
This is the Accepted version of the article

OWASP Top 10 - Do Startups Care?

Citation:
Halldis Sϕhoel, Martin Gilje Jaatun, Colin Boyd, OWASP Top 10 - Do Startups Care? (2018) . In:
2018 International Conference on Cyber Security and Protection of Digital Services (Cyber
Security) 2018. DOI:10.1109/CyberSecPODS.2018.8560666

This file was downloaded from SINTEFs Open Archive, the institutional repository at SINTEF
http://brage.bibsys.no/sintef

Halldis Sϕhoel, Martin Gilje Jaatun, Colin Boyd

This is the Accepted version.
It may contain differences form the journal's pdf version

OWASP Top 10 - Do Startups Care?
Halldis Søhoel

BEKK Consulting
Postboks 134 Sentrum

NO-0102 Oslo, Norway

Martin Gilje Jaatun
SINTEF Digital

NO-7465 Trondheim, Norway

Colin Boyd
IIK, NTNU

NO-7491 Trondheim, Norway

Abstract—In a cut-throat world where time-to-market can be
the difference between success and failure, it can be tempting
for startups to think “let’s get it to work first, and then we’ll
worry about security later.” However, major security flaws have
killed more than one startup. This paper studies a small sample
of 5 IT startups that offer services via the web, to determine to
what extent they are aware of and can handle the OWASP top
10 threats.

I. INTRODUCTION

“The Internet of half-baked Things is upon us” the security
expert Marcus Ranum states on the Silver Bullet podcast [1].
Today we are putting chips in everything. This results in
the existence of major unused and poorly secured computing
capacity connected to the internet. At the same time Apple
and Google have had great success with open development
environments opening the door to the software developing
world to anyone willing to learn coding. And people are
willing; every month hundreds of thousands of new apps
and web services with varying quality appear online. We are
using these services to solve our needs in every aspect of
our everyday lives; sleeping, eating, traveling and shopping.
Consumers rarely ask questions about the security of these
systems.

According to Steve Bellovin, “any program, no matter
how innocuous it seems, can harbour security holes” [2]. A
statement that was nicely illustrated on October 2016 when a
DOS attack on the internet infrastructure provider, Dyn [3],
resulted in downtime for Twitter, Netflix and several other
high-profile web pages. It turned out that the attack was
performed by a botnet of poorly secured IoT devices such
as web cameras, video recorders and surveillance cameras.

As web usage increases and becomes part of our day to
day life, compromising these systems become increasingly
rewarding. Attackers no longer need physical access to the
victims, they can attack more than one at the same time and the
possibility of being caught and brought to justice is minimal.

In any other science discipline, the first thing you learn is the
consequence of making mistakes. They teach you that poorly
designed buildings or bridges may cause great disasters. In
computer science, the focus is quite different. In fact, at many
universities and university colleges, although security courses
are offered, they are not a mandatory part of the ICT programs,
leaving many graduates without the most basic knowledge
about security [4]. The attitude among some developers seems
to be that “as long as it functions the intended way, everything

is fine”. The problem arises when hackers start using the
system in an unintended way.

How secure are all these rapidly appearing services? This
paper will contribute to answering that question. Specifically,
we will investigate how well security is maintained in five
start-up companies. Startup companies are an interesting group
to explore because there are no formal requirements to who
can start an IT-company. Anyone willing to learn how to code
can start a business.

Another reason to think that security might be neglected
in startups is that building software is expensive and startups
do not have the resources to invest in anything that will not
bring them closer to the next round of financing. McGraw
and Ranum believe that the core of the problem is that the
software industry is more rewarding to people that are a part
of the problem, rather than those that are a part of the solution.
If companies spend that extra time and resources on creating
good, secure software, they will get delayed in the release
cycle. Especially for startups this can mean life or death for
the business.

On the other hand startup companies have two major
advantages; their high motivation drive them to make better
products, and because they are small in size they can quickly
adapt to secure development life cycles. In fact, smaller
companies implement secure development life cycles at a
higher rate than larger companies, likely because they have
fewer decision levels and are less prone to bureaucracy [5].

Literature suggests that startups manage to make secure ap-
plications even when their knowledge level indicate differently
[6]. There can be two reasons for this; because they are highly
motivated and personally invested in the product they put in
the extra effort to do it right. Another reason may be that
high profile companies like Microsoft, Google and Facebook
are making available complete functionality that take care of
critical transactions, and provide secure sample code that help
developers make more secure applications.

Different applications have different security needs based on
the sensitivity of the information stored and the consequences
of the transactions the application is used for. Some applica-
tions can accept a higher risk than others. To evaluate this we
cannot only look at the technical aspects, but need to consider
the threats and the business values of the system. There needs
to be compliance between the security needs and the security
achieved.

The Open Web Application Security Project (OWASP) top

Presented at Cyber Sciences 2018, Glasgow. Copyright IEEE/C-MRiC
Final version available from http://ieeexplore.ieee.org

ten constitute a consensus among security experts of the ten
most critical web vulnerabilities on the web today. A test plan
based on this list will provide technical insight on the security
of the applications.

The remainder of this paper is organised as follows: In
Section II we present relevant background, with related work
in Section III. We present the method employed in Section IV,
and the participating companies in Section V. We discuss our
findings in Section VII, and conclude in Section VIII.

II. BACKGROUND

One of the awareness documents provided by the Open
Web Application Security Project (OWASP) community is the
ten most critical web application vulnerabilities. The latest
version that received consensus by the start of this project
is the OWASP top 10 2013 [7]. The list was developed
through analysing 500,000 vulnerabilities found in thousands
of applications. The vulnerabilities are rated based on number
of occurrences, exploitability, detectability and impact. The
2013 ranking is listed in Table I.

A1: Injection

A2: Broken Authentication

A3: Cross-Site Scripting (XSS)

A4: Insecure Direct Object References

A5: Security Misconfiguration

A6: Sensitive Data Exposure

A7: Missing Function Level Access Control

A8: Cross-Site Request Forgery (CSRF)

A9: Using Components with Known Vulnerabilities

A10: Unvalidated Redirects and Forwards

TABLE I
OWASP TOP 10 2013

OWASP top 10 2017 was released in the spring 2017,
but was later pulled back as the community disagreed on its
validity. The final version was finally published on October 20,
unfortunately too late to be part of this project. In the 2017
release two of the vulnerabilities from 2013, A8 and A10,
were retired, and A7 and A4 were merged into one under
”Broken Access Control”. There are three new vulnerabilities
added; XML External Entities (B4), Insecure Deserialization
(B8) and Insufficient Logging & Monitoring (B10). OWASP
top 10 2017 is listed in Table II.

There has been quite a lot happening on the application
development front the last 4 years. Microservices, RESTful
APIs and Single Page Applications have completely changed
the architecture of web applications and come with their own
set of security challenges. The fundamental technologies have
changes and are now dominated by new web frameworks such
as Angular and React [7]. Many of the vulnerabilities are
rearranged. Luckily all the vulnerabilities from OWASP top
10 2013 are still relevant, only two were taken off the list
due to low occurrences. However, they are still among eight

vulnerabilities in the 2017 release under “Additional Risks to
Consider”. B4, B8 and B10 from 2017 were not tested in this
project.

B1: Injection

B2: Broken Authentication and Session Management

B3: Sensitive Data Exposure

B4: XML External Entities (XXE)

B5: Broken Access Control

B6: Security Misconfiguration

B7: Cross-Site Scripting (XSS)

B8: Insecure Deserialization

B9: Using Components with Known Vulnerabilities

B10: Insufficient Logging & Monitoring

TABLE II
OWASP TOP 10 2017

III. RELATED WORK

A secure development lifecycle (SDL) is a term used
for addressing security throughout the software development
process and implementing security activities through all phases
of development. Another, and perhaps more precise, term
used to describe this is Secure Software Development Life
cycle (SSDL). Today there exist different methodologies to
achieve this; Microsoft SDL, Microsoft SDL Agile, open-
SAMM (software assurance maturity model) and Comprehen-
sive Lightweight Application Security Process (CLASP). Be-
cause there were so many different opinions and approaches,
The Building Security In Maturity Model (BSIMM) was
started to describe “existing software security initiatives”[8].

A survey by Errata Security [5] showed that 81 % of the
asked companies had heard about the methodologies, however
only 30.4 % were using them. When asked about why they
did not use them 23.9 % provided that they were too time
consuming, 15.2 % that they required too many resources and
4.3 % that they were too expensive.

The survey also showed that smaller companies imple-
mented secure software development life cycles at a higher
rate than larger ones. This is natural as smaller companies are
more flexible because they do not have as many decision levels
and protocols to follow.

A. Software Security in Norwegian organizations

Two studies have recently been conducted to determine the
state of practice in Norwegian organizations with regard to
security. Nicolaysen et al. [9] studied the software security
initiatives of six companies using agile software development
methodologies and Jaatun et al. [10] studied 20 public Nor-
wegian organizations developing software.

Consistent with the Errata survey, Nicolaysen et al. [9]
found that very few of the companies were utilizing method-
ologies for creating secure software. The developers had
no formal training in developing secure software and very

few were concerned about security. Functionality was often
prioritized over security.

The study conducted by Jaatun et al. [10] showed big
variations in the number of security activities being performed.
Out of the 112 activities [11] the organizations were asked
about, one organization did only nine, while another did 87.
On average the organizations did 44 out of the 112 activities.
The study also revealed that few of the organizations were
using a systematic approach to create secure software and the
activities being done depended on initiatives from individuals.
Also developing secure software was not a priority, instead
the organizations were relying on infrastructure to solve the
security needs.

B. Software security in applications made by Silicon Valley
start-ups

Bau et al. [6] conducted an experiment where 19 Silicon
Valley start-ups and 8 hired freelancers were asked to take a
basic software security quiz and submit an application. The
security of the applications were then tested through static
analysis and penetration testing.

The results from the quiz showed that the scores for the
startups were very dispersed. Some of them scored close to
100 % while others knew less that 50 % of the questions. The
startups also did slightly better on the quiz than the freelancers,
but not statistically significant, hence their knowledge level
were concluded to be the same.

The testing showed that the startups made significantly
more secure applications than the freelancers. Furthermore, the
negative correlation between the quiz score and the number of
vulnerabilities found were also bigger among the startups. This
means that the startups did a better job at using their security
knowledge in practice and implementing what they knew.

The tests also showed that in many cases the startups were
successful in developing secure code even in areas where
they had failed on the quiz. This shows that even in areas
were they lacked knowledge they were able to figure it out
and implement it in a correct and secure way. Bau et al. [6]
believe that there are two factors contributing to these facts;
the startups are more motivated and invested to make good
solution, and often developers use frameworks or copy-paste
secure code which may “save them”. One example of this
was one of the freelancers that answered on the quiz that a
secure way to store a password was in plain text; still, in the
application delivered he had hashed the password with a salt.

IV. METHOD

To answer the research questions a handful of techniques
have been selected.

A. Literature study

The Literature study started with a search on Google scholar
for material relevant to the topic. Then the references of the
sources found was followed, and a search for additional ma-
terial by relevant authors was made. The background study is
a historical review showing how traditional computer security

has evolved into the approaches seen today and how these
are used in web application security. The related work section
presents work that is relevant for this project.

B. Interview

A semi-structured interview with company representatives
was performed. The idea was to have a somewhat free conver-
sation, where the representatives talked about their application
and their process. A list of topics necessary to go over
was planned beforehand. The companies would talk about
each topic and some follow-up questions were asked when
necessary. The goal was to determine if and how they work
with security, establish the business context, listen to their
thoughts around the risks connected to the application and
get a picture of how familiar they were with the OWASP top
10.

C. Testing

To find out if any of the applications are exposed to the
OWASP top 10, vulnerability testing was performed. There
are two possible techniques to test for security holes; Black-
box testing and white-box testing.

a) Black-box testing: (or penetration testing) is based on
penetrating the running application from a user perspective.
This means that the tester has no special privileges or prior
knowledge of the application other than that available for
everyone. This is the approach most similar to a real attack
scenario where an adversary is trying to compromise the
application. The tester adapts the mindset of an attacker and
explore real security holes instead of hypothetical ones. The
disadvantage of this approach is that the discovery of some
vulnerability using this method establishes with certainty that
the vulnerability exists, however if a vulnerability is not found
this is no proof that it is not there. Also, the success of the
testing relies upon the skills of the tester and it is assumed
that the skills of the attacker does not exceed these.

b) White-box testing: extends penetration testing by re-
viewing the source code looking for security flaws. This
approach is quite time consuming and require high expertise
as some logical flaws may require detailed knowledge of the
workings of the entire system. The testing can either be done
manually or automatically by using automated tools.

Austin and Williams [12] found that in order to fully
disclose the state of security in an application, multiple tech-
niques should be used. They found that the different techniques
discovered very different types of vulnerabilities. Automated
penetration testing was found to be the most effective way of
finding vulnerabilities. However, the tools sometimes produce
false positives and each vulnerability needs to be verified
manually. Manual penetration testing was the best approach
at finding architectural flaws and automatic static analysis was
better at finding implementation bugs. To get the full picture
of the security it is recommended to use all three techniques.

The technique used in this project is a combination of
automated penetration testing and systematic manual penetra-
tion testing. Testing followed a test plan developed to cover

OWASP top 10, and multiple tests were done for each. The
advantage of following a test plan is that by the end of testing
the tester is confident that all vulnerabilities are covered. For
some of the vulnerabilities there exist useful tools to get
a quick assessment. The vulnerabilities found must then be
verified manually if they pose a real threat. For other OWASP
top then vulnerabilities, for example “Broken Authentication
and Session Management” that are of an architectural nature,
manual testing was mostly used. The tools used were Burp
Suite, Whatweb, Netcat, Dirbuster, Nikto, openSSL and Nmap.
All tools were available on Kali Linux.

D. Evaluation/recommendation of relevant tools and re-
sources

Based on the experience gained during testing, a set of
tools and resources is recommended according to the following
criteria:

• The tools should be free or not too costly; start-ups often
do not have a lot of resources to pay for expensive tools.

• They should be quick and easy to install and use; for
non-experts whose main priority is developing a good
application, it should be easy and intuitive to get started
with security improving tools.

• There should be a limited amount of tools to cover all of
OWASP top 10; the collected set of tools should cover all
of OWASP top 10 but the number should be limited to
make it both easier and faster to get acquainted with all.

• One should not need to be an expert in order to benefit
from the tools; the recipient is a non-expert.

• The tools should give a limited number of false positives;
If the tools gives too many false positives, verifying all
positives get more time consuming than manual testing.

• The tools should be well documented; This is important
for accelerating the learning process and making the tools
useful in less time.

V. COMPANY CONTEXT

This chapter provides some context about the companies.
Section V-A presents the five applications and the start-ups
behind them. In Section V-B the insight gained from the
interviews are presented.

A. The five participating start-ups

To take part in this study five very diverse start-up com-
panies have been recruited. Some store very sensitive and
critical information about their users, while others are less
critical in the sense that compromising the site will not have
major consequences for the users. Some of the start-ups have a
lot of knowledge and experience about web development and
security, while others are more inexperienced and “learn-by-
doing”. One of the companies do not develop the application
themselves but have outsourced all coding to a foreign firm.
The founders of this company all have backgrounds in business
and management.

Company A is a B2B business delivering a time manage-
ment and project management systems to companies. The site

stores sensitive information about their customers such as cus-
tomer relationships, invoices and personal information about
the employees such as national identities, bank accounts and
e-mails. The founders all have backgrounds in business and
management and have outsourced development to a foreign
company.

Company B is a crowd-sourcing website for educational
materials. The users are generating content in the form of
Q/A, quizzes and discussions. What each user is allowed to
do depends on the level of privileges. A user acquire higher
privileges by contributing to the site and getting up-votes from
other users. It is also possible to visit the site as a guest
user. The company consists of 4-5 student studying computer
science and related fields.

Company C is an open source project for online booking
of laundry facilities. The users can create laundries and invite
tenants to book machines. The start-up consist of 4 software
development engineers with experience with web development
and security. The application is a hobby project beside full
time jobs.

Company D provides a communication solution for medical
personnel, patients and dependents. It stores highly sensitive
and personal information about patients connected to a medical
institution. The content can be of the form of pictures, videos,
texts or timetable of patient, routines and even when the
patients last went to the toilette. One of the things that
make this site so critical is that many of the patients are
not legally competent and cannot consent to their information
being made public. It is therefore important to protect this
group form being exploited. The application was developed
as an alternative to publishing and sending this information
through Facebook.

Company E provides tutoring services for children in
primary school. The tutors have to upload a certificate of
good conduct form the police and their diploma on the web
site. The students enter what grades they have in the subject
they want tutoring in what grade they want to achieve. Also
the students enter payment information. The founders have
degrees in computer science and related studies.

B. Interviews

During the interviews, the companies were asked about what
their most important business assets were, and we performed
a risk analysis of their application. We wanted to know what
was critical to protect on the page, who the threat agents were
and what the worst-case scenario is if the application were
to be attacked. They were also asked about how they worked
with security. In the end we went through the OWASP top 10
to see if they had any knowledge about them, and determine
which ones were the most relevant to protect their specific
assets.

Company A: During the interview we agreed that their
most critical assets are the sensitive information about people
and businesses, and leakage of this information would lead to
end of business for the start-up. The most critical vulnerabili-
ties are those connected to authentication and access control.

They said that until now the priority has been on functionality
and creating a working application, but now that they have
real customers they want to focus on making the application
secure. From the OWASP top 10 only injection attack was
known to them. They have no idea whether their application
is secure or not and has so far not been doing any security
activities. It is clear that the founders are eager to deliver the
best possible product to their customers and that they now
realize that security is a part of that.

Company B: There is no sensitive information on the page
that is not already open for everyone to see. Therefore the
greatest risks on this page are destruction and spamming.
CSRF, XSS and privilege escalation are therefore the most
severe vulnerabilities. Unsafe redirections are also relevant
for this page because the site can be used as an enabler for
phishing attacks. Apart from using secure libraries they haven’t
done any security activities and the coders are in charge of
handling security. They had heard about OWASP from taking a
security course at university and had knowledge about some of
vulnerabilities such as injection and XSS, but they did not have
detailed knowledge about OWASP top 10. They suspected that
there might be a lot of vulnerabilities on the site and were
really eager to have it tested. Also, they offered to help with
the testing and clearly wanted to learn more about security.

Company C: The application is developed by 4 professional
web application developers as a side project in addition to
their full time jobs. They seem to have a lot of knowledge
and experience on both web development and security. They
store as little information about the users as possible to make
the application simple to use. The most sensitive info on the
site are the e-mail addresses of users. We agree that the biggest
threads to the system are leakage of e-mail addresses and
passwords, spamming, changing and deleting of bookings and
general destruction. To ensure security they make sure to use
secure frameworks and use the guides of renowned developers
on how to use them correctly. For example once a week they
use snyk to scan through all dependencies in their project
to look for libraries with known vulnerabilities. They have
been testing for access control and enumeration of e-mails.
They were familiar with OWASP top 10 and strives to keep
themselves up to date on them.

Company D: The patients are in many cases not able to
consent to how their information is managed. The information
stored is not really valuable in itself, but because of how
sensitive it is to the persons to whom it belongs, it is very
critical to protect. In some cases information from medical
records may appear on the page. Because of the sensitivity,
the business has a lot of focus on security. They have security
reviews every six months, make sure to have all frameworks up
to date and keep themselves updated on known vulnerabilities.
Also they get a lot of advice from the Data Inspectorate to
make sure they comply with Norwegian law. When asked
about the OWASP top 10, they provided a list stating how
they protect themselves against each one. They are currently
working on implementing BankID which requires the highest
security level in Norway [13].

Company E
This company was ultimately not available for interview.

VI. RESULTS

On all applications there were significant security holes
that need to be fixed. Those companies with the lowest
knowledge about OWASP were also the ones with the most
critical security holes. Those who considered the security
from the start had significantly better security. The results are
summarized in Table IV, where “P” indicates a passing test,
and “F” is a fail.

Company A did not have high hopes about their security
and had prioritized functionality. Still they admitted that
security breaches could lead to the end of their business and
that they had multiple competitors that would be interested
in taking over their market shares. Testing showed that their
security architecture was faulty with multiple severe holes;
targeting specific customers and gaining access to their ac-
counts and even steal admin credentials did not seem at all
too difficult.

Company B: Even though application B does not contain
any confidential information they were very afraid of someone
destroying material or spamming. The testing shows that even
though there is not much to gain from this, it was so easy to do
that someone might still try. These were students with not too
much knowledge about OWASP and not much experience with
web development, learning by doing. This is a good example
that there are a lot of pitfalls when it comes to developing
applications and that security need special attention.

Company C: Although application C did not contain any
critical information, it was still one of the most secure. The
application was very professionally made and very neat. the
company had taken many measures to ensure security. They
had been a little careless with the use of tokens, which could
in turn lead to someone deleting reservations or booking entire
laundries. However, to steal the token the attacker still would
need access to the victims computer and an attack would be
limited to only one individual most likely. If an attacker were
to get hold of a token once he/she could use it forever.

Company D: Application D contains very sensitive infor-
mation and hence the security needs to be handled accordingly.
They were very aware of OWASP and had taken measures
to protect themselves from the start. In fact they were very
well protected in most ways, although they had some slips.
The vulnerabilities here were caused by not considering the
misuse case of someone looking and manipulating the actual
HTTP request/responses. The exploits for these vulnerabilities
were limited in reach by the fact that only authenticated users
could use them, and the account provisioning is strong; the
attacker needed to be at a specific location at a very specific
time to do the exploit. Nevertheless these are vulnerabilities
of significant risk and need to be fixed.

Company E: Application E in contrast to application C
seemed very amateurishly made. There were multiple func-
tions that did not work according to their purpose and the

TABLE III
SUMMARY OF COMPANIES

Outsourcing Information sensitivity Knowledge about OWASP Web Development Experience

Company A Yes Medium/High Low Low

Company B No Low Low Low

Company C No Low Medium High

Company D No Very High High Medium

Company E No High - -

TABLE IV
SUMMARY OF RESULTS

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Company A P F P P F F P F F P

Company B F F P F F F F F P P

Company C P F P P P P P F P P

Company D P F P F P F F P F P

Company E P F P P P F P P P F

password policy was inconsistent. Simple functions like set-
ting the password didn’t work at all. In despite of this the
application was really secure. Looking at the HTTP packet
capture almost none of the requests had the site as host, but
in their place were Google, Facebook, Stripe and other third
parties. When inspecting the responses they were particularly
well configured. So was their Firebase server. When targeting
the search to request that were actually handled by the target
application we found a redirect vulnerability that could be
used to perform a phishing attack. Also even though all
critical transactions went through third party code, the less
critical parts of the site was not configured to be very secure.
We believe that this illustrates that using secure third party
code and sample code is a very good help for inexperienced
developers to make bullet proof applications.

The results of this project are consistent with the view that,
regardless of the security needs of an application, those who
consider security from the start make significantly more secure
applications. This is illustrated by the findings on company
A, B, C and D. A and B had very different security needs,
but what they had in common was that they had not yet
considered security. The two applications in turn showed a
lot of security holes. On the other side there were application
C and D, where C had very low security need and D had very
high. They both were very up to date on OWASP and had
implemented multiple measures to make secure applications.
The application in turn showed few security holes and the
vulnerabilities found were in general limited in reach.

The results also provide additional weight to the findings
of Bau et al. [6] that argued that start-ups make more secure
applications because they are more motivated. Application A,
which was the only application that was outsourced, was also
the application with the most severe security holes. This is

despite of having high security needs.
Findings on application E also shows that secure third party

code and samples from big actors make a big difference
when smaller en slightly inexperienced companies develop
applications. Whenever third party code was being used the
security was exceptional. This material is a great contribution
to the overall security on the web.

VII. DISCUSSION

A. Is security a concern?

It varied how much the start-ups were concerned about
security. While company C and D had clear goals on how to
secure their application and could name a number of measures
that they did to maintain security, Company A and B agreed
that security was important but did not seem to realize to
what extent before the interview. Company A and B also
did not know if their applications were secure or not, and
did not do anything to accomplish a secure application. After
being in touch with many companies in regards to this thesis
there is a clear division in attitudes towards security. Some
companies were very eager to participate in the project, always
replied to e-mails in timely manner and always provided us
with any additional information or documents needed. The
four companies already mentioned were all very grateful to
have their application tested and asked for advice on how to
move forward and improve their security. On the other side,
the majority of companies we approached said that they did
not have time, did not want to commit, or were in general very
hard to get a hold on. We were also in contact with several
more companies that said that they wanted to participate but
then they did not have time to meet us or answer our questions
or we were not able to get in contact with them. It can
be mentioned here that the time required from the company

side was answering a ten minute questionnaire and having a
30 minute interview. It is very possible that many of these
companies were going through a hectic phase. It obviously
takes a lot of time and effort to start a business. However,
because security require special attention, if the attitude toward
security is “we don’t have time” and “It will have to wait until
later”, it is likely that security is not well preserved. As seen
in the literature review, the reason why many companies fail
on security is because it is considered too expensive and it
is not prioritized. Company E did not answer our e-mails for
months and we had to send multiple reminders. In the end
when we decided to move forward without them we finally
heard from them again. We decided to test them because we
were curious to see if this attitude was reflected in some way
in the security of the application. Because they did not show
up for the interview we scheduled, we cannot say anything
about how they work with security. Based on what we have
seen during testing we would say that they rely on third party
code to be secure, and that they themselves do not know
how to develop secure code. This conclusion is based on the
observation that security was very high on all requests made to
third parties and extremely low on request made to the target
application.

B. Do they have knowledge about common resources and
tools?

None of the companies had done any prior testing of the
security and hence did not use any testing tools for either
static analysis or penetration testing. Company C and D both
used dependency checkers and framework specific defenses to
secure their applications. They also had a lot of knowledge
about OWASP top 10 and company D had even done a big
risk analysis. Company D were also in contact with multiple
institutions to give advise and evaluate their security. Company
A and B had some knowledge about OWASP but not a lot,
and were not very aware of the specific OWASP top 10
vulnerabilities. All of them used third party code to handle
specifically sensitive transactions like log in and credit card
information. Company E used Firebase that really helped them
come a long way securing their application. This can be
considered a tool to achieve secure applications.

C. Are their applications protected against OWASP top 10?

All the applications contained at least one vulnerability
although the severity of them differed. Overall we would
say that both application C and D passed the OWASP top
10 penetration test as they had no high risk vulnerabilities.
That being said the both have vulnerabilities that need to be
fixed. Specifically the information leakages and the missing
function level access control in application D were not in-
significant. However, there will always be vulnerabilities in
all applications and what is important to consider is the risk
connected to them and whether the specific security needs
of that application is maintained. In our opinion security on
application C and D is good enough; the security is well
enough maintained.

Application A and B were not well protected against
OWASP top 10 with several high severity vulnerabilities. That
being said, we would still feel safe using application B as
it did not contain any security holes that would affect the
user, also because there is no need to provide any sensitive
information. If someone decided to take down application
B, they probably would succeed. Although all the critical
transactions on application E were handled in a secure way,
they still had one high severity vulnerability present on the
page.

D. Do Start-ups cover the basic needs when it comes to
software security?

Considering whether the basic security needs are covered
basically comes down to whether they are protected against
OWASP top 10 or not. We would say that Application C and
D definitely cover the basic needs that are required. There is
compliance between the security needs of the application and
the actual security obtained. Application A and B both did
not provide even the most basic security needs. They were
not well protected against basic attacks like brute forcing and
SQL injection which would be the first any person with little
security knowledge would try.

Application E was well protected against most vulnerabili-
ties and all critical transactions and sensitive information were
handled in a secure way. Still we would not feel safe uploading
private documents on this site as we are not confident that they
would be handled in a secure way throughout the application.
They rely too much on third party code and the performance of
the application did not demonstrate any knowledge or effort
to secure the information. We feel that they do not ensure
that the information is handled in a secure way, but simply
assume that it is because they are using third part code. We
also believe that a more thorough penetration test not limited
to OWASP top 10 or the time constraints on this project might
reveal more security flaws.

E. Are there tools that can help start-ups uncover vulnerabil-
ities in a fast and easy way?

There are definitely a lot of tools that start-ups can use
to help them improve security that are both free and easy
to use. Snyk and Node Security Project are two examples of
dependency checkers that help maintain up to date compo-
nents in an automatic way. Other dependency checkers exist
for frameworks not covered by these two. Furthermore, we
were really impressed by Firebase both on the security level
maintained and how user friendly and easy to use it was.
Third party code that will handle financial transactions, log-in
and storage of sensitive information is gold for inexperienced
developers wanting to develop secure applications.

Kali Linux comes with a wide range of security testing
tools. There is a single thing to download and set up, and it is
free. Furthermore, it is very common and well used, and there
exist a lot of tutorials online. On Kali Linux the specific tools
found useful were, Burp Suite, openSSL, whatweb, nikto and
nmap. Static analysis tools were not used in this project, but

are helpful for developers to quickly review code. We believe
that at least the SQL injection vulnerability would have been
prevented if a static analysis tool had been used.

VIII. CONCLUSION

We have performed penetration testing on applications made
by five startup companies. The test plan was limited to OWASP
top 10 and a number of tests from the OWASP Testing Guide
were selected for each vulnerability mentioned. Although
they all contained significant vulnerabilities, considering these
together with the business context revealed that 2 out of 5 had
maintained security in a good enough manner; Application
C and D had no high risk vulnerabilities. Also in 3 out
of 5 the user interests were well enough maintained; even
though application B had some serious security flaws, the
vulnerabilities would not lead to any loss for any of the users.
For company E there was only one high risk vulnerability
found where the application could be used as a stepping stone
for launching a phishing attack. Although not posing a threat
to the business goals of the company, this security flaw could
have great consequences for innocent users.

None of the companies had done any prior security tests and
they did not use any formal methodologies for implementing
security. However, company D had done risk analysis and
developed a document discussing how to prevent OWASP top
10.

All of the applications were using third party code to handle
critical and sensitive transactions. This helped ensure that the
security of the most sensitive parts of the applications was
well maintained. Also the companies were using other types
of tools that increased security. Examples of this were de-
pendency checkers, Firebase and framework specific defences.
Although third party code and security tools will help startups
avoid common mistakes, they still have a responsibility to
consider the whole system and ensure that security is main-
tained at all stages of the application. They need to ensure full
coverage.

In OWASP top 10 2017 it is stated: “Don’t stop at 10.
There are hundreds of issues that could affect the overall
security of a web application”. Looking at OWASP top 10
only scratches the surface of the most basic security needs; to
really be confident in the result, more comprehensive testing
has to be performed. Also the disadvantage with penetration
testing is that even if a vulnerability is not disclosed, this is
no guarantee that it is not there. Other testing techniques and
activities should be applied to increase security.

None of the startups were using a systematic approach to
ensure security and the measures being done seemed somewhat
arbitrary. This is not hard to imagine, as startups need to rely
on their own knowledge because they do not have dedicated
security staff.

There is always a trade off between usability and security,
and between cost and risk. One of the founders of company D
said: “If you are afraid to drown, don’t swim”. An application
will never be completely free of security flaws. It is also clear
that when a company is new it cannot be expected to have the

experience and routines of an established company. Also, a
developer just learning how to code cannot be expected to have
the knowledge of a security expert. What seems to be most
crucial is that the startups need to be aware that security is
something that needs to be handled and what the consequences
are if it is not. After only 30 minutes of talking to them about
potential vulnerabilities and risks, they seemed to have whole
new urgency of the matter. There are a number of helpful
resources and tools free online to work with security, but it
will take time, effort and experience to succeed.

ACKNOWLEDGEMENTS

This paper is based on the first author’s MSc thesis at
NTNU. The research in this paper has been supported in part
by the Norwegian Research Council through the project SoS-
Agile, grant number 247678.

REFERENCES

[1] M. Ranum, “Silver bullet talks with gary mcgraw,” IEEE Security
Privacy, vol. 14, no. 5, pp. 7–10, Sept 2016.

[2] G. McGraw, “Software security: Building security in,” in 17th
International Symposium on Software Reliability Engineering (ISSRE
2006), 7-10 November 2006, Raleigh, North Carolina, USA. IEEE
Computer Society, 2006, p. 6. [Online]. Available: https://doi.org/10.
1109/ISSRE.2006.43

[3] K. York, “Dyn statement on 10/21/2016 DDoS attack,” 2016,
last accessed: 2017-11-27. [Online]. Available: https://dyn.com/blog/
dyn-statement-on-10212016-ddos-attack/

[4] O. Lysne, K. Beitland, J. Hagen, Å. Holmgren, E. Lunde, K. Gjøsteen,
F. Manne, E. Jarbekk, and S. Nystrøm, “Digital srbarhet - sikkert
samfunn,” Norges offentlige utredninger, Tech. Rep., 2015.

[5] D. Geer, “Are companies actually using secure development life
cycles?” IEEE Computer, vol. 43, no. 6, pp. 12–16, 2010. [Online].
Available: https://doi.org/10.1109/MC.2010.159

[6] J. Bau, F. Wang, E. Bursztein, P. Mutchler, and J. C. Mitchell,
“Vulnerability factors in new web applications: Audit tools, developer
selection & languages,” Stanford University, Tech. Rep., 2012. [Online].
Available: https://seclab.stanford.edu/websec/scannerPaper.pdf

[7] owasp.org, “Top 10 2013,” 2013, available online at: https://www.owasp.
org/index.php/Top 10 2013-Top 10, Last accessed: 2016-10-13.

[8] BSIMM, “About the BSIMM,” 2017, available online at: https://www.
bsimm.com/about.html, last accessed: 2017-12-25.

[9] T. Nicolaysen, R. Sasson, M. B. Line, and M. G. Jaatun, “Agile
software development: The straight and narrow path to secure
software?” IJSSE, vol. 1, no. 3, pp. 71–85, 2010. [Online]. Available:
https://doi.org/10.4018/jsse.2010070105

[10] M. G. Jaatun, D. S. Cruzes, K. Bernsmed, I. A. Tøndel, and
L. Røstad, “Software security maturity in public organisations,” in
Information Security - 18th International Conference, ISC 2015,
Trondheim, Norway, September 9-11, 2015, Proceedings, ser. Lecture
Notes in Computer Science, J. Lopez and C. J. Mitchell, Eds.,
vol. 9290. Springer, 2015, pp. 120–138. [Online]. Available:
https://doi.org/10.1007/978-3-319-23318-5 7

[11] G. McGraw, S. Migues, and J. West, “Building Security In Maturity
Model (BSIMM V),” 2013, http://bsimm.com.

[12] A. Austin and L. Williams, “One technique is not enough: A
comparison of vulnerability discovery techniques,” in Proceedings of
the 5th International Symposium on Empirical Software Engineering
and Measurement, ESEM 2011, Banff, AB, Canada, September 22-23,
2011. IEEE Computer Society, 2011, pp. 97–106. [Online]. Available:
https://doi.org/10.1109/ESEM.2011.18

[13] Difi, “Ulike sikkerhetsnivå,” 2017, available online at: ”http://eid.difi.
no/nb/sikkerhet-og-informasjonskapsler/ulike-sikkerhetsniva”, Last ac-
cessed: 2017-10-24.

