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ABSTRACT

In this paper we propose a new estimator for calculating the probability of traffic breakdown as
a function of traffic demand. Traffic breakdown is a well studied phenomena within previous
literature, and is of great importance to traffic planners and controllers. The proposed estimator has
an appealing intuition and is able to overcome several of the problems associated with previously
proposed methodology. The input to the estimator is a set of aggregated (typically 5 minutes) traffic
observations classified to either breakdown or non-breakdown state, and a customized and fast
algorithm for this purpose is proposed. Lastly, we apply the classification algorithm and breakdown
probability estimator to a large data set consisting of several observation sites on the Norwegian
road network, and compare our estimator to a previously defined estimator.

Keywords: Congestion; Probabilistic capasity; Traffic breakdown; Traffic flow



ARNESEN, P, HJELKREM, O. A. 3

1 INTRODUCTION

Congestion in traffic flow is responsible for significant delays for travelers. Congestion occurs
when a traffic volume increases beyond a critical value, causing a breakdown shift from an uncon-
gested flow to congested state. The mechanics of traffic breakdown has been extensively researched
in the past, see for instance Elefteriadou et al. (1995), Persaud et al. (1998), Brilon et al. (2005),
Kerner (2009), Elefteriadou et al. (2011) and the references therein. A common perception of the
relationship between the three important variables flow, speed and density is represented by the
fundamental diagram of traffic flow (May, 1990). According to the fundamental diagram, each set
of prevailing conditions has a specific capacity, which is the maximum value of traffic volume. An
increase in density while at the capacity will result in a decreased speed and flow, also known as a
breakdown. Empirically, the transition from uncongested to congested flow results in a large drop
in speed (Sugiyama et al., 2008). If this phase transition could have been avoided, delays would
decrease, resulting in an increased benefit for travelers. With the traffic jams worldwide in mind,
the potential for total increase in benefit is substantial.

Estimating the probabilistic nature of phase transitions in traffic
Some of the first to document the probabilistic behavior of traffic breakdowns were Elef-

teriadou et al. (1995). They concluded from empirical observations that the capacity was a prob-
abilistic value rather than deterministic, and developed a model which takes into account vehicle
clusters on ramps and freeway flow. Before this, the capacity was thought of as a fixed value for
each location, and that a traffic flow beyond the capacity would induce a breakdown. Several other
studies later confirmed that breakdowns are probabilistic, which has resulted in a widely accepted
view on breakdowns as a probabilistic event in recent literature (for instance Brilon et al. (2005),
Sugiyama et al. (2008), Elefteriadou et al. (2011), Xu et al. (2013) and Chen et al. (2014)).

The probability of a breakdown is usually represented as a function of traffic flow. At low
traffic volumes, the probability of a breakdown is zero. At very high volumes, is is almost certain
that a breakdown will occur. The phase transition between free flow and breakdown is usually
represented with an "S"-curve, as shown in Figure 1.

Several studies has calculated the probability function from empirical data, e.g. Elefteri-
adou et al. (1995), Persaud et al. (1998) and Lorenz and Elefteriadou (2000). The main features
of the approach was to group observations of flow in multiples of 100 vehicles per hour, and find
the frequency of observations where a breakdown has occurred as NB. The probability PBfor a
breakdown at a certain input flow was then calculated as

PB = NB/NT , (1)

where NT is the frequency of all observations in the specific group of flow values. A calculation of
PB for each group of flows should lead to a function as proposed in Figure 1.

As empirical data of sufficient size and quality has been difficult to obtain, several re-
searches have used simulations to produce probability functions for traffic breakdown, where
Markov chain techniques have been the most common approach. Most commons of these sim-
ulations have used Markov Chains. Wang et al. (2010) used a discrete time Markov chain (DTMC)
to model the traffic state transition, and were able to calculate the breakdown probability as a
function of density. Shiomi et al. (2011) developed a traffic flow model for bottlenecks for esti-
mating breakdown probability. The model consisted of platoon formation and a speed transition
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FIGURE 1 A hypothetical representation of the probability of a traffic breakdown as a func-
tion of traffic flow.

model based on an absorbing Markov chain model. Xu et al. (2013) used a Monte Carlo model for
simulating freeway traffic, and calculated the breakdown probability as a function of input flow.
Chen et al. (2014) proposed a queuing model to describe traffic breakdown phenomena caused by
perturbations of on-ramp merging vehicles. Kerner et al. (2002) calculated the breakdown prob-
ability from free to synchronized flow from simulations. Davis (2006) developed a methodology
for preventing transitions to synchronous flow at bottlenecks with ramps.

A common feature for studies where traffic flow has been simulated, is that the definition
of probability is defined by PB. However for empirical data, Elefteriadou et al. (2011) argues
that this is not correct, due to the fact that the chance of observing a certain volume is not taken
into account. Therefore, Elefteriadou et al. (2011), as well as Brilon et al. (2005), instead used
the Product Limit Method (PLM) to estimate the breakdown probability. A consequence of this
method is that the probability function is rarely calculated for high traffic volumes.

A majority of the presented studies on this topic use advanced statistical methods, e.g.
Markov chains and queuing theory, to produce simulations and PB to calculate the breakdown
probability, or use the PLM-estimator on empirical data. Both of these approaches has limitations,
and we therefore propose to use a more intuitive approach to calculate the breakdown probability
based on empirical data. Compared to the simulation techniques our approach is computer ef-
fective and model based simulation is not necessary. Moreover our estimator is able to calculate
probabilities also for higher volumes, which the PLM-estimator typically fail to do. In addition, as
pointed out in Xu et al. (2013), the PLM-estimator seems to overestimate the capacity of the road,
which does not seems to be the case using our method.

The driver behavior is dependent on surroundings, and the dependence at one detection
point is not necessarily the same as for another point Ranney (1999). Several previous studies has
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collected data from a limited number of sites (for instance Wang et al. (2010) and Elefteriadou
et al. (2011)), whereas we consider multiple observation sites.

In the next section, we present our proposed methodology for classification of observations
as either (i) free flow or (ii) congested. Then, we present the estimator based on phase transitions,
and how the probability distribution function is estimated. Finally, we illustrate how this can be
used to avoid breakdowns.

2 A METHOD FOR ESTIMATING THE PROBABILITY OF TRAFFIC BREAKDOWN

Our proposed methodology assumes that single vehicle registrations of speed is available from at
least one where traffic breakdown is observed. An example of such a data set is given in the data
section below along with a discussion of the uncertainty of such registrations. In line with previous
literature (Shiomi et al., 2011; Elefteriadou et al., 2011; Xu et al., 2013), the data is aggregated
to five minute intervals. That is, for each five minute interval we count the number of passing
vehicles and calculate their mean speed. The shape of the dependency structure between these two
parameters is well known shown in Figure 2 for two of the observation sites available in the data set
presented in Section 3. From these flow-speed plots one can clearly observe a decreasing speed as

(a) (b)

FIGURE 2 Observations of the number of vehicles and their mean speed within five minute
intervals on a two lane road (a) and on a four lane road (b).

a function of increasing traffic volume, and moreover a breakdown pattern when the traffic volume
becomes too large. In a state of breakdown traffic slows, and the number of vehicles passing the
observation point decreases, resulting in the characteristic concave form (relative to the y-axis) in
these plots. It is essential to understand the stochastic nature of this process. Firstly, the variability
of the registered mean speed for a given traffic volume. Note that as each point represents the mean
of the speed of passing cars the increase of variability as the traffic volume decreases towards zero
is natural due to the decreasing number of cars for which the mean is calculated. And secondly,
more importantly, the variability of the traffic volume that result in a breakdown. The stochastic
nature of the road capacity (i.e. the maximum traffic volume that can pass a certain point on the
road in a certain time frame) is often considered in the literature (Elefteriadou et al., 1995; Shiomi
et al., 2011; Elefteriadou et al., 2011). However, we focus on the stochastic properties of the
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amount of traffic that results in a breakdown. This motivates the estimation of a function returning
the probability of a breakdown given a traffic volume.

Before presenting our proposed algorithm and probability estimator we note that there are
several informative ways of representing the data shown in Figure 2. For instance the well-known
relationship

d = V/f, (2)

where d is the density of the traffic, V is the volume and f is the speed, can be used to consider
speed as a function of density instead of volume (See Figure 3). Another example of representation

(a) (b)

FIGURE 3 Observations of the density of vehicles and their mean speed within five minute
intervals on a two lane road (a) and on a four lane road (b).

is to consider delay as a function of density, where we define delay to be the time difference
between driving 1 m with the calculated mean speed and the road’s speed limit. In the method
presented below we use these two relationships to identify observations in a breakdown state.

Our proposed method for estimating the breakdown probability as a function of traffic
volume consist of three parts

1. Classify each observation to a breakdown or non-breakdown state.

2. Identify all successive observations where the former is in non-breakdown state and the
latter is in a breakdown state.

3. Estimate the breakdown probability using a defined estimator and point 1. and 2. above.

The main focus in this paper is on the estimator used in the third point in the list above. It is
important to note that our estimator for the breakdown probability can be used regardless of which
method classifying the observations to breakdown or non-breakdown states. Below we propose
a classifying algorithm, but we stress the point that any algorithm that successfully divide the
observations into breakdown or non-breakdown states can be used. For instance, a manually coding
of each 5 minute interval will be sufficient.
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Classification
In this section we propose an algorithm for classifying each observation to either be in

a breakdown or a non-breakdown state. The algorithm consist of two parts. Firstly, we do a
rough classification using change point analysis available through the changepoint -package (Kil-
lick et al., 2016) within the statistical software R (R Core Team, 2015). Secondly, we use linear
regression to iteratively reclassify breakdown observations that are close to the regression line to
be in a non-breakdown state. In the following these two parts will be explained in detail.

We start by performing a rough classification of each observation. This is done by apply-
ing the changepoint-package in R in two steps. First, we order the observed mean speeds by the
observed densities and apply the changepoint-package in R to find the one point of density where
the mean and the variance of the speed changes the most. Second, we order the observed delays by
the observed densities and apply the changepoint-package to find the density where the mean and
the variance of the delay changes the most. Recall that delay is defined to be the time difference
between driving 1 m with the calculated mean speed and the road’s speed limit. These two inde-
pendent runs of the changepoint-package identifies two different points of density where there is
a change in the dynamic of the traffic flow, and as a rough classification we choose the maximum
of these two points to separate breakdown observations for non-breakdown observations. I.e. if an
observation has a density lower than what is obtained from the changepoint analysis we classify
this observation to be a non-breakdown points, and if an observation has a density that is higher
we classify this observation to be a breakdown point. We stress that this is just a rough classifica-
tion method that has proven helpful for us as an input to the finer classification method presented
next, and a result from such a rough classification is shown in plot (a) and (b) in Figure 4. As
shown within the blue circles in these two figures, multiple observations seems to be misclassified
to breakdown state (red points) for high volumes. To get a better classification we perform the fol-
lowing iterative procedure. Using the black observations, i.e. in non-breakdown state, we estimate
a regression line on the form

f = β0 + β1V + β2V
2 + ε, (3)

where β0, β1, and β2 are parameters to be estimated, and ε ∼ N(0, σ2) is normally distributed
noise with zero mean and variance σ2. Using this estimated line we identify all observations
classified to the breakdown state that are closer than 3σ̂2, and reclassify these observations to the
non-breakdown state. This last step is repeated until no change in the sets of breakdown and non-
breakdown observations are observed. In our experience two to four iterations are enough for this
procedure to converge. For the rough classification shown in plot (a) and (b) in Figure 4, the result
from this last iterative procedure is respectively shown in plot (c) and (d) in the same figure. Now
we see that the observations within the blue circles in these plots have a more correct classification,
that is fewer observations with high volume and high speed are classified to breakdown state.

The classification method presented in this section is just an example of how such obser-
vations can be divided into breakdown and non-breakdown states. There exists more sophisti-
cated and generic classification (or cluster) algorithms than the one presented here (Friedman et al.
(2001)), however our procedure performs well enough for these type of data. In addition, the
method is very easy to implement, and very computer effective. For instance, some of the obser-
vation sites given in the data set in Section 3 have more than 100 000 observations, and with the
method presented here the classification of even these locations are completed within seconds.
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(a) (b)

(c) (d)

FIGURE 4 Rough ((a) and (b)) and finer ((c) and (d)) classification of observations to break-
down (red) or non-breakdown (black) states on a two lane road ((a) and (c)) and on a four
lane road ((b) and (d)).

Probability estimation
When a proper classification of the observations is found we define a transition point to be:

Definition 1 For observations xt = (Vt, ft, Ct), where t = 1, ...., T is an index for the successive
five minute intervals and Ct is the classification of each observation to either breakdown (Ct = 1)
or non-breakdown state (Ct = 0), a transition point is a traffic volume Vt where Ct = 0 and
Ct+1 = 1.

Following this definition a transition point is the traffic volume in a five minute interval classi-
fied to the non-breakdown state immediately followed by a five-minute interval classified to the
breakdown state, see Figure 5 for an illustration.

The traffic volume for an observation in a breakdown state may change significantly after
the transition from a non-breakdown state, as demonstrated in Figure 5. Therefore, we use the
non-breakdown observation as an estimate for the traffic demand. We assume by this that the flow
does not change dramatically within each five-minute observation, an assumption also applied by
others in the literature (Shiomi et al., 2011; Elefteriadou et al., 2011).
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(a) (b)

FIGURE 5 Arrows pointing from ten transition points on a two lane road (a) and on a four
lane road (b).

To estimate the probability of a breakdown given a traffic volume, V , we firstly define the
following functions

Q(V ) =
T∑
t=1

I(Vt ≤ V )I(Ct = 0)I(Ct+1 = 1), (4)

which simply counts the number of transition points with a traffic volume smaller than or equal to
V , and

R(V ) =
T∑
t=1

I(Vt ≥ V )I(Ct = 0)I(Ct+1 = 0), (5)

which counts the number of observations classified to the non-breakdown state that is not a tran-
sition point and with a traffic volume larger than or equal to V . Lastly, we use the following
estimator to calculate the breakdown probability, p(V ), given a traffic volume V

p(V ) =
Q(V )

Q(V ) +R(V )
. (6)

There are several advantages using this estimator. As pointed out by Shiomi et al. (2011) there
are (at least) two reasons why it is fewer observations at higher volumes. Firstly, the rush hour is
limited to only a small portion of the day, resulting in more observations with lower traffic volume.
Secondly, the transition point is a stochastic variable resulting in breakdowns also before the high-
est possible volumes are obtained. The idea of the estimator is not only to use the observations at a
specific volume V , but also to use both the observations that resulted in transition points at volumes
lower than V , and observations that did not result in transition points at volumes smaller than V .
In addition, our estimator p(V ) is guaranteed to be zero at very small volumes, is one at very high
volumes, and is monotonically increasing in between these limits. This estimator is also very fast
to evaluate, avoiding (possible) computer intensive methods such as Markov chains and queuing
theory. This can be very convenient in particular when handling large data sets (see Section 3 for
an example). In the next section we apply our estimator to a simple example, to give an intuitive
and physical interpretation of (6). This example shows that our estimator simply is the classical
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statistical estimator for probability, namely the number of observations of interest divided by the
total number of observation, and that our contribution is simply how we view an observation.

Simple and hypothetical example to explain estimator
Here we provide a small and hypothetical example to give an intuitive and physical inter-

pretation of our estimator in (6). In this experiment the traffic is observed for 19 non-congested 5
minute intervals. For each 5 minute interval the number of passing vehicles are counted (the traffic
volume), and it is registered whether or not the traffic goes into breakdown state in the following
5 minute interval. In other words, this corresponds to a manual classification of observations to
breakdown or non-breakdown state. Let us assume that the result from such a study is the observed
volumes Vobs = (15, 22, 60, 50, 90, 40, 75, 35, 70, 70, 70, 10, 50, 90, 60, 10, 20, 45, 45). In Figure 6
these observations are plotted with ×, and they are colored green if the traffic did not go into a
breakdown state and red if the traffic did go into a breakdown state. In the same figure we draw
lines from the observations, indicating the following two reasonable assumptions; (I) For a traffic
volume V that did not result in a breakdown state, hypothetically removing vehicles from the exact
same traffic flow would not have resulted in a breakdown either, and (II) for a traffic volume V
that did result in a breakdown state, hypothetically adding vehicles to the exact same traffic flow
would also have resulted in traffic breakdown. We emphasis here that by exact same traffic flow we
mean the exact same conditions, drivers, vehicles and in all aspects the exact same situation only
with one less or one more vehicle, respectively. Thereby we add green lines going towards lower
traffic volumes for non-breakdown events and red lines going towards higher volumes for break-
down events, to indicate that the observations is considered to be valid also for lower and higher
volumes, respectively. To calculate the probability of breakdown for instance at the traffic volume
V2 = 50 (see again Figure 6), we simply count the number of horizontal red lines intercepting the
vertical dotted blue line going up from V2 and divide by the total number of horizontal lines (both
green and red) intercepting the same line. That is, the probability of a breakdown at V2 would be
P (V2) = 3/(3 + 5) = 3/8. Likewise for the volume V1 and V3 in Figure 6 the probability of a
breakdown will be P (V1) = 0/(0 + 9) = 0 and P (V3) = 6/(6 + 1) = 6/7, respectively.

Using observations for higher volumes (for observations not resulting in breakdown state)
and lower volumes (for observations resulting in breakdown state), has parallels to censoring tech-
niques used in survival analysis, where the observations surviving the end of the experiment still
are used in the resulting estimations.

3 DATA EXAMPLE: OBSERVATIONS ON THE NORWEGIAN ROAD NETWORK

In this section we present an example data set that our proposed method is applied to. Single
vehicle registrations from observation sites with regular breakdowns were made available from
the Norwegian Public Roads Administration (NPRA). The observation sites are located all across
Norway (see Figure 7). Data is collected from roads with different speed limits, for roads with
either one lane in each driving direction (26 lanes in total), or for roads with two lanes in each
direction (23 in total).

Single vehicle detections are associated with large uncertainty. However, the data sets
collected from such registrations are often very large, which means that the law of large number
can be applied to argue that the resulting estimates are accurate. For instance, after aggregating the
data example set given above to five minutes intervals, there are a total of 1 357 135 observations
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FIGURE 6 Observations from our simple example where 5 minute intervals resulting in
traffic breakdown are shown in red and green otherwise.

in the two lane road case and 673 396 observations in the four lane road case.
The objective of this study is to estimate one breakdown probability curve for the two lane

road case and one curve for four lane road case. With sufficient amount of data, one can also
use the above method to estimate one curve for each of the road. However, note that we use the
transition points in our estimator and not all the observations in a breakdown state, so the data
collection from such a single observation site should be large. Also, the purpose in our work with
this data set was to estimate breakdown curves to use in a transportation model for the Norwegian
road network. Therefore, we need representative probability curves for all roads on the network,
and thus we chose to mix several road types, speed limits etc. together.
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FIGURE 7 All observation sites for single vehicle detection on the Norwegian road network
where breakdowns are regularly observed for the two lane and the four lane case. A table
with counts of the observation sites for different road types are also shown.

4 ESTIMATED PROBABILITY CURVES FOR THE NORWEGIAN ROAD NETWORK

In this section we present our estimated breakdown probability curves for the data set presented
in Section 3. We run our classification procedure for each observation site independently and use
our estimator in Equation (6) jointly on all the two lanes and jointly on all the four lanes road, see
plot (a) and (b) in Figure 8. The estimated breakdown probabilities form an S-shape, which is a
well known shape for these types of curves. The breakdown probability increases rather quickly
after 80-90 vehicles per five minutes for the two lane road case, and after 230-240 vehicles per five
minutes for the four lane road case. These results seem reasonable compared to for instance Shiomi
et al. (2011) and Wang et al. (2010), however less comparable to for instance Brilon et al. (2005)
and Elefteriadou et al. (2011). These two latter papers evaluate both the well known non-parametric
PLM estimator and a parametric approach using maximum likelihood estimation with censoring,
which, similar to our estimator, both use identified transition points and non-breakdown points
to estimate the probability breakdown curve. We have implemented both these two estimators
where the Weibull distribution is chosen in the parametric case, which is the standard choice in
the literature, see for instance Brilon et al. (2005) or Shiomi et al. (2011). The results from these
estimators is shown with a grey line and a dotted grey line in plot (a) and (b) in Figure 8. Both
the estimated probability curves using PLM and Weibull is located to the right of our curve. In
addition, non-parametric PLM fails to estimate the breakdown probabilities higher than the last
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(a) (b)

(c) (d)

FIGURE 8 Top: Estimated breakdown probabilities (dots) for the two lane road case (left)
and the four lane road case (right). Black lines estimate the breakdown probabilities, while
grey lines and grey dotted lines represent the probability curve using PLM and parametric
Weibull estimation, respectively. Bottom: The number of observed non-breakdown points
(black line) and transition points (red) for each traffic volume in the two lane road case (left)
and the four lane road case (right). Correponding hourly flows are showed in brackets on the
x-axis to make comparison to previouse literature easier.

observed transition point. To investigate the difference between the three estimators we plot the
number of observed data points and the number of observed transition points as a function of the
observed traffic volume, see plot (c) and (d) in Figure 8. It is interesting that for the two lane road
case the PLM and Weibull both estimates a breakdown probability of only 0.4 when the traffic
volume is approximately 140 vehicles per five minute, although all transition points are observed
before this volume. However, since some non-breakdown observations are above this volume the
estimated probabilities for PLM and Weibull can only reach this level in this case. We would argue,
based on the plots in Figure 8, that the breakdown probability is underestimated using the PLM
and Weibull for this data set. This is an observation done by other in the literature as well, see for
instance Shiomi et al. (2011). We would argue that our estimator, or really the way we interpretate
the data, is able to capture and model the physical phenomenon of traffic breakdown probability
better than previously defined estimators. This is because we are able to include in our estimator
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the assumption that if no observations above a certain traffic volume is observed, it is highly likely
that the probability of breakdown at this traffic flow would be close to one. Assuming of course
that the traffic flow is observed for a significant amount of time and at a point on the road network
where traffic breakdown regularly occurs. See again Figure 6, for an illustration of how we extract
more information from each observations by two simple and reasonable assumptions.

The estimator gives one probability estimate for each discrete value of V . To apply these
estimates (for instance in a transport model), one can either use these probabilities directly, or
one can fit a continuous function to the calculated probabilities. The lines shown in Figure 8
represents such a fit. In particular we have estimated a cumulative Gaussian function Φ(V ;µ, ς2)
to the estimated breakdown probabilities, which of course results in a completely symmetric curve
around µ. In fact, the estimate for µ represents the volume V = µ where it is a 0.5 probability
for the traffic going into a breakdown state. As we can see from Figure 8 the fitted curves follows
the estimated breakdown probabilities closely, especially for lower values of V . The estimated
probabilities seems however to increase more steeply close to one than close to zero, especially in
the four lane road case. This suggests that a completely symmetric function might not be totally
appropriate, however other functions can easily be used to obtain a better fit.

5 CONCLUDING REMARKS

In this paper we propose an estimator for calculating the probability for breakdown in traffic given
a traffic demand. The estimator is based on classification of aggregated single vehicle registrations
to either breakdown or non-breakdown state. This methodology has an appealing interpretation
and is a computer effective alternative to previously suggested methods. We apply our method
to a large data set consisting of more than 100 000 000 single vehicle registrations from multiple
observation sites all over Norway, and are able to estimate breakdown probability curves as a
function of traffic volume.

Several actions might be taken by the authorities to avoid traffic congestion, redirecting
parts of the traffic flow to alternative routes, and warning travelers of the possibility of congestion.
For any of these alternatives to be effective, which includes avoid taking action whenever traffic
congestion is less likely, one needs to be able to predict with some certainty the probability of
a traffic breakdown. The method presented here contributes in this direction as it provides an
intuitive estimate for a traffic breakdown given a traffic demand.

Avoiding traffic congestion can not be achieved by limiting the traffic flow alone, but also
by somehow moving the probability curve to higher volumes. For instance a traffic flow with
connected and/or automated vehicles should get to higher volumes before the probability of a
breakdown becomes significantly different from zero. The effect of connected or automated ve-
hicle on traffic flow is to some degree studied through simulations in the literature (Dresner and
Stone, 2004; van Arem et al., 2006; Lee and Park, 2012; Litman, 2015), and all studies suggests
a more stable traffic flow. Empirical data is non-existing for such problems, but if data with in-
formation of the amount of connected or automated vehicles within the traffic flow is collected,
this methodology can be used to study the effect of such intelligent transport systems (ITS) on the
breakdown probability curve.

In addition to what is mentioned above, several options for further work can be pursued
from these results. This methodology is a first step in the direction of predicting breakdown events.
The development of an ITS service predicting traffic congestion on a day-to-day basis could apply
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the results presented in this paper. However issues like what is an acceptable breakdown probability
and what is the best actions to take in a state of high breakdown probability needs to be properly
addressed for such an ITS service. When traffic flow increases the influence of other traffic on a
single vehicle increases (Ranney, 1999). This theory leads to the hypothesis that for instance the
amount of heavy vehicles might change the probability curve for traffic breakdown. As oppose to
the case with connected or automated vehicles, data are available for the amount of heavy vehicles
within the traffic flow so this hypothesis could be tested. This is currently work in progress.
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