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Abstract: Anthropogenic release of carbon dioxide (CO2) is a major contribution to manmade increase 

in global warming. Carbon Capture and Storage (CCS) is a necessary technology for lowering CO2 

emissions to an acceptable level that limits global warming to below 2 degrees. Liquefaction of CO2 

is a key process both in capture technologies and in conditioning before ship transport. The efficiency 

of this process can be remarkably enhanced by promoting dropwise CO2 condensation on cooling 

surfaces, yet this remains largely unexplored. Here, using molecular dynamics (MD) simulations, we 

report for the first time the contact angle and condensation behaviour of CO2 droplets on a smooth 

solid surface. The contact angle of the condensed CO2 droplet is greatly dependent on the CO2-solid 

characteristic interaction energy, but this does not hold true for the sum of condensed molecules. In 

contrast, the sum of condensed molecules for the filmwise condensation regime increases 

monotonically at first, but then remains constant as the CO2-solid interaction energy approaches to a 

critical value. It is also revealed that droplet condensation on a cooling surface shows three distinct 

stages that are primarily characterized by heterogeneous cluster nucleation, diffusion-coalescence, and 

Ostwald ripening-coalescence mechanisms. As the area of the solid surface is increased by diffusion-

induced coalescence of clusters at the first stage, cluster nucleation proceeds but ceases in the last stage 

at which the sum of condensed molecules are not accumulated. Analysis of the Ostwald ripening 

kinetics of a CO2 droplet reveals a constant growth rate of around 11 CO2 molecules/ns of the droplet.
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1. Introduction

Carbon dioxide (CO2) is one of the dominant gases contributing to the earth’s greenhouse effect. 

Anthropogenic release of CO2 from fossile sources contributes to an increased global warming, with 

potentially catastrophic consequences. Substantial reduction of CO2 emissions from industrial 

processes such as power generation, steel and cement production, etc. by combustion of fossil fuels is 

necessary to restrain and reverse the global warming process. Beyond those negative impacts, however, 

CO2 also finds versatile important applications, such as in fire extinguishers, as a safe refrigerant and 

coolant, used in the brewing of soft drinks, beers and other alcoholic drinks, for softening water to 

avoid corrosion, producing potable water, enhancing oil recovery (EOR), sand blasting, hardening of 

metal castings, and so forth 1-7. Utilization of CO2 as a byproduct not only provides significant 

economic benefits but can also in some cases mitigate global warming and climate change concerns. 

There is, thus, a rapid growth in both academic research activities and industrial research and 

development (R&D) programmes worldwide to explore solutions for controlling CO2 emissions.

   Carbon Capture and Storage (CCS) is considered as one of the most effective CO2 emission 

abatement strategies to combat climate change migration 8-10. Generally, there are three emerging 

pathways for CO2 capture, including pre-combustion, post-combustion, and oxy-fuel processes 6-9, 11-

12. Among them, the post-combustion is well understood, has lower capital expenditure (CAPEX) and 

is favored for CO2 capture projects in the short-term. To date, a variety of technologies has been 

emerged for post-combustion CO2 capture, including adsorption, physical absorption, chemical 

absorption, cryogenics separation and membranes13-16. While these technologies are rapidly being 

matured for post-combustion power plants, the main drawback is the high-energy penalties that must 

be paid. Moreover, although the aqueous organic amine-based method is relatively mature for post-

combustion CO2 capture, this technology shows several drawbacks including toxicity, degradation, 

and evaporation of the solvent 10. Recently, CO2 capture by mineralization (CO2 molecules react with 
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the cationic metal atoms in expandable clays to form carbonate minerals) was proposed and 

investigated17-18.

Inspired by water or fog harvest by droplet condensation on hydrophobic-functionalized or patterned 

solid surfaces 19-22, a relatively novel CO2 capture technology by dropwise CO2 condensation on 

cooling surfaces has been recently envisaged 23. Gaseous CO2 is expected to condense as liquid 

droplets onto functionalized surfaces of heat exchangers that are cooled. An advantage of this 

conditioning process may enable a potentially improved low temperature capture technique and no 

chemical absorbents are needed. To date, researches on CO2 condensation on solid surfaces are 

extremely rare 23-24, although there have been investigations on cooling of CO2 that mainly 

concentrated on supercritical gas cooling and wettability of water on solid surfaces upon CO2 pressure 

25-33. Understanding the fundamental wetting and condensation behaviours of CO2 on a cooling surface 

is a necessary starting point for CO2 capture by the technology. Molecular dynamics (MD) simulation 

has become an indispensable tool for investigating details of water condensation, wettability and 

nucleation on functionalized and patterned solid surfaces 34-42. Since experimental measurements of 

the contact angle of liquid CO2 on functionalized surfaces currently under development are yet to be 

performed, the interaction energy between the CO2 and substrate is considered as a free parameter in 

this work, spanning the range of contact angles. The functionalized surfaces are likely to be made from 

(or contain a high percentage of) copper, due to the excellent heat transfer properties of this material, 

and thus we consider a copper substrate. In this work, we present, for the first time, the contact angle 

and condensation of CO2 on cooling solid surface by large-scale MD simulations. 

2. Methods

All the MD simulations are implemented by the LAMMPS MD simulation package. A many-body 

interatomic potential of embedded-atom method (EAM) derived by Mishin et al.43 is adopted to model 
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the interatomic interactions in a face-cubic-center (fcc) copper (Cu) surface with a (1 0 0) surface. In 

this EAM forcefield44, the total potential energy of an elemental system is given by

                                                     (1)   1
2 ij i

ij ij
E U r F   

where 

                                                               (2) i ij
j i

r 


 

Here  is a pair-wise potential as a function of distance ( ) between atom i and atom j.   ijU r ijr  iF 

is the embedding energy required to place an atom into the host electron density  that is the sum of i

the contributions  from all the other atoms in the system. ijr
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                                    (3)
     

     

(1) (2)
1 0 1 2 0 2

3 4

1

[ , , , , ]

n nc
s n s

n

U r E M r r E M r r

r r H r r S r r
h

  




  

     
 



where 

                            (4)     0 0 0, , exp 2 2expM r r r r r r             

                                                        (5)  4

4

0,           0

,    < 0
1

x
x x x

x



 
 

Page 4 of 26

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This is the accepted version of an article published in Journal of Physical Chemistry C 
DOI: 10.1021/acs.jpcc.8b08927



are a Morse function and a cutoff function, respectively. The embedding function is written as

                             (6) 
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The potential is capable to reproduce various properties of Cu, such as lattice properties, elastic 

constants, thermal expansion, point and extended defects, and epitaxial growth of Cu films on (0 0 1)-

oriented fcc or body-centered-cubic (bcc) substrates43. For the CO2 modelling, the efficient and 

accurate coarse-grained (CG) forcefield of SAFT-γ Mie potential is used for the intermolecular 

interactions of CO2. The functional form of CG SAFT-γ Mie potential is expressed as 45-46

                                                (7)   Mie ,
r a

a rr C
r r
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where ,  and  are the intermolecular distance, the depth of the potential well and the diameter of r  

the CO2 CG bead, respectively.  and  are the repulsive and attractive exponents of the molecular r a

bead-bead interactions which characterize the pair energy. The SAFT-γ Mie forcefield parameters , 

 and  are  3.741 Å, 23.0 and 6.66 for CG CO2 bead, respectively 45. The diameter of the CO2 CG r a

bead is similar to the lattice constant of fcc Cu. The Mie potential is also adopted to describe the 

interaction between CO2 molecules and Cu-like solid surface. The energy interaction parameter  
2CO -Cu

varies from 0.001-0.1 eV to fully cover the surface properties of a solid-surface from CO2-phobic to 
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CO2-philic. The main purpose of using Cu substrate is to provide a physical solid state for CO2 to 

adsorb. By varying the energy interaction parameter between CO2 and the substrate, the MD 

simulations can qualitatively predict CO2 adsorbing dynamics and possibly equilibrium contact angles 

on the substrates with different surface energies. For the sake of simplicity, the internal interactions 

between the substrate atoms, namely Cu atoms, were kept the same in all the simulations for 

maintaining the integrity of the substrate, and to provide constant surface structure. In reality, it is only 

possible to use other atom types, for instances, Fe, Al or Au, to provide different energy interaction 

parameter ε between CO2 and the flat substrate. Yet, different atoms types will result in different 

surface lattice structure and size, which are also important factors for CO2 condensation. Such 

complexity is beyond the scope of the current study. The cutoff distance of 15 Å is utilized for the CG 

Mie potential interactions. The velocity-Verlet method is employed to integrate the equation of atomic 

motions with a timestep of 10 fs in all cases.

3. Results and discussion

To validate the implemented SAFT-γ Mie model of CO2, the temperature-density vapor-liquid 

equilibria (VLE) curve is studied. A slab consisting of 18450 CO2 molecules is initially placed in the 

center of an otherwise empty simulation box with dimensions of 92 Å × 92 Å × 500 Å. The system is 

then fully equilibrated in an NVT ensemble with sufficient simulation time of 10 ns to achieve a stable 

liquid film in equilibrium with its vapor phase, as shown in Figure 1a. Figure 1b presents the density 

profiles obtained by averaging over the last 20000 timesteps in the vapor-liquid system at temperatures 

ranging from 220 K - 290 K. Each bin is set in 2.5 Å for calculating the density of CO2. Similar to 

previous studies, the density profiles of local vapor-liquid interface can be well-fitted by both tangent 

hyperbolic and error functions 47-48 that are respectively written as

                                          (9)       l v l v
1 1 2tanh 1
2 2

z z
d

            

and
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                                         (10)       l v l v
1 1 erf 1
2 2

z z
d
    

 
     

 

where  and  are the densities of liquid and vapor in equilibrium, respectively. l and d are the l v

middle-position of the equilibrium vapor-liquid interface and the thickness parameter, respectively. As 

expected, the liquid density and the number of molecules in the liquid CO2 declines with increasing 

temperature, while the vapor density increases. This suggests that, upon cooling, vapor of CO2 tends 

to condense on the liquid slab to balance the vapor-liquid equilibrium. Figure 1c compares the 

predicted vapor-liquid coexistence densities of CO2 by MD simulation with those calculated using the 

Span-Wagner (SW) equation of state (EoS) with the methodology given in Ref. 46. There is a good 

agreement between the MD simulation and SW EoS for the temperature-density distribution of CO2 

phase diagram 49-50. This confirms that the SAFT-γ CG Mie model of CO2 is correctly implemented 

and this model is able to predict the bulk thermodynamic properties 45. Other works have verified that 

the model also yields accurate predictions the vapor-liquid interfacial behaviour for the CO2 molecules 

51-52.

With accurate models for the CO2 and the surface, we proceed to study the evolution of a CO2 

nanodroplet on a Cu-like smooth solid surface. An initial CO2 cubic box containing 43537 CO2 CG 

beads is placed on the Cu-like flat surface with 2D planar dimensions of 400 Å × 400 Å. Within a 

sufficient equilibration simulation time of 50 ns at 223.15 K, the initially generated CO2 box evolves 

to a mixture of vapor-liquid droplet or a mixture of vapor-liquid film, depending on surface wettability. 

In the simulations, there is no integration of motion for the Cu-like solid surface. The coordinates of 

each beads are collected in every 100 ps for monitoring the development of the CO2 droplet, and the 

density contours of CO2 are obtained by taking samples of the dynamic droplet at every 10000 

timesteps for the last simulation of 1 ns. Figure 2 shows the calculated 2D density contours of the CO2 

droplet on Cu-like surface (z = 10 Å) with different wettability. Apparently, liquid-state CO2 molecules 

are more strongly attracted by a CO2-philic Cu-like surface than by a CO2-phobic Cu-like surface as 
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the solid-CO2 characteristic energy is increased. Here, a symbol  is used to denote the parameter 
2CO -Cu

of interaction between copper and CO2. The range of  from 0.001 to 0.015 eV is able to cover 
2CO -Cu

the surface wettability perfectly, changing from CO2-phobic to CO2-philic. As  is 0.001 eV, a 
2CO -Cu

stable spherical CO2-droplet is suspended in the vapor without contacting the Cu-like surface, 

indicating a perfect CO2-phobicity (Figure 2a). When the  varies from 0.003 to 0.012 eV, very 
2CO -Cu

clearly the shape of a CO2 droplet on the Cu-like surface is identified (Figure 2b-g). As  becomes 
2CO -Cu

larger (≥ 0.015 eV), the Cu-like surface shows a perfect CO2-philicity (Figure 2h). An inhomogeneity 

in the density of CO2  in the droplet is identified, especially near the droplet and the Cu-like surfaces. 

Notably, the boundaries between liquid and gas phases of CO2 are distinguished by the green-

highlighted region in the relative density contour plots. In the vicinity of the Cu-like surface with 

 ranging from 0.008 to 0.012 eV, formation of a four-layer CO2 sheet with thickness of around 
2CO -Cu

10.6 Å, separating the Cu-like solid surface and the rest of the droplet, is observed (Figure 2d-g). The 

thickness of each layer (2.65 Å) implies that the layers are monomolecular. The density of liquid CO2 

near the Cu-like surface declines as the layer is moving away from the Cu-like surface. For the Cu-

like surface with higher CO2-phobicity, the number of CO2 layers near the Cu-like surface decreases 

(Figure 2b and c). With respect to the Cu-like surface with a perfect CO2-philicity ( ), 
2CO -Cu 0.015 eV 

an apparent CO2 tri-layer is formed and the layer nearest to the Cu-like surface shows higher density 

than the other layers.

Figure 3a presents a representative equilibrium snapshot of a CO2 droplet on the Cu-like surface 

( ). Unlike for a water droplet in air on a solid surface, the vapor and liquid here 
2CO -Cu 0.008 eV 

consist of the same fluid molecules, so the liquid droplet (blue) and vapor (yellow) of CO2 coexist in 

the simulation system. The contact angle  of a CO2 droplet on the Cu-like surface is defined by the c

tangent at the contact line, as illustrated in Figure 2d. Figure 3b plots the calculated contact angle  c
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of a CO2 droplet as a function of the CO2-surface interaction . As expected, the contact angle is 
2CO -Cu

sensitive to the interaction energy  between CO2 molecules and the attractive surface. The 
2CO -Cu

contact angle monotonically decreases from 180˚ to 0˚ with  increasing from 0.001-0.015 eV. 
2CO -Cu

Large  > 0.015 eV leads to complete spreading of the CO2 droplet and wetting of the solid 
2CO -Cu

surface. Particularly, an energy interaction parameter  of 0.009 eV (the liquid-solid tension of 
2CO -Cu

around 10 mN/m) yields a contact angle of approximately 90˚ of a CO2 droplet, which is the critical 

point for transition from CO2-phobic to CO2-philic. Figure 3c and 3d plot the number of liquid CO2 

molecules and the density of CO2 vapor as a function of simulation time for different Cu-like surface 

wettability. For all our studied systems with different wettability of surfaces, two stages in the curves 

can be roughly identified. The first stage is characterized by a monotonic reduction in number of liquid 

molecules or an increase in density of the CO2 vapor. This quantitatively illustrates the vaporization 

process of liquid CO2. The initial vaporization rate is closely related to the energy interaction parameter

. For an energy interaction parameter between 0.001 and 0.02 eV, a small difference in 
2CO -Cu

2CO -Cu

the initial vaporization rate is observed. When it is > 0.02 eV, however, the initial vaporization rate 

shows a decreasing trend. Moreover, the vaporization rate declines with the simulation time. The 

second stage corresponds to the long plateau in the curves. This indicates the vapor-liquid equilibrium 

for CO2 contacting a Cu-like surface. Figure 3e and 3f plot the equilibrated number of liquid CO2 

molecules and the CO2 vapor density, respectively, as function of the energy interaction parameter 

, respectively. Intriguingly, for the energy interaction parameter  yielding a non-zero 
2CO -Cu

2CO -Cu

contact angle of a droplet, there is a negligible difference in the total number of CO2 molecules in 

liquid-state. As the solid surface becomes more CO2-philic, however, the number of liquid CO2 

molecules increases pronouncedly. This is because more CO2 molecules are attracted by the Cu-like 

surface with strong attractive interaction. Notably, the number of liquid CO2 molecules remains 

constant as the energy interaction parameter  approaches to 0.05 eV. This can be explained by 
2CO -Cu
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the fact that the number of CO2 layers adsorbed on the solid surface is limited by applying a cutoff of 

non-bonded interaction. For the variation of density of CO2 vapor with , an opposite tendency 
2CO -Cu

can be seen in Figure 3f. 

    Condensation of CO2 on the Cu-like surface for  is further studied. Initially, the 
2CO -Cu 0.008 eV 

stable droplet is vaporized at 273.15 K for a sufficient time of 50 ns under NVT (constant number of 

particles, constant volume, and constant temperature) ensemble. For the condensation simulation, a 

novel combination of MD simulation setups is adopted. The outmost layer of the Cu-like atoms is 

fixed to prevent the deformation of the solid surface. The inside two layers of the Cu-like atoms are 

simulated at 223.15 K under NVT ensemble as cooling source. MD simulations of the top outside three 

layers of Cu atoms and the CO2 molecules are performed under NVE (constant number of particles, 

constant volume, and constant energy) ensemble for exchanging energy between CO2 and the cooling 

layers. A long-enough simulation time of around 125 ns is assigned for mimicking the condensation 

process. The kinetics of the CO2 condensation on the Cu-like surface is characterized by the analysis 

of the droplet size (molecular number). Figure 4a shows the variations in the number of liquid CO2 

molecules and the density of the vapor phase within the whole simulation time span. During 

vaporization (grey region), the droplet is fully vaporized at about 7 ns and the vaporization of the 

droplet becomes less pronounced as indicated by the reduction in . From 7-50 ns, the system is d
dt


mainly composed of CO2 vapor contacting the Cu-like surface. In the curve of CO2 condensation from 

50-75 ns, the number of liquid CO2 molecules rapidly increases to a constant in response to cooling 

(red curve of Figure 4a). Meanwhile, the density of CO2 vapor decreases to a constant as a result of 

the law of conservation of mass. Both events quantitatively explain the CO2 condensation on the Cu-

like surface. Figure 4b plots the sum interaction forces between CO2 molecules and the Cu-like surface 

in the three orthogonal directions. In the planar directions of the surface, the sum interaction forces 

oscillate around zero in both the vaporization and the condensation processes. In contrast, the average 
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total interaction force in the vertical (z) direction shows a similar tendency to the number of liquid CO2 

molecules. At complete vaporization, an average interaction force of around -2.8 eV/Å is yielded. At 

late phases of condensation, however, the system shows a mean interaction force of about -1.25 eV/Å. 

Such a difference is mainly attributed to the mean distance of the center of mass position between CO2 

and surface in the vertical direction.

To reveal the kinetic mechanism of cooling-induced CO2 condensation, a series of top-viewed 

snapshots, in which gas molecules are removed, are captured at different condensation times as shown 

in Figure 4c. At 40 ns, no droplet is identified, indicating that the original droplet is completely 

vaporized. The condensation process of a CO2 droplet on a Cu-like cooling surface is roughly divided 

into three stages. The first stage corresponds to the nucleation of CO2 clusters as illustrated by the 

snapshot captured at 50.5 ns. It is observed that a large number of CO2 clusters heterogeneously 

nucleate on the Cu-like cooling surface at the same time. This stage is a very rapid process. The second 

stage of the condensation process is primarily characterized by formation of droplets via coalescence 

and growth of CO2 clusters as seen in snapshots captured from 52-66.3 ns. The nucleated CO2 clusters 

dynamically form droplets by diffusion of CO2 vapor molecules from the surroundings. CO2 droplets 

are also formed by coalescence of nearby CO2 clusters due to their strong non-bonded attractions. The 

droplet growth by coalescence does not increase the condensed mass of CO2 on the Cu-like surface, in 

contrast to droplet growth by diffusion. Moreover, because the contacting area of the solid-surface is 

increased by the coalescence of neighboring nucleated clusters and droplets, fresh clusters or droplets 

grow by nucleation and diffusion. The final stage of the process is uniquely characterized by Ostwald 

ripening-coalescence mechanisms of CO2 droplets. This stage lasts from around 66.7- 175 ns. The 

long-plateau characteristic in the curves of Figure 4a indicates that there is no growth of droplet by 

diffusion of CO2 molecules from the vapor. As a result of the Ostwald ripening and coalescence 

behaviour, a single stable droplet finally condenses on the cooling Cu-like surface within 
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approximately 174 ns. During the whole condensation process, the condensed droplets show higher 

potential energy at the surface than in the interior due to the surface effect. 

To gain more insights into the Ostwald ripening behaviour during the CO2 condensation process, 

the two large condensed droplets on the Cu-like surface at the final stage are further characterized. 

Figure 5a monitors the numbers of CO2 molecules (N1 and N2) in droplet #1 and droplet #2, as well as 

the sum number of liquid CO2 molecules (N). The two condensed droplets show an opposite trend in 

the sum of the molecules. The sum of the molecules N1 in droplet #1 almost increases linearly from 

around 14000 to 20000 with increasing condensation time, whereas in case of droplet #2 it decreases 

linearly from about 9000 to 3500 within the same time. By linearly fitting the curves, the corresponding 

growth rate and reduction rate of the two droplets are determined to be around 54 and 53 molecules/ns, 

respectively. Although there exists great variation in the sum of the CO2 molecules in both droplets, 

the total number of liquid molecules remains constant. To quantitatively explain the molecular 

exchanges between the two-condensed droplets, the CO2 molecules in droplet #1 at 66.5 ns are 

specifically marked and traced. Figure 5b shows the sums of marked CO2 molecules in both droplets 

(n1 and n2) as a function of condensation time. The sum of marked molecules n1 (n2) monotonically 

decreases (increases) with time. Interestingly, the variation rates of n1 and n2, however, are 

condensation time dependent. A steep drop (rise) in n1 (n2) from around 9000 to 2000 (0 to 3000) 

within approximately 6.0 ns is identified. Soon afterwards, a nearly linear increase (decrease) in n1 (n2) 

is found. A constant variation rate of around 11 molecules/ns for both n1 and n2 is determined by fitting 

the linear part of the curves in the late phase, which is around 3-fold smaller than the growth rate of 

droplet #1 and the decay rate of droplet #2, respectively. Moreover, to further reveal the Ostwald 

ripening-coalescence mechanisms for CO2 condensation on the Cu-like surface, a set of snapshots, in 

which the two condensed droplets are purple- and yellow-colored, captured at different times (from 

66.5 to 168.5 ns) are shown in Figure 5c. Besides the size change of droplets by molecular exchange 

and diffusion, it is observed that both droplets migrate on the Cu-like smooth surface when one droplet 
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is far from the other. As the distance between condensed droplets becomes critical, droplets rapidly 

coalesce due to their attractive interaction forces. As a consequence, a single droplet with constant size 

finally condensed on the Cu-like surface. This suggests that the distance between droplets is a critical 

parameter to determine the Ostwald ripening and coalescence mechanisms during the CO2 

condensation. It is also found that the marked CO2 molecules are homogeneously distributed in the 

droplets during the condensation process. This indicates that the molecules in the droplets are able to 

rapidly diffuse from the interior to the surface and also to the zone of CO2 vapor. 

4. Conclusions

In summary, contact angle and dropwise condensation of water on different solid surfaces have been 

subjected to extensive research. By designing the solid surface structures, dropwise condensation of 

water vapor can be achieved for water collection. However, as far as we know, literature on a solid 

surface for dropwise CO2 condensation is virtually non-existing. In this study, classic MD simulations 

with accurate forcefields are performed to investigate the condensation and the contact angle of a CO2 

droplet on a Cu-like solid surface for CO2 capture. Depending on the wettability of the Cu-like surface, 

either dropwise or filmwise condensation of CO2 is achieved. For droplet condensation on the 

macroscale, there exists a transition from CO2-phobic to CO2-philic at a critical energy interaction 

parameter of  (corresponding to a liquid-solid tension of approximately 10 mN/m); 
2CO -Cu 0.009 eV 

however, the sum of condensed CO2 molecules on a solid surface is insensitive to the energy 

interaction parameter . For filmwise condensation, the sum of condensed CO2 molecules 
2CO -Cu

significantly increases as the energy interaction parameter  increases from 0.012 to 0.050 eV, 
2CO -Cu

but remains constant with further increase of . Condensation of a CO2 droplet on a Cu-like 
2CO -Cu

surface exhibits three distinct stages. In the first stage, heterogeneous nucleation of clusters is dominant 

and the nucleation rate is fairly fast. The second stage of condensation is primarily characterized by 

cluster growth to droplets via diffusion-coalescence mechanisms. The large-scale coalescence of 
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clusters as droplets arises from cluster diffusion and strong attraction between short-distanced 

neighboring clusters. Finally, a combination of Ostwald ripening in which one droplet continues to 

grow as function of time (∼ t) while the other simultaneously decreases as function of time (∼ t), and 

the coalescence mainly dominates in the last stage of the condensation process. Considerable 

molecular exchange between droplets occurs via fast diffusion. These results provide guidance for the 

design of functionalized surfaces to promote dropwise condensation of CO2, as well as insight into the 

condensation behaviour that will occur on such surfaces
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Figure 1 CO2 vapor-liquid system. (a) A representative side-viewed snapshot of vapor-liquid 

coexistence of CO2 in a box with dimensions of 92 × 92 × 500 Å3. Molecular coarse-grained (CG) 

beads are colored on the basis of their potential energies for enhanced visibility.  (b) Density profiles 

of the vapor-liquid equilibrium at temperatures varying from 220 K to 290 K. (c) Comparison of 

temperature-density of vapor-liquid coexistence of CO2 with equilibrium of state (EoS) data 46-47.
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Figure 2 Relative density maps of CO2 droplets on a Cu-like solid surface with a CO2-surface 

interaction parameter  of (a) 0.001 eV, (b) 0.003 eV, (c) 0.005 eV, (d) 0.008 eV, (e) 0.009 eV, 
2CO -Cu

(f) 0.01 eV, (g) 0.012 eV, and (h) 0.015 eV, respectively.
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Figure 3 CO2-solid surface-system analysis. (a) A snapshot of a CO2 droplet and vapor contacting with 

Cu-like surface having an energy interaction parameterof  in equilibrium. 
2CO -Cu 0.008 eV 

Vaporized and liquid CO2 molecules are yellow- and blue-highlighted for clarification, respectively. 

(b) Contact angle of CO2 droplet as a function of interaction energy . (c) and (d) Variation in 
2CO -Cu

number of liquid-state CO2 and the density of the gas phase with the MD simulation time, respectively. 

(e) and (f) Variation in number of liquid-state CO2 and the density of the gas phase with , 
2CO -Cu

respectively.
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Figure 4 Analysis of vaporization and condensation of a CO2 droplet on a Cu-like solid surface with 

an interaction . (a) Number of CO2 molecules in the droplet and the density of CO2 2CO -Cu 0.008 eV 

gas phase as a function of MD simulation time. (b) Total interaction forces between CO2 and Cu-like 

solid surface against MD simulation time along the three orthogonal directions. (c) Snapshots of the 

condensation process of CO2 droplet on a cooling Cu-like solid surface. CG beads in the condensed 

droplet are colored according to their potential energies. CG gas beads that have potential energies > -

0.05 eV are removed for enhanced visibility. 
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Figure 5 Condensation characteristics of a CO2 droplet on a Cu-like solid surface. (a) Variations in 

number (N1, N2) of CO2 molecules of two droplets and their total number (N) of CO2 molecules with 

MD condensation time. (b) Exchange of CO2 molecules between two droplets during the condensation 

process. (c) A sequence of snapshots illustrating the molecular exchange between two condensed 

droplets and Ostwald ripening and coalescence of two condensed CO2 droplets during the condensation 

process. Coarse-grained (CG) beads of CO2 in gas state are removed for clarification. For enhanced 

visualization of the exchange of CO2 molecules, the two condensed CO2 droplets on the Cu-like surface 

are purple- and yellow-highlighted, respectively. At the condensation time 168.5 ns, a droplet formed 

by coalescence of two droplets is composed of purple- and yellow-colored CO2 molecules, explaining 

the molecular exchange during the condensation process. Particularly, purple- and yellow-colored CO2 

molecules (indicated by the arrows) are taken out from the formed droplet for showing the 

homogeneous distribution.
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