
This is the Accepted version of the article

Multi-Layered Adaptation for the Failure Prevention
and Recovery in Cloud Service Brokerage Platforms

Citation:
Nicolas Ferry, Franck Chauvel, Brice Morin(2018). Multi-Layered Adaptation for the Failure
Prevention and Recovery in Cloud Service Brokerage Platforms. In 2018 11th International
Conference on the Quality of Information and Communications Technology (QUATIC),
Coimbra, Portugal, 4-7 Sept. 2018, pp 21-29 DOI: 10.1109/QUATIC.2018.00014

This file was downloaded from SINTEFs Open Archive, the institutional repository at SINTEF
http://brage.bibsys.no/sintef

Nicolas Ferry, Franck Chauvel, Brice Morin

This is the Accepted version.
It may contain differences form the journal's pdf version

Multi-Layered Adaptation for the Failure Prevention
and Recovery in Cloud Service Brokerage Platforms

Nicolas Ferry, Franck Chauvel, Brice Morin
SINTEF, Oslo, Norway. Email: first.last@sintef.no

Abstract—Self-adaptation is a basic capability of modern
applications, which adjust their structure and behaviour at run-
time, adapting to changes in their environment, in order to
maintain the quality of service at runtime. Models@run-time is
an emerging approach for adaptation, whereby a models@run-
time engine maintains a causal connection between an application
model and the running application, so that a reasoner can adapt
the application structure and behaviour by reading and writing
this model. However, when used on the dynamic quality control
of cloud-based applications, a traditional first-order adaptation
is usually not sufficient. This is because during the application
life cycle, its requirements may also change, which requires
adaptation on the reasoner itself. In this paper, we propose a
multi-layered models@run-time approach to enable a second-
order adaptation. By maintaining a causal connection between an
adaptation model, which reflects the behaviour of the reasoner,
and the running application, we enable the adaptation to be
automatically adjusted according to the changes in the running
application. We apply this approach on a case study for failure
prevention and recovery in cloud service brokerage platforms.

Keywords-models@run-time; multi-layer; failure prevention;
failure recovery; brokerage; cloud computing;

I. INTRODUCTION

Dynamic adaptability is an important feature for mod-
ern software applications to maintain an expected quality
at runtime [1], and model-driven engineering is playing an
increasing role in realizing it [2]. In particular, models@run-
time is one of the key techniques to support model-based
dynamic adaptation [3]. A change in the running system is
automatically reflected in the run-time model of the target
running system. Similarly, a modification to this model is en-
acted on the running system on demand. Thanks to this causal
connection, an adaptation reasoner can monitor and adapt the
target system in the same way as reading and writing the
model. Automatic adaptation reasoners often exploit another
model to guide their own analysis and planning behaviour.
In this paper we refer to such a model as an adaptation
model in order to distinguish it from the traditional run-time
model. Adaptation models are typically at a higher abstrac-
tion level than the run-time model, derived from the earlier
software development phases, such as state machines [4],
aspect models [5], variability models [6], [7], etc. Adaptation
models determines the behaviour of the adaptation reasoners,
and the reasoners adapt the running systems by manipulating
the lower-level run-time models representing architectures,
configurations, events, etc.

In traditional models@run-time, the adaptation model of
the reasoner is not causally connected to the running system.

Hence, the adaptation behaviour (i.e., how to analyse and plan
the running system) is specified at design-time and cannot
be changed automatically at run-time. This is because the
adaptation behaviour is assumed not to be affected by the
running system. However, this assumption does not necessarily
apply to all systems [8]. Some changes on these systems may
require the behaviour of the adaptation reasoner to be adjusted
as well. This calls for a second order adaptation.

Many systems in the cloud computing paradigm require
such second order adaptation. Typical examples are the public
supportive services for cloud system operations, such as the
cloud resource portals, the monitoring consoles, the service
brokerage platforms, etc. These systems have a long life-cycle,
and are not allowed to be stopped during run-time. More
importantly, during the long life-cycle, the content managed by
these systems and the service level agreements with the users
are all subject to change. In the paper, we use a typical cloud
supportive service, the cloud service brokerage, as an example,
and focus on a particular type of adaptation for the purpose
of quality assurance at runtime, i.e., the failure prevention and
recovery of services hosted on the platform. At the first layer,
adaptations consist in recommending substitution of services
when some of them are about to fail or have failed. This
recommendation is based on the variability existing in the
broker, in terms of alternative services, the relation between
them, and their properties. As an open platform, the broker
allows service providers to register new alternative services,
reset their relations, or introduce new properties to describe
the system. When such changes happen, the variability in the
system evolves. As a result, the adaptation reasoner has to
evolve as well, so that the new recommendations consider the
newly introduced services, relations or properties.

In this paper, we present our approach towards multi-
layered models@run-time in order to support higher-order
adaptation in a model-based way: Both the traditional run-
time model and the adaptation model are causally connected
to the target system. This enables an automatic second order
adaptation, where the behaviour of the adaptation reasoner is
automatically adjusted at run-time based on the changes in the
running system. The main challenges for such multi-layered
models@run-time in general, are the lack of knowledge to
maintain the adaptation model, and the large abstraction gap
between the adaptation model and the running system.

The contributions of this paper can be summarized as
follows.

• We extend our earlier DiVA approach [6] to achieve two-

Figure 1. A snapshot of a sample service broker

layered variability model at run-time, and apply it to
realise failure prevention and recovery in cloud service
brokerage platforms.

• We implement a metamodel-driven approach to specify
and maintain the causal connection between the service
brokerage platform and the DiVA variability model.

In the remainder of the paper, we first give a brief in-
troduction to the case study in Section II. Based on the
requirement of the case study, Section III shows (i) how we
leverage our former DiVA [6] solution, and (ii) why we need
to extend it to support a second-order adaptation. Section IV
presents how we implement this extension by supporting the
causal connection between the DiVA model and the running
system. Finally, Section VI discusses related approaches and
Section VII concludes the paper.

II. FAILURE PREVENTION AND RECOVERY OF SERVICE
BROKERAGE PLATFORMS

As cloud computing becomes more and more popular, there
is a rapidly increasing set of cloud services that can be easily
instantiated and used by consumers, and many of them have
similar features and are able to be alternative to each other
in some contexts. The problem becomes how to find the
proper services for a special requirement. A service broker is
a platform that aggregates such cloud services, together with
their specifications. Service consumers can search, compare
and choose the proper services, assisted by the searching,
displaying, recommendation functions provided by the broker.
At the same time, the broker also provides functions for service
providers to register and advertise their services.

Figure 1 shows a snapshot of the GUI of a broker developed
within the Broker@Cloud project. Each icon represents a ser-
vice advertised in the broker. Some services are shown with the
same icon, which means that they provide the same functional
features, but with different quality of services (QoS). Such
alternative services can be either different versions of the same
service or different services developed by different providers.

Within the service broker, the variability mainly comes
from the possibility of selecting alternatives services. For
a particular required feature, the consumer may have a set
of variants to choose from. In addition, specific functional
requirements typically demand multiple features, implying the

Table I
LIST OF SERVICES IN THE SAMPLE BROKER

name description
GoldenOrbi fast response, high price, requires CluDB and EMail
SilverOrbi medium response, high price, requires CluDB or MonoDB
BronzeOrbi slow response, low price, requires MonoDB
CluDB large storage, high price
MonoDB small storage, low price
EMail medium price

need to compose multiple services in order to fulfil the require-
ments. In the cases of service compositions, the variability can
significantly increase. In the service broker developed in the
Broker@Cloud project we exploit such variability to realise a
failure prevention and recovery mechanism. When a service
is about to fail or has failed, the broker recommends the
consumers to switch to an alternative service, aiming to satisfy
the original functional requirements and to adhere to the non-
functional requirements as much as possible.

For the sake of simplicity we consider a broker with a
limited set of alternative services as depicted in Table I.
The Orbi service is a lightweight personal information man-
agement application. The application is provided in three
different versions, with different prices and performances. We
consider response time as the sole example for performance.
A GoldenOrbi requires CluDB (for Clustered Database)
to store data, and depends on an EMail client to provide
the function of personal email integration. A SilverOrbi
can rely on either a CluDB or a MonoDB (for Monolithic
Database). The difference between two database services is
on their storage volume and price. For a consumer, the
variability reflects the different compositions of services that
he or she can choose. Suppose the consumer’s requirement is
personal information management, then his choice could be
[GoldenOrbi, CluDB, EMail], [SilverOrbi, CluDB
], [SilverOrbi, MonoDB], or [BronzeOrbi, MonoDB].

When the broker detects that one of the composed services
is failing, it needs to recommend the consumer to switch to
one of the alternative compositions, until the provider fixes the
problem. For example, suppose the current service composi-
tion is [SilverOrbi, CluDB], and the broker detects that
CluDB is failing, then an obvious recommendation is to switch
to [SilverOrbi, MonoDB]. The exact recommendation
is to switch CluDB to MonoDB. Similarly, if the current
composition is [GoldenOrbi, CluDB, EMail], and again
CluDB fails, then the solution can be either [SilverOrbi,
MonoDB] or [BronzeOrbi, MonoDB].

The failure prevention mechanism aims at detecting services
with a high likelihood to fail in specific contexts, and to
propose an alternative composition before the failure actually
occurs and affects the consumer. Following the first scenario
as we discussed above, from the current composition of
[SilverOrbi, CluDB], if the broker detects that CluDB
has a high likelihood to fail, it may substitute MonoDB for
CluDB, if the benefit overcomes the compromise on the
quality of service. Moreover, failure prevention also takes into

account the reason of failures. For example, if the current
composition is [BronzeOrbi, MonoDB], BronzeOrbi is
detected to be about to fail, and the reason is related to stor-
age overload, then the proper alternative is [SilverOrbi,
CluDB] because it has larger storage volume.

III. TOWARDS ADAPTABLE VARIABILITY MODELS AT
RUN-TIME

In this section we introduce a typical variability model for
a service broker using our previous approach DiVA (Dynamic
Variability in Complex, Adaptive Systems) and exploit our
case study to discuss why the traditional approach are not
sufficient for building such open-adaptive systems. Then we
introduce an two-layered variability model at run-time ap-
proach, where the variability model itself is automatically
updated according to system changes.

A. First-order adaptation: variability models for run-time

Variability modelling allows describing the multiple variants
of a system, by capitalizing on commonalities and formalizing
the differences, rather than by enumerating the whole list of
possible variants. In software engineering, variability model-
ling is closely related to software product line techniques.

Our previous work, DiVA [6] is a typical approach defining
variability models for run-time to support dynamic adaptation.
In DiVA, the variability of a system is described as a DiVA
model. It describes a system by a number of Dimensions,
each of them being a variability point. Multiple Variants
are defined under each Dimension. For each Variant, the
model describes its relation with other variants or a predefined
global context variables, and a set of property values. Based
on such a model, the DiVA reasoner computes proper con-
figurations based on the current context. Each context is a
vector of values assigned to the defined context variables. A
configuration is a subsets of all the defined variants. Under
each context, the DiVA reasoner ranks the valid configurations
according to the property values of the selected variants.

Table II shows a simplified DiVA model for the case study
we described before. The first three parts are used as the
reference for the DiVA reasoner, and the reasoning result is
illustrated by the last part, the context-configuration model. In
the first part, we define the context variables corresponding to
the availability of services, the requirement from consumers,
and the possible reason of failure. In the second part, we define
each service as a variant. The six variants are grouped into
three dimensions, and the ones under the same dimension rep-
resent alternatives to each other. For each variant, we describe
three non-functional properties, i.e., price, storage (for storage
capacity), and resp (for response time). Some properties are
not relevant to all variants, this is marked by “-”. We also
define for each variant its relations with other variants (the
“dependency” column), and with the global context variables
(the “availability” and “requirement” columns, for sufficient
and necessary conditions, respectively). In the third part, we
define a set of priority rules. Each rule sets priority values
for all the properties, which determine how important each

property is when ranking the variants. A minus “-” means
that a smaller value is regarded as better. Each rule applies to
a condition, defined by an expression on context variables.

In the last part we present three sample contexts and
their corresponding valid configurations. For example, the
first row means that if all the services are available, and
the requirement is simply to provide a Orbi service, we can
use GoldenOrbi together with CluDB and EMail, among
other valid configurations. However, if CluDB is not available
(which means it is not running properly), there are only two
valid configurations left, as shown in the second row. Finally,
if the consumer requires Orbi and EMail support at the same
time, there is only one choice. The DiVA reasoner computes
the configurations by converting the whole DiVA model into a
constraint satisfaction problem, solved by the Alloy constraint
solver [9]. The solver will usually produce a number of valid
configurations, and the reasoner will rank them based on the
property value of each variant together with the priority of
each property.

The default way of using DiVA for run-time adaptation is
as shown in Figure 2(a). The DiVA model (the first three
parts of Table II) is specified in advance at design-time and
is used as the adaptation model. Then, during run-time, the
monitoring mechanism provided by the broker extracts the
recorded customer requirement and detects failed services, and
creates a context accordingly. The DiVA reasoner takes the
new context as input, and outputs a new configuration. Finally,
the recommendation mechanism of the broker compares the
new configuration with the original one, and generates service
substitution commands.

B. Second-order adaptation: variability models at run-time

By default, when using the DiVA solution, the variability
of the system is defined at design-time before the system is
running and the variability model is not subject to change
during run-time. However, this is not satisfactory in case of
the service broker. As an open platform, the broker allows
service providers to register new services, resetting the relation
between services, and even introducing new types of proper-
ties. These changes ought to impact the allowed variability of
the system, and affect the service substitution recommendation
for the same contexts. Such variability model changes at run-
time can be summarized into four categories.

Changing property values. Considering the failure preven-
tion scenario that we discussed in Section II, a service with
higher likelihood to fail should be ranked lower. In a DiVA
model, this implies to add a new column of failure likelihood
in the variants definition model, and the value of this property
for each variant should then be modified during run-time.

Modifying the set of alternatives. A service provider may
register a new service to be considered by the broker at any
time, as an alternative variant to some existing services. This
will usually result in furthermore configurations. For example,
if a provider introduces a new FreeEMail service, then there
should be a new row under the EMail dimension, and for the
last context, there will be two configurations instead of one.

Table II
DIVA MODEL FOR SERVICE BROKERAGE PLATFORM

context variables
GoldenOrbiAvail, SilverOrbiAvail, ..., EmailAvail, ReqOrbi, LargeDB, ReqEMail, LowResponse, CpuOverload

dimensions and variants
name price storage resp dependency availability requirement

Orbi: dimension
GoldenOrbi high - high CluDB and EMail GoldenOrbiAvail RequiredOrbi
SilverOrbi high - medium CluDB or MonoDB SilverOrbiAvail RequiredOrbi

BronzeOrbi low - low MonoDB BronzeOrbiAvail RequiredOrbi
DB: dimension

CluDB high high - - CluDBAvail LargeDB
MonoDB low low - - MonoDBAvail -

EMailDim: dimension
EMail medium - - - EmailAvail ReqEMail

priority rules
name price storage resp condition
normal -medium medium medium -

low resp. -medium medium high LowResponse
contexts and configurations

context configurations
*Avail, ReqOrbi [GoldenOrbi, CluDB, Email], [GoldenOrbi, CluDB], [SilverOrbi, MonoDB]...
*Avail, ¬CluDB, ReqOrbi [SilverOrbi, MonoDB], [BronzeOrbi, MonoDB]
*Avail, ReqOrbi, ReqEMail [GoldenOrbi, CluDB, Email]

broker

monitoring

DiVA
resoner

recommen-
dation

DiVA
model

meta-
monitoring

DiVA
maintenance

context-
config model

broker

monitoring

DiVA
reasoner

recommen-
dation

DiVA
model

context-config
model

(a) variability for runtime (b) variability at runtime

Figure 2. Adapting the Variability at run-time

New dimension to place a new variant (in this case a
new service model). For example, a provider can register a
Calendar service as a plugin to GoldenOrbi. This leads
to a new variant and a new dimension. In addition, there
should be a new requirement CalendarReq and a depend-
ency from Calendar to GoldenOrbi. For a context with
CalendarReq, the configuration should be [Calendar,
GoldenOrbi, CluDB].

New types of properties. Providers can introduce new types
of properties to describe the systems, such as the capacity
for EMail services. This means a new column on the DiVA
model, with specific values for each variant in the relevant
rows. These new values will also affect the ranking of existing
configurations.

All these changes may result in different recommendations
for failure prevention and recovery. The way to keep the results
consistent to these changes is to adapt the adaptation model
(the DiVA model) at run-time.

In order to handle the change in the variability of the service

broker, we evolve the default DiVA process as described in
Figure 2(a) into an extended one as shown in Figure 2(b).
This process allows to adapt the variability at run-time. In
addition to the classical adaptation loop, a higher-level loop
has been added to keep the DiVA model updated with the
changes in the system as described above. In this loop, the
meta-monitoring mechanism keeps a track of the higher-level
changes encountered by the service broker, and feeds this
information to the variability model maintainer. The latter
combines the system changes and the current DiVA model,
decides how to update the DiVA model, and also alters the
low-level monitoring component when necessary to observe
additional data. The new adapted DiVA model will be used
by the DiVA reasoner as a new adaptation model for the
subsequent adaptation analysis and planning.

C. Challenges

A major challenge towards adaptive variability models at
run-time is to properly maintain the variability models accord-
ing to the system changes. This is a typical model-system
synchronisation problem in models@run-time. However, as
the variability model is in a higher abstraction level than
traditional run-time models, such as the context-configuration
model, it is more challenging to synchronise the model with
the system. We summarise the challenges as following. 1)
System heterogeneity. There is not a standard reflection inter-
face to obtain the run-time information from target systems.
Therefore, the model maintainer need to know how to use
the particular system interface. 2) Concept mismatch. The
Variability is an abstract model, and the concepts in the model
are not simply one-to-one mapped to the system concepts, as
we have seen in Section III-A. 3) Lack of knowledge. The
maintainer needs extra knowledge to understand particular
phenomena observed from the running system. For example,

how to tell whether a service is impending to fail based on
the performance observations.

The system-specific reflection interface, the concept map-
ping, and the additional knowledge form the key reference
for the maintainer of the variability model to the system.
Since these references are different from system to system,
and may even vary in the same system when technology and
user preference evolve, we need to provide a general way for
developers to specify such references and to customise them
when necessary.

IV. MAINTAINING THE REFERENCE MODEL AT RUN-TIME

This section presents how we realise the adaptive variability
model at run-time by extending the DiVA approach. The
DiVA maintainer exploits the reflection mechanisms developed
within the Broker@Cloud platform in order to obtain the
run-time information needed to synchronise the DiVA model
with the running system. The synchronisation behaviour of the
maintainer is specified in a metamodel-based way.

A. The reflection mechanism of Broker@Cloud

A service broker provides reflection mechanism for external
players to observe its run-time states. Such reflection mechan-
isms have two interaction styles: a push mechanism actively
notifies observers about system changes, and a pull mechanism
provides a passive interface for observers to retrieve the
information they are interested in.

Broker@Cloud push-styled event-based reflection mechan-
ism follows a publish-subscribe (pub-sub) pattern. An event
indicates that a change has happened either in the broker
platform (e.g., a new service is registered), or in the individual
services (such as regular events for the CPU occupation from
a particular service). The broker contains a central pub-sub
server, with a predefined topic to publish platform-level events.
In addition, any service provider can create a new topic for its
own service, through which it can publish events generated by
the service itself, or by a third-party monitoring mechanism.

The pull-styled reflection of Broker@Cloud is based on
linked open data and SPARQL queries. One of the innovations
in the Broker@Cloud project is the usage of linked open data
for service specification. Below is a specification snippet for
the GoldenOrbi Service.

sp:GoldenOrbi a usdl-core:Service;
usdl-core-cb:hasServiceModel sp:OrbiModel
usdl-core-cb:dependsOn sp:CluDB
usdl-core-cb:dependsOn sp:EMail
sp:hasResponseTime [gr:hasValue "200"];

sp:hasResponseTime
rdfs:subPropertyOf
gr:quantitativeProductOrServiceProperty;

rdfs:domain sp:ServiceModel;
rdfs:range sp:AllowedResponseTime;

sp:AllowedReponseTime rdfs:subClassOf
gr:QuantitativeValueInteger;
gr:hasUnitOfMeasurement "C26"ˆˆxsd:string;
gr:hasMinValue "0"ˆˆxsd:int;
gr:hasMaxValue "1000"ˆˆxsd:int;
usdl-core-cb:higherIsBetter "false"

It specifies that GoldenOrbi is a service, belongs to the service
model OrbiModel, depends on two other services, and has a
response time of 200 ms. The triples later defines the property
hasResponseTime and its type, AllowedResponseTime. We will
not go into details of linked open data, but only emphasise the
following two characteristics. First, the specification is self-
contained. Any concepts used in the specification is defined
in a reachable repository. Second, the specification is open and
flexible. For example, a service provider is free to define a new
property (including new namespaces) another sp:hasCapacity,
and allocate a value, the corresponding value for GoldenOrbi.
These two characteristics enable the run-time evolution of the
system’s variability.

B. Mapping running systems to DiVA models

A mismatch might occur when the data obtained from
the reflection mechanism do not directly correspond to the
property to update in the reference model/DiVA model. For
example, in the service specification, the response time is
defined as a concrete integer (e.g., 200), while in a DiVA
model it is typically at an abstract level (e.g., High). Another
example, the run-time measurement such as CPU occupation,
memory consumption, etc., do not directly indicate failure
likelihood. We employ two techniques to handle this mismatch
problem: (i) Complex Event Processing (CEP) for the event-
based reflection and (ii) SPARQL queries for the pull-based
reflection.

Complex Event Processing aggregates low-level events into
higher level ones. If some recent events combined conform to
a particular pattern, the engine will create a new event using
the information from the detected ones. A CEP rule defines
an event pattern and how to create the new event, and is used
as the reference for the CEP engine.

cep {srvreg(?srvname), sysvalid()|window=10}
=>newsrv($srvname)

cep {cpuload(?srvname,?value) groupby $srvname
if avg($value)>0.95 | window=30}
=> impfailure($srvname, $level, "CpuOverload")

The code snippets above shows two sample CEP rules. The
event pattern and the generation logic are defined before and
after the arrow “=>”, respectively. The first rule is used to
monitor new services. Broker@Cloud will first emit an event
named srvreg when a provider registers a new service, and
the parameter is the service name. After that, Broker@Cloud
will do a global validation checking on the service policies
followed by a sysvalid event if the policies are consistent
with each other. When the two events are observed in suc-
cession within a window of 10 seconds, the engine creates a
new event named newsrv. In the rule definition, a “?” before
a variable means extracting the value in the position (in this
example, it is the first parameter of the event, i.e., the service
name), and store the value into the variable, and later on a
“$” before a variable name means getting the current value
of the variable. The second rule exemplifies how to detect the
impending failures. The basic idea is the following: when the
average CPU occupation of a service’s host during the last 30

seconds is above 95%, we create an impfailure event for
the service, and the reason is “CpuOverload”.

We use SPARQL to extract information from the service
specifications, and also to do aggregation and calculation on
the extracted data, in order to use them for updating the DiVA
model. The following two examples illustrate this usage.

query qdim(?srvname): SPARQL#
"SELECT ?modname WHERE{
sp:$srvname usdl-core-cb:hasServiceModel

sp:?modname"
=>qdimo($srvname, $modname)

query qpval(?srvname, ?propname): SPARQL#
"SELECT (?value-?min)*5/(?max-?min)

AS ?level WHERE{
sp:$srvname sp:$propname ?value .
sp:$propname rdfs:range ?type .
?type gr:hasMinValue ?min .
?type gr:hasMaxValue ?max .

}
=> qpvalo($srvname, $propname, $level)

The first example shows how to get the service model defined
for a service, which is related to the dimension in DiVA. We
name the query qdim, with a parameter srvname for the
service name. The SPARQL query after that finds the triple
that defines the service model for the required service, and the
last item of this triple is the service model name. The output
of this query is a new event named qdimo, with parameters
of the service and its model’s names. The second example
shows how to retrieve a property value for a specific service
(such as GoldenOrbi’s responseTime). The query first
finds the triple with the requested service name, the property
and the value. After that, it looks for the type of this property,
and the max and min value defined in this type. The max and
min values are used to normalise the concrete value into an
abstract level within 0 and 5, preparing it to be applied as an
abstracted DiVA property value.

C. Metamodel-driven synchronization

The main technical part to realise adaptive variability mod-
els at run-time is to automatically synchronise the variability
model to the running system. Following our previous work
towards an automatic run-time model construction frame-
work [10], we implement such causal connection mainten-
ance in a metamodel-driven way. The basic idea is to add
annotations to the metamodel of the run-time model. These
annotations specify how the model changes of different kinds
of elements, attributes, and references are related to the
system changes obtained via events or queries. The annotated
metamodel is used as the reference to drive an automatic
engine that maintains the causal connection.

Listing 1 shows an excerpt of the causal connection spe-
cification between the DiVA metamodel and Broker@Cloud.
The DiVA metamodel is directly reused from our previ-
ous approaches, and the excerpt covers three classes in the
metamodel, i.e., Variant, Dimension and DiVAModel.
The meaning of these classes can be found in Section III-A.

Before diving into the detail of each sample specification,
we first briefly present the syntax of the specification language.
We use the following concrete syntax to define the metamodel:
A class is defined with a keyword class and an identifier for
the class name; An attribute is defined inside its hosting class
by an attribute name followed by a colon and the attribute
type; A reference is defined in the same way, but starting with
a keyword ref. Annotations are defined inside the bracket of
the related class, attribute or reference. We will not exhaust
the different types of annotations, but only introduce the ones
appeared in the following examples. An annotation may use
an event or a query, such as the ones we introduced in
the previous section. Finally, the specification uses a set of
variables to store intermediate data. A variable is used together
with a symbol to indicate the direction of the data flow: “?”
and “$” signify to store and use the variable value respectively,
as we described for the CEP rules, and “!” implies to match
the variable value with the context value.

Listing 1. Metamodel-driven specification of causal connection
1 class Variant{
2 @create on newsrv(?srvname)
3 @query qdim($srvname)
4 name: String {@id, @value=srvname}
5 for $p in owner.owner.properties:
6 @query qpval(name, $p.name)
7 @query qpval(name, $pname)
8 on newprop(?pname)
9 ref propvalue: PropValue* {

10 on qpvalo(!name, ?propname, ?v)
11 @value += PropValue{
12 name = $propname,
13 value = $v }
14 }
15 on impfailure(!name, ?value)
16 @value += PropValue{
17 prop="failurelikelihood", value=?value}
18 }
19 }
20 class Dimension{
21 @create on qdim(?srvname, ?modname)
22 name: String{@id, @value=$modname}
23 ref variant:Variant{
24 @value += Variant{name=$srvname}}
25 }
26 class DivaModel{
27 @query allservices()
28 variables : ContextVariable*{
29 on newsrv(?srvname)
30 @value+=ConextVariable{
31 name="$srvnameAvail"}
32 ref properties : Properties*
33 }

We first introduce the annotations in class Variant. The
first annotation @create (Line 2) indicates that a variant
element may be created if a newsrv event is captured. The
service name will be extracted from the event and stored
into the variable srvname. As a consequence of creating an
variant element, a query qdim (as described in the previous
section) will be requested to check the dimension of this
variant. The result of the query will not directly be used
here, but in the definition of class Dimension (at Line 21).

Variant has an attribute name, which is annotated as the
identifier (@id). The value of this attribute is assigned by the
service name extracted from the newsrv event and stored in
the variable srvname. After that, we define a multi-valued
reference named propvalue, which records the property
values for a variant instance, such as price and storage as
shown in Table II. We use two @value annotations to define
two different ways of inserting PropValue elements into this
reference. Firstly, at Line 10, for each of the properties defined
in the DiVAModel (i.e., the columns like price, storage in
Table II), we launch a query qvalue (as defined in the
previous section), and immediately get the response of this
query, with the queried result stored in variable v. From each
response, we create a new PropValue element using the
property name and the queried value. If there is already a
PropValue element with the same name, we will simply
update its value. Secondly (Line 16), if the engine captures
an impfailure event, it will create a new PropValue
element named “failureLikelihood” with the value from the
event.

The definition of Dimension and DiVAModel are sim-
ilar. A Dimension element is created when the engine
captured an event qdim (Line 21), which is the result of the
query launched in Line 3. The name of the element is the
service model name extracted from the qdim event, and an
variant instance whose name equals to the server name in the
event will be added to the variant reference. For DiVAModel,
we only show the affectation of context variable. A variable
is created and put under the variable reference of the DiVA
model when a new service is published (Line 30). Also, we add
a @root annotation to DiVAModel, as a result, the engine
will create a DiVAModel element after it is launched. When
the root element is created for the first time, we launch a
allservices query, which triggers a set of newsrv events
to initialise the variables.

At run-time, the causal connection specification will be used
as a reference by the general model-system synchronisation
engine. As a whole, the engine coordinates all the annotations
based on the following principles. 1) Once launched, the
engine initiates an element in the root type. 2) When any
event is captured, it looks for the classes with a @create
annotation matching this event, and create an element for each
of these classes. If the new element has the same name than an
existing one it simply merges the two. 3) For any newly created
element, it finds the @query annotations and launch the
query. 4) For any captured event, it looks through all the model
elements whose type has an annotation matching the event.
For each of these elements, it updates their corresponding
attributes or references based on the event.

D. Examples of DiVA model maintenance

In this section we describe how the DiVA model is updated
when the four changes presented in Section III-B occur, and
how they affect failure prevention and recovery.

Changing property value. When a service (e.g.,
GoldenOrbi) is overloaded, its abnormal performance

will be detected by the CEP engine, which will compose a
impfailure event. The event is captured by Line 15 of
Listing 1, and failurelikelihood of the GoldenOrbi
variant will be updated to high. This will force the DiVA
reasoner to lower down the ranking of GoldenOrbi when
relevant.

New alternative service. Once a service provider has re-
gistered a new FreeEmail service, and the broker has passed
the self-validation, a newsrv event will be composed by
the CEP engine. This event will be captured by Line 2 and
Line 26, and will result in the creation of new variant and
context variable, respectively. After the new FreeEmail
variant is created, the engine queries all the property values
of this service (Line 5) and uses the resulted values to create
propvalue elements (Lines 10-14). The engine will also
query the dependencies of this new service, and compose
the dependency expressions (which is not exemplified in
Listing 1). The reasoner will include this new FreeEMail
variant immediately when computing recommendations.

A new category of services to place a new service. If a
Calendar service is registered under the new service model
CalDim, the corresponding newsrv event will trigger a
query (Line 3), and the result goes to Line 21, and a new
dimension will be created.

New types of properties. A new property will be represented
by a newpro event, which triggers a new query qpval (Lines
7-8), and finally will result in a new PropValue element
created on Line 11, for each Variant element. If it is a
provider-specific property, it will not be applicable to most
existing services and the value will be set to 0. The variable
will be initialized with a neutral value 1 for the priority rules.

E. Post-synchronisation actions

Once the DiVA model is updated, the DiVA maintainer will
compute the actual changes and notify the the DiVA reasoner
and the monitoring component.

The DiVA reasoner will then re-compute the recommend-
ations. In theory, the reasoner should react to any change,
analyse whether the change impacts the current recommenda-
tion, and redo the constraint solving accordingly. However, in
our approach, we employ a pragmatic strategy. The reasoner
always re-computes on the structural changes (such as new
Variants or Dimensions added), and the property value changes
on failure likelihood. Other property changes will not imme-
diately cause the re-computing of recommendations, but later
when other changes happen or when the consumer requires a
new recommendation.

The monitor component reacts to the addition and removal
of context variables, and subscribes or un-subscribes to the
corresponding topics from the pub-sub system, respectively.
The monitor provides a built-in API for such operations.

V. IMPLEMENTATION AND EVALUATION

The presented approach is implemented and validated by the
application in the Broker@Cloud failure recovery and preven-
tion tool. The tool is mainly implemented as a set of Eclipse

Figure 3. Snapshot of failure prevention and recovery mechanism.

plugins, extended from the original DiVA implementation. The
communication between it and the other part of Broker@Cloud
is implemented by RESTful APIs, and by event subscription
based on the WSO2 Enterprise Service Bus1. The complex
service processing part is implemented based on WSO2 CEP2.
The SPARQL query is implemented on Apache Jena. The
entire implementation is opensource and available on Github,
as part of the Broker@Cloud solutions3.

Figure 3 shows a sample snapshot of the tool’s GUI to
illustrate how the failure prevention and recovery mechanism
works. The upper part presents the current generated and
updated DiVA model, via a set of different views, and the
currently opened view shows the quality values of variants.
In the lower part, we employ a simplified event monitor to
list the events received or produced by the DiVA maintainer.
The event monitor console is specially customised to filter out
detailed events (such as most of the intermediate events, as
well as the events for query results), and present the events
in a concise way. The latest events illustrates a scenario as
follows. The tool first received a set of monitoring events
on average CPU occupation during the time between two
events, with a high reading value. These event increased the
average CPU occupation in a longer period. After that the
maintainer received an event about a newly registered service,
followed by a validation result. A new variant was created
after these two events, which is shown as the last line in the
upper editor. After that, new events arrived with high CPU
occupation, which finally made the average value exceed the
threshold, and a high impending failure event is composed,
with a recommendation calculated. It is worth noting that this
new recommendation already included the newly registered
service. Detailed scenarios and usages of the implemented tool
can be found in our project deliverable [11], [12].

The approach has been integrated into two cloud service
brokerage platforms, the Orbi Broker and the CAS Open. A
set of user studies has been conducted, which proves that
the Failure Prevention and Recovery mechanism is able to

1http://wso2.com/products/enterprise-service-bus/
2http://wso2.com/products/complex-event-processor/
3https://github.com/SingularLogic/BrokerAtCloud

suggest the proper alternative solutions when failures occur or
impend to occur. Details of these use cases can be found in
our evaluation deliverable [13].

In order to test the performance of the mechanism inside
the final platform, a set of service specifications was generated
based on the sample services from CAS Open. 10 sets of test
data were generated, with the numbers of services vary from
32 to 624. On each data set, we generate 5 different failures,
and after each failure, we launch the failure prevention and
recovery mechanism to provide new recommendations, and
record the latency. The average latencies for these 10 data sets
kept between 1.5 and 3.0 second, and the increase of latency
according the size of data is linear. Details of the performance
testing can be find in [13]. The performance is reasonable. In
the worst case, 3-second latency for 600 services is still within
the acceptable level.

VI. RELATED WORK

Multi-layered architecture have been applied to the design of
self-adaptive system for many years. In particular, a specific
form composed of three layers has been widely adopted in
several projects. In the approach proposed by Sykes et al.
[14], the first layer, at the lower level of abstraction, consists
of component assemblies. This layer can be adapted by the
second layer which is composed of a set of adaptation plans.
Finally, the third layer can tune the set of plans deployed
in the underlying layer according to a set of goals. This
architecture has also been applied in the cloud domain. In [15],
the second layer, a learning component, continuously updates
the knowledge base of the first layer, which is a fuzzy logic
controller. The architecture implemented in [16] also relies
on three layers but exploits models at run-time. Level 1 is
composed of mechanisms to adapt the deployment of cloud-
based systems based on the current workload and context of
the running system, level 2 is responsible for adapting level
1 based on its long-term vision of the workload evolution.
In these approaches, from the second layer above, human
administrators are involved to manipulate the artefacts. By
applying models@run-time approaches, we realise an auto-
mated second-layer, where the run-time model, and therefore
the adaptation behaviour, is automatically updated according
to the system changes.

The concept of models@run-time has been implemented by
many approaches, on different types of systems, as summar-
ized by the roadmap [3] and the survey paper [17]. Due to
the heterogeneity between target systems, models@run-time
are usually implemented in an ad hoc manner, based on a
particular reflection mechanism provided by the target system.
This paper shows a metamodel-driven way to achieve a generic
specification of relations between the run-time model and the
target system’s reflection APIs, and is able to unify different
types of mechanisms, such as events and queries. Another
contribution of this work to the model@run-time community
is the theory and case for multi-layered models@run-time.
As a support of this contribution, we also propose a novel
models@run-time pattern, based on extending the concept

http://wso2.com/products/enterprise-service-bus/
http://wso2.com/products/complex-event-processor/
https://github.com/SingularLogic/BrokerAtCloud

of transformations. The EUREMA [18] framework supports
the design and adaptation of self-adaptive systems that may
involve multiple feedback loops. Developers explicitly model
these feedback loops, their runtime models, their usage, the
flow of models operations as well as the relationships between
these models. These models are kept alive at runtime and
can be evolved. This approach does not offer explicit support
for controlling the monitoring and enactment transformations.
These transformations could however be modelled as a feed-
back loops thus making our work complementary.

There are many approaches applying variability model for
run-time adaptation. Our earlier DiVA approach [6] uses vari-
ability models to simulate and guide the dynamic adaptation
of system configurations. Cetina et al. [19] used feature model
to record the variabilities, with a definition of the impacts of
features on the running system, and in this way to realise the
context-based adaptation. In Parra’s proposal [20], a feature
model is also used to specify variability, and a composition
model is proposed to define the run-time weaving of the
features. In this way, they enable the run-time adaptation to
be performed in the same way as adapting the system design.
This paper follows the DiVA approach, and apply variability
model in a new domain of run-time adaptation. However, the
main contribution of this approach is to support the automatic
update of variability model according to the system changes.
Such a second-order adaptation is not supported by DiVA and
other approaches mentioned above.

VII. CONCLUSION

This paper presents an approach to two-layered adaptation
on cloud broker services. By maintaining causal connection
between the target system and the reference model of adapt-
ation reasoner, a two-layered models@run-time realises the
automatic adjustment of the adaptation behaviour, according to
system changes. The approach is motivated by, and applied to
a case study of using variability models at run-time to support
failure prevention and recovery on cloud service brokerage
platforms. The approach is a special case of a general multi-
layered models@run-time framework.

As a case study, we only provided very basic support of
failure prevention and recovery. A future work is to support
more sophisticated adaptation behaviours to handle failures,
and investigate how the behaviour is affected by the system
changes. Although we used semantic data when maintaining
the variability model, the entire mismatch-handling logic is
explicitly defined as CEP rules or queries. In the next step,
we will introduce learning mechanisms to reduce the manual
effort. Finally, we will consider generalizing and applying our
approach to other domains and in particular to the Internet-
of-Things (IoT). Indeed, IoT systems typically operates in
the midst of the unpredictable physical world. As a result,
it is impossible to anticipate all the adaptations a system may
face when operating in an open context, there is a need for
mechanisms that will automatically maintain the adaptation
rules of a IoT system.

Acknowledgements: The research leading to these results
has received funding from the European Commission’s H2020
Programme under grant agreement numbers 780351 (ENACT).

REFERENCES

[1] Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and re-
search challenges. TAAS 4(2) (2009). doi:10.1145/1516533.1516538

[2] de Lemos, R., Giese, H., Müller, H.A., et al.: Software Engineering for
Self-Adaptive Systems: A Second Research Roadmap. In: de Lemos,
R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for
Self-Adaptive Systems II - International Seminar, vol. 7475, pp. 1–32
(2010). doi:10.1007/978-3-642-35813-5 1

[3] Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Computer
42(10), 22–27 (2009). doi:10.1109/MC.2009.326

[4] Fleurey, F., Morin, B., Solberg, A.: A model-driven approach
to develop adaptive firmwares. In: Giese, H., Cheng, B.H.C.
(eds.) SEAMS 2011: ICSE Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pp. 168–177 (2011).
doi:10.1145/1988008.1988031

[5] Morin, B., Barais, O., Nain, G., Jézéquel, J.-M.: Taming Dynamically
Adaptive Systems using models and aspects. In: ICSE 2009: 31st
International Conference on Software Engineering, pp. 122–132 (2009).
doi:10.1109/ICSE.2009.5070514

[6] Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Mod-
els@Run.time to Support Dynamic Adaptation. IEEE Computer 42(10),
44–51 (2009). doi:10.1109/MC.2009.327

[7] Floch, J., Hallsteinsen, S.O., Stav, E., Eliassen, F., Lund, K., Gjørven,
E.: Using Architecture Models for Runtime Adaptability. IEEE Software
23(2), 62–70 (2006). doi:10.1109/MS.2006.61

[8] Sykes, D., Heaven, W., Magee, J., Kramer, J.: Plan-directed Architectural
Change for Autonomous Systems. In: SAVCBS 2007: Conference on
Specification and Verification of Component-based Systems, pp. 15–21
(2007). doi:10.1145/1292316.1292318

[9] Jackson, D.: Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol. 11(2), 256–290 (2002).
doi:10.1145/505145.505149

[10] Sm@rt: Supporting Models@Runtime (2015). https://github.com/
songhui/smatrt

[11] Rossini, A., Morin, B., Song, H., Veloudis, S., Dautov, R.: D40.2
– Cloud Service Failure Prevention and Recovery Components of
Brokerage Framework. Broker@cloud project deliverable (July 2014)

[12] Rossini, A., Song, H., Morin, B., Høgenes, J., Veloudis, S., Paraskakis,
I., Petsos, C., Simons, A.J.H., Lefticaru, R., Verginadis, Y., Patiniotakis,
I.: D40.4 – Brokerage Framework: Quality Assurance and Optimisation.
Broker@cloud project deliverable (October 2015)

[13] Simons, A.J.H., Armstrong, A.: D60.3: Case Study Implementation and
Evaluation. Broker@cloud project deliverable (December 2015)

[14] Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to com-
ponents: a combined approach to self-management. In: Cheng, B.H.C.,
de Lemos, R., Garlan, D., Giese, H., Litoiu, M., Magee, J., Müller,
H.A., Taylor, R.N. (eds.) SEAMS 2008: ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pp. 1–8 (2008).
doi:10.1145/1370018.1370020

[15] Jamshidi, P., Sharifloo, A.M., Pahl, C., Metzger, A., Estrada, G.: Self-
learning cloud controllers: Fuzzy q-learning for knowledge evolution.
In: Cloud and Autonomic Computing (ICCAC), 2015 International
Conference On, pp. 208–211 (2015). IEEE

[16] Ferry, N., Brataas, G., Rossini, A., Chauvel, F., Solberg, A.: Towards
bridging the gap between scalability and elasticity. In: CLOSER, pp.
746–751 (2014)

[17] Szvetits, M., Zdun, U.: Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime. Software &
Systems Modeling, 1–39 (2013). doi:10.1007/s10270-013-0394-9

[18] Vogel, T., Giese, H.: Model-driven engineering of self-adaptive software
with eurema. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 8(4), 18 (2014)

[19] Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic Com-
puting through Reuse of Variability Models at Runtime: The
Case of Smart Homes. IEEE Computer 42(10), 37–43 (2009).
doi:10.1109/MC.2009.309

[20] Parra, C.: Towards Dynamic Software Product Lines: Unifying Design
and Runtime Adaptations. PhD thesis, Université des Sciences et Tech-
nologie de Lille – Lille I (2011)

https://github.com/songhui/smatrt
https://github.com/songhui/smatrt

	Introduction
	Failure Prevention and Recovery of Service Brokerage Platforms
	Towards Adaptable Variability Models at Run-time
	First-order adaptation: variability models for run-time
	Second-order adaptation: variability models at run-time
	Challenges

	Maintaining the reference model at run-time
	The reflection mechanism of Broker@Cloud
	Mapping running systems to DiVA models
	Metamodel-driven synchronization
	Examples of DiVA model maintenance
	Post-synchronisation actions

	Implementation and Evaluation
	Related Work
	Conclusion
	References

