical Software and Security – How Low Can You Go?

Citation:
Karin Bernsmed, Martin Gilje Jaatun and Per Håkon Meland (2018), Safety Critical Software and
Security – How Low Can You Go? In: 2018 IEEE AIAA 37th Digital Avionics Systems Conference (DASC)
Proceedings pp.210-215. DOI: 10.1109/DASC.2018.8569579

This file was downloaded from SINTEFs Open Archive, the institutional repository at SINTEF
http://brage.bibsys.no/sintef

Karin Bernsmed, Martin Gilje Jaatun and Per Håkon Meland

This is the Accepted version.
It may contain differences form the journal's pdf version

Safety Critical Software and Security –
How Low Can You Go?

Karin Bernsmed
SINTEF Digital

Trondheim, Norway
karin.bernsmed@sintef.no

Martin Gilje Jaatun
SINTEF Digital

Trondheim, Norway
martin.g.jaatun@sintef.no

Per Håkon Meland
SINTEF Digital

Trondheim, Norway
per.h.meland@sintef.no

Abstract— The safety of aviation software is ensured by
performing development according to the DO-178C standard.
However, this standard has a blind spot in that it fails to consider
software security aspects in development. The Building Security
In Maturity Model (BSIMM) comprises a software security
framework with 113 software security activities. This model is
often used for measuring the maturity of an organization's
software security lifecycle. In this paper we evaluate the ability of
DO-178C to ensure also software security, by demonstrating how
few BSIMM activities you can get away with performing, while
remaining compliant with the different DO-178C assurance levels.
The results indicate that organizations with very low software
security maturity can still be able to perform well in accordance
to DO-178C. Based on the results, we propose concrete activities
that could be integrated into the DO-178C development process,
to strengthen the security of the developed software.

Keywords—DO-178C, ED-12C, BSIMM, software, security,
development

I. INTRODUCTION

The aviation community has extensive experience in
analysing safety hazards, defining safety requirements and
certifying the safety characteristics of the software installed in
the aircraft. Once the software has been certified, it is considered
to be safe as long as no changes are made to its architecture,
design or operation. These assumptions are problematic from a
security perspective.

Due to the characteristics of malicious activities, the cyber
security risk picture is constantly changing. Threats that are
relevant today may be irrelevant tomorrow and new threats that
cannot be foreseen may appear in the future. Hence, it is
generally accepted in the security community that software
systems will almost be vulnerable and that risks must be
continuously assessed, monitored and responded to. Conversely,
safety analysis tends to focus solely on unintentional actions and
failures; the risk of malicious interference is often overlooked,
even though there may be safety implications. An open question
is therefore how existing standards and regulations on aviation
safety can be adjusted to reflect this new reality.

The safety of aviation software is supposedly ensured by
performing development according to the DO-178C standard
[1]. However, this standard does not consider software security
aspects in development. The Building Security In Maturity
Model (BSIMM) [2] comprises a software security framework
with 113 software security activities that real software
development organizations have been observed performing.
BSIMM is intended to be used for measuring the maturity of an
organization's software security lifecycle. Even though it is not
a standard per se, it can be used as a yardstick for comparison

with similar organizations. Objective measurement of software
security of a given piece of software is very difficult, if not
impossible [12]. BSIMM is therefore based on second order
metrics, which measure the various activities that are performed
when creating secure software. DO-178C does precisely this,
but in connection with the development of safe software.
However, in a digital system, the safety of a system is also
dependent on security, since security incidents may also have
safety consequences (see e.g., [3] and [4]).

In this paper we evaluate the ability of DO-178C to ensure
also software security, by demonstrating how few BSIMM
activities you can get away with performing, while remaining
compliant with the different DO-178C assurance levels. Even
though BSIMM is not a process-based standard, and hence not
directly comparable with DO-178C, we find this study area
interesting because it will provide insight into development
activities that are considered important for security but that are
not required to achieve the different safety assurance levels.

The remainder of this paper is organized as follows. Section
II introduces BSIMM and DO-178C in further detail. This
section also provides an overview of related work. Section III
presents the results from the analysis. Section IV concludes the
paper and provides some recommendations for improvements of
the DO-178C development process.

II. BACKGROUND

A. BSIMM
The Building Security In Maturity Model (BSIMM) [2] is a

study of real-world software security initiatives that is organised
so that an organisation can use it to determine where they stand
with their software security initiative. BSIMM provides an
overview over the security of software by mapping how it was
built, what kind of activities that were carried out while it was
built and by measuring a number of artefacts that were created
when it was developed. BSIMM can also be used to measure
how an organisation's software security efforts evolve over time.

A central concept in BSIMM is the Software Security Group
(SSG), which is the person (or persons) responsible for software
security in an organisation. The SSG can be as small as a single
person, it need not be a formal role, and need not be a full-time
position.

The BSIMM framework consists of twelve practices
organised into four domains; Governance, Intelligence, SSDL
Touchpoints and Deployment (see Table 1). Each practice
comprises a number of activities on three levels, with level 1
being the lowest maturity and level 3 is the highest. For example,
for practice Strategy and Metrics, SM1.4 is an activity on level

1, SM 2.5 is an activity on level 2, and SM 3.2 is an activity on
level 3.

Table 1 The BSIMM Software Security Framework.
Governance Intelligence SSDL

Touchpoints
Deployment

Strategy and
Metrics

Attack
Models

Architecture
Analysis

Penetration
Testing

Compliance
and Policy

Security
Features and

Design

Code Review Software
Environment

Training Standards and
Requirements

Security
Testing

Configuration
Management

and
Vulnerability
Management

BSIMM is the cumulative result of a multiyear study of real-
world software security initiatives. As described by McGraw et
al. [2], the model has been built directly out of data observed in
109 software security initiatives.

B. DO-178C
DO-178C Software Considerations in Airborne Systems and

Equipment Certification [1] has been the main document used
for approving commercial software-based aerospace systems.
The initial version goes back to 1982, and the current version
was released in 2012.

According to DO178C, software components must be
certified according to a specific assurance level determined by a
system safety assessment process. Table 2 shows a simplified
overview of the failure conditions that the software should be
verified against.

Table 2 DO-178C failure condition category descriptions.
Level Description

A Catastrophic failures that typically result in multiple
fatalities and loss of the aeroplane.

B Hazardous failures can cause a large reduction in the
safety margins or functional capabilities of the

aeroplane, excessive workload for the crew that will
reduce performance and reliability of regular tasks, and
possibly serious or fatal injuries to a small number of

people.
C Major failure conditions could cause a significant

reduction in safety margins or functional capabilities of
the aeroplane, including physical distress and injuries to

the passengers or crew.
D Minor failure condition could cause a slight reduction in

safety margins or slight increase in crew work load.
E No safety effect, hence not applicable for DO-178C.

For instance, a failure caused by a software component that
is verified according to level D will typically only be a nuisance
to the crew, and result in a reduced set of the functional
capabilities which can be managed by a fall-back mechanism.
For each level, there is a set of objectives that acts as guidance
for the software production. They are there to make sure that the
system is reliable and does not cause harm to the environment

(meaning aeroplane, crew, passengers or anything outside of the
aeroplane). Though security incidents can easily lead to events
that fall into the categories described in Table 1, there are no
security-related objectives in DO-178C. Instead, guidance about
this can be found in other documents such as DO-326
Airworthiness Security Process Specification [13] and DO-356
Airworthiness Security Methods and Considerations [14].

Developing safety critical software using DO-178C is
usually done using a waterfall development model, in which
requirements are fed into a design that is then implemented in
code, which is then verified and finally integrated into the final
software system. The final output of the software development
process is the executable object code together with a set of
document artefacts that provides evidence that the objectives in
the targeted assurance level have been met. It is important to
note that the standard does not cover deployment and operation
of the system itself.

C. Related work
The importance of also consider security when developing

safety critical system is already well-know. Merged security
and safety lifecycles are proposed in, for example,
[15][16][17][18]. An overview over approaches that combine
safety and security in the system lifecycle process is provided
by Kriaa et al. [9]. However, as far as we are aware, there is no
previous work that evaluates the DO-178C standard from the
BSIMM perspective. Paulitsch et al. [8] discuss future security
requirements in avionics and point out that "A major question
is to assess (ideally quantitatively) how effectively existing
safety-oriented processes are performing from the viewpoint of
security", which is exactly what we are aiming for in this study.

III. METHOD

The BSIMM report [2] does not list the average number of
activities performed in each practice, but we have calculated an
average based on the total number of software development
organizations that perform each activity. For instance, 55 out of
109 organizations perform SM1.1, which means this activity
contributes 0,5 to the average activity count of the Strategy &
Metrics practice. By doing this calculation for all activities in the
practice, we arrive at an average of 4,2 activities (out of 11) in
this practice across all the organizations in the BSIMM study.
Note that this averaging does not take into account the maturity
level of each activity; an activity counts as an activity whether it
is level 1 or level 3. We have done this for all the practices, and
the result can be observed in the red curve in Fig. 1. Note also in
this figure that 7 is not a hard maximum, since many practices
have more activities in total.

For the analysis we have assumed that the imaginary
software developing organizations that we are evaluating are
performing at their "worst" with respect to security, i.e., that they
do not do any security related activities outside what is being
required to meet the objectives for the targeted DO-178C
assurance levels.

The work presented in this paper has been performed in the SoS-Agile
project, which is funded by the Norwegian Research Council's IKTPLUSS
program.

IV. ANALYSIS

The mapping between the DO 178C and BSIMM
demonstrates clearly that there are significantly different foci for
the two documents. In Figure 1 we show the minimum software
security maturity level of an imaginary software development
organization that must comply with DO-178C Level A,
compared to the average of firms that participate in the BSIMM
study [2].

Fig. 1: Minimum maturity of an imaginary organization
developing software w.r.t. DO-178C Level A compared to
the maturity of the firms in the BSIMM study [2].

Level A is the highest assurance level and requires that all
objectives defined in DO-178C are being met. As illustrated in
Fig. 1, an organization complying with Level A will perform
well in terms of the "Security Testing" activities defined by
BSIMM. This is to be expected, since verification is a key part
of DO-178C and the corresponding BSIMM security testing
activities are to a high degree met when fulfilling the objectives
in the DO-178C standard. More specifically, regarding security
testing, the BSIMM activity "ST3.4: Leverage coverage
analysis" will be covered by several of the objectives defined
under the "Verification of verification process results" section of
DO-178C. The BSIMM activities "ST1.3: Drive tests with
security requirements and security features" and "ST1.1:
Ensure QA supports edge/boundary value condition testing"
will be covered by the DO-178C objectives to ensure that the
executable object code complies with the high-level
requirements and that the executable object code is robust with
the high-level requirements. Further, regarding standards and
requirements, an organization complying with Level A is
required to define software development standards, thereby
implementing the BSIMM activities "SR1.1: Create security
standards". An organisation delivering Level A compliant
software will also implement "SR2.4: 25 Identify open source"
and "SR3.1: Control open source risk".

As can be seen from Figure 1, there are several weak spots
of the Level A compliant organisation in terms of software
security. Many of these are related to the BSIMM domains

governance and deployment (see Table 1). According to
BSIMM, governance is defined as "Practices that help organize,
manage, and measure a software security initiative". BSIMM
also consider staff development to be a central governance
practice. Even though governance in its general meaning is a red
thread in DO-178C, the focus is on compliance with the
objectives of the standard rather than on compliance with
external regimes and the score in this category is therefore low.
Deployment is clearly out of scope of DO-178C, since this phase
of the software lifecycle is covered by other airworthiness
standards. Somewhat surprisingly, from the BSIMM point of
view, DO-178C is also weak when it comes to design review
and architecture analysis. Even though verification is a major
component of the DO-178C standard, the standard does not
require any specific competence from the persons who are
performing such reviews. This is specifically recommended by
BSIMM through the activities "AA1.3 Have SSG lead design
review efforts" and "CR1.2 Have SSG perform ad hoc review".
Neither does the DO-178C standard require the use of known
bugs as input to the verification activities, as suggested by
BSIMM through the activity "CR2.7 Use a top N bugs list". The
use of automatic tools is also recommended in several of the
activities in this category. These are the reasons why the
BSIMM score is low.

An organization complying with Level B will implement the
same BSIMM activities as the level A compliant organization.
The main difference is that when going from Level B to Level
A some of the DO-178C objectives needs to be fulfilled "with
independence". There is no security activity defined in BSIMM
that requires separation of responsibilities w.r.t verification and
validation. Further, even though DO-178C Level A includes two
objectives that are not required for Level B (these are "Test
coverage of software structure (modified condition/decision
coverage) is achieved" and "Verification of additional code, that
cannot be traced to Source Code, is achieved"), the organization
will not need to implement any additional BSIMM activities
than the ones already required for Level B to meet these
objectives. The BSIMM maturity measures for a Level A
organization and a Level B organization will therefore be
identical.

Level C is a lower assurance level than B, which manifests
itself through requiring less independence when satisfying the
objectives and fewer objectives that need to be fulfilled,
compared with Level B. However, the objectives that are not
needed for C, but that are required for B, are not covered by any
of the BSIMM activities. This means that also the BSIMM
maturity measure for the Level C organization will be identical
to the maturity measures of the level A and B organizations.

An organization complying with Level D needs only to
implement a single BSIMM activity: "SM1.1: 55 Publish
process (roles, responsibilities, plan), evolve as necessary". The
activity "SR1.3: 71 Translate compliance constraints to
requirements" may also be (at least partly) covered when high-
level requirements are developed, in case the system
requirements are being derived from compliance constraints.
There are no other BSIMM activities that must be done do to be
compliant with Level D.

Table 3 The 12 BSIMM activities that "everybody" does mapped against the DO-178C assurance levels.
BSIMM: 12 core activities that "everybody does" DO-178C assurance level

Activity Description Level A Level B Level C Level D
SM1.4 Identify gate locations and gather necessary artefacts. Yes Yes Yes No
CP1.2 Identify PII obligations. No No No No
T1.1 Provide awareness training. No No No No

AM1.2 Create a data classification scheme and inventory. No No No No
SFD1.1 Build and publish security features. No No No No
SR1.3 Translate compliance constraints to requirements. Partly Partly Partly Partly
AA1.1 Perform security feature review. Partly Partly Partly Partly
CR1.2 Have SSG perform ad hoc review. Partly Partly Partly Partly
ST1.1 Ensure QA supports edge/boundary value condition testing. Yes Yes Yes Yes
PT1.1 Use external penetration testers to find problems. No No No No
SE1.2 Ensure host and network security basics are in place. No No No No

CMVM1.2 Identify software bugs found in operations monitoring and feed
them back to development.

No No No No

BSIMM also identifies "12 core activities that "everybody"
does", which the state are activities that are commonly found in
highly successful software development programs. Even though
they cannot conclude that these 12 activities are necessary for all
software security initiatives, they recommend that everybody
should consider them. Table 3 depicts these activities and map
them to the difference DO-178C assurance levels.

As can be seen from the table, organizations that deliver
software in compliance with DO-178C Level A, B and C will all
perform the BSIMM activity "SM1.4: Identify gate locations
and gather necessary artefacts". What this means, according to
BSIMM, is that release gates/checkpoints/milestones are
integrated in the software development lifecycle and that input
necessary for making a go/no-go decision are collected. For DO-
178C Level D it is only required that activities of the software
life cycle process are defined; there is no need to explain or
demonstrate how the transitions between the separate phases of
the life cycle are being managed.

All the DO-178C assurance levels will implement the
BSIMM activity "ST1.1: Ensure QA supports edge/boundary
value condition testing". This will be done to meet the DO-178C
objective that requires that the software (or more specifically,
the executable object code) is robust with respect to the high-
level requirements.

Three entries in the list of ubiquitous BSIMM activities are
already partly covered in DO-178C. All the four assurance
levels will partly implement the BSIMM activity "SR1.3:
Translate compliance constraints to requirements". The set of
high-level requirements are produced through analysis of
system requirements and system architecture. The standard also
allows the software development process to produce derived
requirements. DO-178C does state that the high-level
requirements include functional, performance, interface, and
safety-related requirements, but do not discuss other types of
requirements, such as requirements derived from compliance
constraints. Further, the BSIMM activities "AA1.1: Perform
security feature review" and "CR1.2: Have SSG perform ad hoc
review" have also been partly implemented in DO-178C. Even
though the standard requires a thorough Software Quality
Assurance process, the use of dedicated risk and or threat

analysis methods performed by people with security knowledge
is not required by DO-178C.

The last two entries in the table above, which are related to
the deployment and operation of the software, are clearly out of
scope for DO-178C. Privacy, which is ensured through the
second entry ("CP1.2: Identify PII obligations"), is also most
likely out of scope when assessing a safety critical system.
Further, whereas awareness training, data classification and
penetration testing are generally considered efficient security
countermeasures, such activities are unlikely to become
candidates for inclusion in the set of DO-178C objectives.

Regarding the BSIMM activity "SFD1.1: Build and publish
security features", it is somewhat concerning that the DO-178C
standard often represents a showstopper to this approach. When
using what is being referred to as "previously developed
software" in the standard, DO-178C requires that a gap analysis
is performed to identify the objectives that need to be satisfied.
Filling these gaps is often an extremely time-consuming process,
which in many cases means that it is easier to start over and
develop the software from scratch [5]. This goes against the best
practice identified by BSIMM, which recommends that the SSG
identifies previously built software security features (e.g., for
user authentication) that they like, and approve them for reuse in
all other projects that need a similar functionality.

In the following, we will illustrate how the imaginary DO-
178C-compliant software development company would
compare to the adoption rate of software security activities in the
full BSIMM population [2]. Fig. 2 shows this for the Strategy &
Metrics (SM) practice; the blue columns indicate which
activities contribute to DO-178C Level A compliance, and the
red curve indicates the percentage of BSIMM organizations that
perform each activity. Note that in some of the following figures,
two practices have been combined to conserve space. BSIMM
practices that are not performed at all by our imaginary company
have been omitted.

Fig. 2: DO-178C Level A Strategy & Metrics (SM) activities
compared with the BSIMM compliance percentage [2].

In this case we can somewhat reassuringly conclude that the
most common activity, "SM1.4: Identify gate locations" which
is performed by more than 80% of the BSIMM organizations, is
also performed by our imaginary DO-178C developer.
However, it may be more disturbing that "SM1.2: Create
evangelism role" and "SM1.3: Educate executives", which are
both performed by about 50% of the BSIMM organizations, will
not be performed in aviation.

Fig. 3: DO-178C Level A Security Requirements (SR) and
Architecture Analysis (AA) activities compared to the
BSIMM compliance percentage [2].

In Fig. 3 we can notice that "SR 1.2: Create a security
portal" and "AA1.1: Perform security feature review",
performed by respectively more than 60% and 80%, of
BSIMM organizations, are not performed by our imaginary
developer.

Fig. 4: DO-178C Level A Code Review (CR) and Security
Testing (ST) activities compared with the BSIMM
compliance percentage [2].

Fig. 4 shows that there are no major discrepancies when it
comes to the practices Code Review and Security Testing; the
only practices not covered have an adoption rate of among
20% or less among the BSIMM organizations.

Finally, Fig. 5 illustrates that the deployment domain is not
DO-178C's strongest suit; "SE1.2: Good practice network/host
security" which has more than 80% BSIMM adoption rate is
not covered. DO-178C does, however, prescribe both the
BSIMM activities "SE2.2: Publish installation guides" and
"SE2.4: Use code signing".

Fig. 5: DO-178C Level A Software Environment (SE)
activities compared with the BSIMM compliance
percentage [2].

V. CONCLUSIONS
DO-178C is a successful standard with a proven history. It

has many benefits, amongst other including greater upfront
requirements clarity, fewer coding iterations, fewer bugs found
during module testing, fewer defects found during integration
and fewer in-the-field defects [6]. Our own experience with
developing software in accordance to Level D also indicates that
it will catch many bugs, including potential security loopholes
that otherwise could have been exploited.

Nevertheless, the standards also have weaknesses. First, as
pointed out in [7], while a system may always have
implementation defects or bugs, the security of many systems is

often in practice breached due to "design flaws". In contrast to
bugs, design flaws are much more subtle than bugs and harder
to detect by traditional verification and validation methods, such
than the ones prescribed by DO-178C. Second, the standard, and
the full set of airworthiness standards in general, are not adapted
to today's world in terms of support rapid patching and updates
of software to fix bugs and defects found in the field. Finally,
as discussed in Section III, it is difficult to reuse previously
developed software that has not been previously certified.

An interesting observation from the results presented in
Section III is that, according to the BSIMM measuring yardstick,
Level A certified software will not be "more secure" than Level
B or C, unless you are certain that the "independent reviewer"
does a really good job. However, DO-178C does not prescribe
any required competence of the reviewers, which contrasts with
the 109 firms evaluated in the BSIMM study that all agree that
the success of their initiative hinges on having an internal group
devoted to software security [2].

Based on the results presented in this paper, we recommend
that the following aspects are considered in a future update of
the DO-178C standard:

• Make the Software Planning Process objective "The
software life cycle(s), including the inter-relationships
between the processes, their sequencing, feedback
mechanisms, and transition criteria, is defined"
mandatory also for assurance Level D. This objective
corresponds to one of the 12 BSIMM activities that
"everybody does" and is hence considered best practices
for any organization who is concerned about software
security.

• The standard should include an objective that requires the
organization to compile and maintain a list of "most
important bugs" to be used as input to the verification
activities. Such a list could be initially generated from
public sources of known vulnerabilities but should
eventually be maintained and updated based on real data
gathered from code review, testing, and actual incidents
[2]. This will effectively counter the most common
security threats that exist today.

• Organizations need to be able to feed software defects
found in the field back to the development process in an
easy manner.

REFERENCES
[1] DO-178C, Software Considerations in Airborne Systems and Equipment

Certification, RTCA, December 13, 2011
[2] G. McGraw, S. Migues, J. West: BSIMM: Building Security In Maturity

Model. Version 8, September 2017 https://www.bsimm.com/
[3] K. Sampigethaya, R. Poovendran, S. Shetty, T. Davis, and C. Royalty,

“Future e-enabled aircraft communications and security: The next 20
years and beyond,” Proceedings of the IEEE, vol. 99, no. 11, pp. 2040–
2055, 2011.

[4] H. Chivers and J. Hird. 2013. Security Blind Spots in the ATM Safety
Culture. In Proceedings of the 2013 International Conference on
Availability, Reliability and Security (ARES '13). IEEE Computer
Society, Washington, DC, USA, 774-779. DOI:
https://doi.org/10.1109/ARES.2013.103

[5] L. Rierson. Developing safety-critical software. A practical guide for
aviation software and DO-178C compliance. CRC Press, 2012

[6] V. Hilderman. Understanding DO-178C Software Certification: Benefits
Versus Costs. Proceedings of the 2014 IEEE International Symposium on
Software Reliability Engineering Workshops.

[7] Avoiding the Top 10 Software Security Design Flaws. IEEE Center for
Secure Design, 2014. Available at
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

[8] M. Paulitsch , R. Reiger, L. Strigini and R. Bloomfield. Evidence-Based
Security in Aerospace. From Safety to Security and Back Again. In IEEE
23rd International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2012.

[9] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou and Y. Halgand. A survey
of approches combining safety and security for industrial control systems.
In Reliability Engineering and System Safety 139 (2015) 156–178. DOI:
http://dx.doi.org/10.1016/j.ress.2015.02.008

[10] P. E. Black, L. Badger, B. Guttman, E. Fong "Dramatically Reducing
Software Vulnerabilities." NISTIR 8151 (2016)
https://doi.org/10.6028/NIST.IR.8151

[11] C. E. Landwehr "A building code for building code: putting what we
know works to work." Proceedings of the 29th Annual Computer Security
Applications Conference. ACM, 2013.

[12] M.G. Jaatun: "Hunting for Aardvarks: Can Software Security be
Measured?", in Multidisciplinary Research and Practice for Information
Systems, LNCS 7465, 2012, pp. 85-92

[13] DO-326, Airworthiness Security Process Specification, RTCA, August 6,
2014

[14] DO-356, Airworthiness Security Methods And Considerations,
September 23, 2014

[15] C. Taylor, J. Alves-Foss and B. Rinker. "Merging Safety and Assurance:
The Process of Dual Certification for Software." Proc. Software
Technology Conference, April 2002.

[16] N. Nostro, A. Bondavalli, and N. Silva. “Adding Security Concerns to
Safety Critical Certification.” Proc. - IEEE 25th Int. Symp. Softw. Reliab.
Eng. Work. ISSREW 2014, pp. 521–526, 2014.

[17] G. Stoneburner, “Toward a Unified Security / Safety Model,” Appl. Phys.,
pp. 96–97, 2006.

[18] C. Schmittner, Z. Ma, and E. Schoitsch. “Combined Safety and Security
Development Lifecylce.” Proceeding - 2015 IEEE Int. Conf. Ind.
Informatics, INDIN 2015, pp. 1408–1415, 2015.

