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Higher order multipoles in metamaterial
homogenization

Christopher A. Dirdal, Hans Olaf H̊agenvik, Haakon Aamot Haave, Johannes Skaar

Abstract—The higher order multipoles above the
electric quadrupole are commonly neglected in meta-
material homogenization. We show that they never-
theless can be significant when second order spatial
dispersive effects, such as the magnetic response, are
considered. In this respect, they can be equally impor-
tant as the magnetization and quadrupole terms, and
should not automatically be neglected.

Keywords—Electromagnetic metamaterials, Compos-
ite materials, Permittivity, Permeability, Maxwell equa-
tions.

I. Introduction

The structural freedom in metamaterials have spurred
renewed interest into homogenization theories. These are
theories that allow for the formulation of effective macro-
scopic Maxwell’s equations in structured media from the
exact microscopic ones. The macroscopic equations have
effective plane wave solutions in materials with complex
structures, where dimensions are well below the wave-
length. Despite the similarities between conventional and
metamaterial homogenization, it has become evident that
certain differences need to be taken into consideration [1]–
[9]; in particular, the importance of spatial dispersion. In
this paper we would like to add another characteristic
feature of metamaterial homogenization to the list: That
higher order terms in the expansion of macroscopic po-
larization, above the electric quadrupole, may have phys-
ical significance with respect to the magnetic response of
the system. Hence, some of the underlying assumptions
regarding the non-importance of the electric quadrupole
and higher order terms in both classical [10]–[13] and
more recent [2], [3], [8], [9] treatments on homogenization,
should in some cases be reconsidered when applied to
metamaterials.

The scattering of a single cell excited by a plane wave
has been discussed extensively in the literature. In the
long-wavelength limit the electric dipole term dominates.
The magnetic dipole and electric quadrupole terms may
contribute for resonances where the electric dipole term
vanishes by symmetry [4]. Even higher order multipoles
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can be important in certain cases [14]. A periodic metama-
terial, however, behaves quite different from a single cell,
as the neighboring cells are in each other’s near field. It is
therefore of interest to investigate the importance of the
different multipoles for periodic metamaterials. In Sec. II
we review the needed background on the homogenization
procedure and multipoles, in addition to the constitutive
relations in the Landau-Lifshitz formulation [11], [15]. In
Sec. III we demonstrate that both magnetic dipole +
electric quadrupole, and magnetic quadrupole + electric
octupole, may be of the same order in ka and of the same
order of magnitude. Here k is the wavenumber and a is the
cell size. Analytical results and simulations are shown.

Harmonic fields with angular frequency ω have been
assumed, and the e−iωt dependence is suppressed. For
simplicity, we will throughout this article consider struc-
tures consisting of non-magnetic inclusions. The medium
is assumed to be passive (or in thermal equilibrium in the
absence of the field under study [11]), i.e., we exclude gain
media.

II. Homogenization and multipoles

We consider a periodic metamaterial consisting of cubic
unit cells of size a, and a single spatial Fourier component
of the source, Jext = J̄eik·r with constant amplitude
J̄. The wavevector k is considered as a free parameter,
independent of frequency [2], [8], [10]. The microscopic
fields are Bloch waves of the form

e(r) = ue(r)eik·r. (1)

Here e(r) is the microscopic electric field, and ue(r) has
the same periodicity as the metamaterial. The microscopic
fields are homogenized according to

E ≡ 〈e〉 ≡ eik·r

V

∫
V

e(r)e−ik·rdV, (2)

where the integral is taken over the volume of a unit cell
V (see for example [2], [3], [8], [9]). Application of the
averaging (2) to the microscopic Maxwell equations gives
macroscopic Maxwell’s equations

ik×E = iωB, (3a)

ik× B

µ0
= −iωε0E− iω〈p〉+ Jext, (3b)

having defined macroscopic, magnetic flux density B. Here
−iωp(r) is the induced, microscopic current density, which
is taken to include both free and bound microscopic cur-
rents in the metallic or dielectric inclusions. The effective
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electromagnetic response of the system is contained in the
induced, macroscopic current −iω〈p〉, which we shall now
expand into multipoles [8], [16]. Consider the unit cell
that contains the origin. For sufficiently small ka, with the
expansion exp(−ik · r) ≈ 1− ik · r− (k · r)2/2 +O(k3) we
obtain to the second order in k:

〈p〉 =
eik·r

V

∫
V

pe−ik·rdV (4)

=
eik·r

V
·
(∫

V

pdV − ik ·
∫
V

rpdV − 1

2

∫
V

(k · r)2pdV

)
≡ P− k×M

ω
− ik ·Q + R. (5)

Here

P =
eik·r

V

∫
V

pdV, (6a)

M = − iω
2

eik·r

V

∫
V

r× pdV, (6b)

Q =
1

2

eik·r

V

∫
V

(rp + pr)dV, (6c)

R = −1

2

eik·r

V

∫
V

(k · r)2pdV, (6d)

and we have decomposed the tensor rp into its antisym-
metric and symmetric parts,

k · rp = k · (rp− pr)/2 + k · (rp + pr)/2

= −k× r× p/2 + k · (rp + pr)/2. (7)

In addition to the polarization vector P, magnetization
vector M, and quadrupole tensor Q, we have included
an extra term R, corresponding to magnetic quadrupole
and electric octupole. Apparently, the magnetization and
electric quadrupole terms in (5) seem to be first order in
ka, while the R term from (6d) seems to be second order.
However, M and Q are themselves dependent on k, so the
order and magnitude of the terms need to be examined
more closely (Sec. III).

In a linear medium, we can express multipole densities
(6) with constitutive relations

Pi = ε0χijEj + ξikjkkEj + ηikljkkklEj/(µ0ω
2), (8a)

Mm = ωζmjEj + νmljklEj/(µ0ω), (8b)

Qik = iσikjEj + iγikljklEj/(µ0ω
2), (8c)

Ri = ψikljkkklEj/(µ0ω
2), (8d)

where summation over repeated indices is implied. In (8)
we have included the necessary orders of k such that
〈p〉 is second order in k upon their insertion in (5). For
later convenience we have included certain k-independent
quantities (such as µ0ω

2) in the tensor elements. Magneto-
electric coupling is taken into account in terms of the
tensor elements ξikj and ζmj .

In the so-called Landau-Lifshitz formulation [11], the
response of a linear medium is described by a single,
nonlocal, relative permittivity tensor ε(ω,k), such that

ε0ε(ω,k)E = ε0E + 〈p〉. (9)

Here, all terms of 〈p〉, including those resulting from M,
Q and R, are absorbed into ε(ω,k). From (5), (8) and (9)
we obtain

εij(ω,k)− δij = χij + (ξikj + σikj − εikmζmj) kk/ε0

+ (ψiklj + γiklj + ηiklj − εikmνmlj) kkklc
2/ω2, (10)

where εikm is the Levi-Civita symbol.
While it may be convenient to have only a single con-

stitutive tensor ε(ω,k), it is often desirable to express
the magnetic response more explicitly by introducing a
permeability tensor, related to the second order term in
(10) [2], [11]. Observe that the macroscopic quantities B
and E are left invariant upon the transformation

−iω〈p〉 → −iωP̂ + ik×M̂, (11)

where the new polarization P̂ and magnetization M̂ are
arbitrarily chosen. We can express the left hand side in
terms of the non-local tensor ε(ω,k) by (9), and the right
hand side in terms of two new tensors ε and 1 − µ−1, in
order to obtain

ε(ω,k) = ε− c2

ω2
k× [1− µ−1]× k. (12)

Here, we have used M̂ = µ−1
0 (1 − µ−1)B and (3a). If we

choose the coordinate system such that k = kx̂, then (12)
may be expressed

ε(ω,k) = ε+
k2c2

ω2

0 0 0
0 (1− µ−1)33 −(1− µ−1)32
0 −(1− µ−1)23 (1− µ−1)22

 .
(13)

We now assume that the medium has a center of symmetry,
such that ε(ω,−k) = ε(ω,k) [10], [11]. Thus the odd-order
term in (10) vanishes. Comparing (13) with (10) leads to

1− µ−1 = (14)[· · ·
· (ψ + γ + η)3113 − ν213 −(ψ + γ + η)3112 + ν212
· −(ψ + γ + η)2113 − ν313 (ψ + γ + η)2112 + ν312

]
,

if we choose to put ε22 = 1 +χ22, ε33 = 1 +χ33, ε23 = χ23,
and ε32 = χ32. The missing entries in (14) are a result of
the fact that B is transverse, k ·B = 0, and that only the
transversal part of M̂ contributes to the induced current.
Even if there is no center of symmetry, such that the first
order term in (10) is present, we obtain (14) if the first
order term is absorbed into ε.

In principle the magnetization M̂ and associated per-
meability can be defined in an infinite number of ways,
by including any given part of the transversal, induced
current. Note, however, that any longitudinal part of the
induced current cannot be attributed to the magnetization.
In other words, in (12), a O(k2) term must sometimes
remain in ε.

The choice in (14) is somewhat natural, as the magneti-
zation term includes the entire transversal, O(k2) part of
the induced current, except a part possibly induced by the
longitudinal component of the electric field. Eq. (14) is a
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generalization of the relation in Ref. [2]. The parameters ε
and µ will be referred to as the Landau-Lifshitz parameters
due to their relation to the non-local Landau-Lifshitz
permittivity (9), and are expressed without any argument
in order to distinguish the derived permittivity ε in (12)
from the non-local parameter ε(ω,k).

Note that the magnetization M from (6b) and M̂ are dif-
ferent; the former expresses the magnetic moment density,
while the latter results from the choice (14). One can define
a permeability from M as well; the difference between such
a permeability and the one in (14) will be due to electric
quadrupole, higher order multipoles, and the second order
term of the electric polarization.

III. Importance of higher order multipoles

The tensors ν, γ, ψ, and η relate to M, Q, R, and
P, respectively, in the manner shown in (8). As seen in
(10) these contribute on an equal footing to the second
order effects of ε(ω,k) [6], which may be interpreted as
describing the magnetic response of the system according
to (14). While it is known that the quadrupole tensor Q
may be significant [4], [5], we shall now show that R too
can be physically important.

Revisiting the derivation of (5), it is tempting to con-
clude that the magnetization term −k × M/ω is first
order in ka, while R is second order. However, M is itself
dependent on k, being induced by B = k× E/ω. For unit
cells such as those in Figs. 1(a) and 1(b), the magnetization
M will be zero for k → 0 due to symmetry, provided the
origin is located in the middle of the cell. Therefore, M
cannot contain any zeroth order term, and must be first
order in ka. Then the magnetization term −k × M/ω,
quadrupole term, and R term are all second order in ka.
Even for asymmetric unit cells, such as that in Fig. 1c, the
R term can be important when compared to the second
order part of −k×M/ω, which is relevant for the magnetic
permeability.

We will now demonstrate examples of metamaterial
structures where the relevant tensor elements of ν, γ,
ψ, and η are of the same order of magnitude. Let the
microscopic, relative permittivity of a unit cell be denoted
by ε(r). We first consider a special case which can be
treated analytically. For small microscopic susceptibilities
ε(r)− 1, the field will be almost unperturbed by the cell.
Then the microscopic electric field can be approximated
by

e(r) = Ēeik·rŷ, (15)

where Ē is constant. Taking k = kx̂, the following rela-
tionship may then be observed from (6):

R2

k2E2
= i

∂

∂k

{
Q21

E2

}
= − ∂

∂k

{
M3

ωE2

}
=

∂2

∂k2

{
P2

2E2

}
,

(16)

which gives

ψ2112 = −γ2112 = −ν312 = η2112 (17)

when compared with (8). Thus the tensor elements ψ2112,
γ2112, ν312, and η2112 are of the same magnitude in this
case.

ε = 1ε ε

0.3a

0.2a 0.2a

k

a

g/2

x̂
ŷ

(a)

ε
ε = 1

a

0.3a

0.45a

k

0.02a

(b)

ε
ε = 1

a

0.3a

0.45a

k
0.5a

(c)

Fig. 1: Different unit cells for the simulations: (a) Two bars;
(b) Split ring resonator; (c) C-shaped split ring resonator.

We now lift the assumption of small microscopic sus-
ceptibility, and consider 2d metamaterials with unit cells
displayed in Fig. 1. A Finite Difference Frequency Domain
(FDFD) method is well suited for the problem of comput-
ing the microscopic fields, using Bloch-periodic boundary
conditions and a source Jext = J̄ exp(ikx). The grid is
quadratic with 200 × 200 points. Once the microscopic
electric field e(r) and microscopic polarization p(r) =
ε0 (ε(r)− 1) e(r) have been found, we proceed to calcu-
late the multipoles (6). However, solving for the multiple
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0 0.4 0.8 1.2

a/c

-0.1

0

0.1

1-
-1

Fig. 2: The constitutive parameters of the two-bar meta-
material with unit cell as in Fig. 1a, ε = 16 and g = 0.2a.

0 0.4 0.8 1.2

a/c

-0.4

-0.2

0

0.2

1-
-1

Fig. 3: Same as Fig. 2, but ε given by a Drude-Lorentz
model of Ag, and a = 10µm. Only the real parts are shown;
the imaginary parts are . 0.1 times the real parts.

unknowns in (8) generally requires multiple equations. We
therefore calculate E, P, M, Q, and R for two choices of
J̄ext, along x̂ and ŷ, respectively. In order to extract the
coefficients in (8), the field quantities E, P, M, Q, and R
are calculated for three values of k so that first and second
order derivatives wrt. k can be obtained. The resulting
tensor elements are Taylor coefficients around k = 0. The
model is accurate for all k’s where the second order spatial
dispersion approximation ((8) or (10)) applies.

We are interested in the contributions to (1 − µ−1)33
from the different multipoles, which according to (14) is:

(1− µ−1)33 = ψ2112 + γ2112 + η2112 + ν312 (18)

Below, and in the plots, the relevant tensor elements in
(18) will be denoted 1− µ−1, ψ, γ, η, and ν, respectively.

Consider first a metamaterial consisting of the unit cells

0 0.4 0.8

a/c

-5

0

5

R
e

1-
-1

0 0.4 0.8

a/c

-5

0

5

Im

1-
-1

Fig. 4: Same as Fig. 3, but g = 0.01a and a = 0.2µm. Real
parts (upper plot) and imaginary parts (lower plot). See
the main text for details.

in Fig. 1a, with ε = 16 and g = 0.2a. The resulting tensor
elements are shown in Fig. 2. We observe that ψ, γ, η, and
ν are of the same order of magnitude. In particular, |ψ|
(which results from the higher order multipole term R)
is approximately equal to ν (which results from M). The
sum of the four tensor elements is according to (18) equal
to 1− µ−1, which in this case is relatively small.

Next we consider the same system, but let the bars be
metallic (Ag), described by a Drude-Lorentz model with
parameters from Ref. [17]. The lattice constant is taken to
be a = 10µm. The resulting tensor elements are shown in
Fig. 3. Now the magnetic response is larger. In particular,
for small frequencies there is a diamagnetic response, and
ν dominates (1−µ−1 ≈ ν). Thus in this case we can safely
ignore the higher order multipoles for small ωa/c.

In Fig. 4 we consider the silver bars again, but this time
g = 0.01a, and a = 0.2µm. This leads to a resonance.
All multipole terms in (18) contribute substantially, al-



AP1704-0627 5

ready at relatively small ωa/c. For large ωa/c we note
that Imµ < 0, which may seem to violate passivity.
However, for spatially dispersive media, the fundamental
requirement for passivity is formulated in terms of the total
Landau–Lifshitz permittivity [9], [18]. For our situation,
ε(ω,k) is given by (13), and the relevant element is

ε22(ω,k) = ε22 +
k2c2

ω2

(
1− µ−1

)
33
. (19)

It can be verified numerically that Im ε22(ω,k) > 0 for
ka < 1. For large ka, the imaginary part of the right-
hand side of (19) can be negative, which means that the
resulting value for ε22(ω,k) is unphysical: For large ka,
the O((ka)3) terms and higher, which are ignored in the
expansion (5), will be significant, and will restore a positive
value of Im ε22(ω,k). In other words, the results for large
frequencies in Fig. 4 are only relevant for small ka. This is
a region which is only possible to attain with a suitable set
of sources, and is probably of limited physical relevance.

In Fig. 5 we have considered a dielectric split ring
structure, with ε = 16 (Fig. 1b). As for the dielectric bars,
the multipole constitutive parameter ψ, and also η, are of
the same order of magnitude as ν. The magnetic response
is however weak. For the split ring resonator made of silver
(Fig. 6, a = 0.2µm), the situation is different. As is well
known from earlier literature we have a strong resonance,
and the magnetic response as given by ν dominates.

Finally, we consider a C-shaped silver split-ring res-
onator metamaterial, with a broken mirror symmetry
about the yz-plane (consisting of unit cells as in Fig. 1c
with a = 0.2µm). Now all constitutive parameters are of
the same order of magnitude. Similarly to the example in
Fig. 4 we have a region for frequencies ωa/c ∼ 1 where Imµ
is negative, while Im ε22(ω,k) is positive for sufficiently
small ka. As discussed for Fig. 4 above, this means that
unless ka is small, the O((ka)2) model in the expansion
(5) is not sufficient here.

Since the metamaterial in Fig. 1c does not have a center
of symmetry, there will be magnetoelectric coupling in
this medium, as described e.g. by a nonzero ζmj in (8b).
However, the total effect as measured by the first order
term in (10) turns out to be vanishingly small compared
to the second order term, for ka in the range of simulated
frequencies 0.01 ≤ ωa/c ≤ 1.2.

IV. Discussion and Conclusion

The magnetic permeability can be seen as a O(k2) term
in the Landau–Lifshitz total permittivity ε(ω,k). Not only
the magnetic dipole term, but also the electric quadrupole
term and the magnetic quadrupole–electric octupole term
contribute to ε(ω,k) to order O(k2). We demonstrate that
these contributions can be of the same order of magnitude
as that from the magnetic dipole, which means that these
higher order multipoles should not automatically be ne-
glected.

Assuming k = kx̂ we note that the magnetic
quadrupole–electric octupole term R results from the even

0 0.4 0.8 1.2

a/c

-0.3

0

0.3

0.6

1-
-1

Fig. 5: The constitutive parameters of the split-ring meta-
material with unit cell as in Fig. 1b, ε = 16.

part of p(r) with respect to x, while M and Q terms get
contributions from the odd part. Thus there exist p(r)
distributions where R is negligible compared to the M
and Q terms in (5). In the absence of such odd symmetry,
however, the O(k2) parts of the three terms can be of the
same order of magnitude.

For the dielectric split-ring structure, the R term is
important, since the microscopic current distribution will
mainly have an even part. For metals, however, the cir-
culating part of the current will be larger, giving a larger
magnetic dipole moment. When the symmetry about the
yz-plane is disturbed (as will be the case for the C-shaped
split ring resonator), the R term will again be important.

The multipole terms M, Q, and R are dependent on
the choice of origin. When the origin is moved, the relative
sizes of the terms are altered in such a way that the total
Landau-Lifshitz tensor ε(ω,k) is unaltered. We have let
the origin be located in the center of the unit cell.
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