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Abstract—Two different methods for implementing inertial
damping on a Virtual Synchronous Machine (VSM) and their
potential for attenuating power system oscillations when utilized
in a VSC HVDC terminal are investigated in this paper. As a
reference case, the VSM is considered with only a frequency
droop providing damping in the virtual swing equation. Then,
the effect of damping based on high-pass filtering of the virtual
speed is compared to damping based on high-pass filtering of the
measured grid frequency. A simplified model of a power system
with two equivalent generators and a VSC HVDC terminal
is introduced as a case study. Analysis of the small-signal
dynamics indicates that damping based on the VSM speed has
limited influence on the power system oscillations, while improved
attenuation can be obtained by introducing damping based on
the locally measured grid frequency. The presented analysis and
the operation of the proposed VSM-based damping strategy is
validated by numerical simulation of a 150 MVA VSM controlled
VSC HVDC terminal connected to a dynamic model of the
assumed grid configuration.

Index Terms—Power System Oscillation Damping, Virtual
Inertia, Virtual Synchronous Machine, VSC-HVDC.

I. INTRODUCTION

HVDC transmission systems have for long time been
utilised to damp oscillations in power systems by introducing
additional damping controllers. The first examples of such
auxiliary control functions for damping low frequency os-
cillations were implemented with traditional thyristor-based
HVDC terminals [1–3]. However, modern Voltage Source
Converter (VSC) technology provides faster control response
and decoupled control of active and reactive power. Thus, VSC
HVDC terminals can provide power oscillation damping as
well as additional ancillary services, and can allow for fast
primary frequency control influencing the equivalent inertial
response of the ac power system [4–6]. The fast response can
also enable VSC HVDC converter stations to provide virtual
inertia support to the power system by emulating the inertial
response of synchronous machines [7–9].

With increasing share of converter interfaced generation and
corresponding decommissioning of traditional power plants,
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the potential for providing virtual inertia from HVDC con-
verter stations is expected to become increasingly important.
Such virtual inertia control can generally be implemented
by two approaches [10]: i) Frequency-derivative-based Iner-
tia Emulation (df/dt-IE), where the power response that a
synchronous machine would provide is calculated from the
measured grid frequency and added to the power reference
of a conventional control system. ii) Virtual Synchronous Ma-
chines (VSMs), where the control system relies on an internal
simulation of a virtual swing equation with its corresponding
power-balance-based grid synchronization mechanism. Uti-
lization of df/dt-IE control allows for inertia emulation as
an added feature of a conventional control system based on
grid synchronisation and frequency measurement by a Phase
Locked Loop (PLL), but relies on a relatively strong grid.
However, VSMs can operate in islanded conditions and inertia-
less power systems, as well as under strong grid conditions.

Because of the operational flexibility offered by VSM-based
control strategies, a wide range of implementations and appli-
cations have been proposed [8, 10–14]. Furthermore, auxiliary
functions for supporting the power system operation can be
integrated in the VSM control framework as discussed in [15–
18]. Several recent studies have also analysed how VSM-based
control schemes can be utilised to damp local oscillations
in small-scale power systems [15, 16, 19, 20]. However, less
attention has been directed towards the application of VSM-
based control for damping of low frequency oscillations.
Thus, only a few publications have addressed how VSMs can
be utilized to influence oscillations originating from existing
synchronous machines in a large-scale power system [21, 22].

In this paper, the utilisation of a VSM for damping of
power system oscillations based only on local measurements
is investigated. For this purpose, a simplified model of a power
system with two equivalent generators is introduced. This

Lc Lo

Cf
u1

ci

u1

 
Governor
controller

 
Voltage 

controller

 
Voltage 

excitation

u2

 
Generator
controller

 
VSM

controller

 
Transmission

line
2

 
Equivalent model of a generatorG1

G2

Fig. 1. Power system including two equivalent synchronous generators
connected by a transmission line and a HVDC terminal controlled as a VSM.
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Fig. 2. Electrical and control system overview for the VSM connected to the power system.

model allows for small-signal analysis of how the control of a
VSM will influence the oscillations in the power system. Then,
two different implementations of the internal damping of the
VSM are presented and a parametric analysis of the simplified
system model is conducted to study the impact on the power
system oscillations. By this analysis, it is demonstrated that
implementation of the VSM damping based only on the local
virtual speed has limited capability for damping the power
system oscillations. Instead, additional damping based on the
measured grid frequency can help to attenuate the oscillations
between the two generators. The assumed damping based on
the measured grid frequency has the same form as commonly
applied for df/dt-IE. Thus, the obtained results indicate that
improved damping of power system oscillations based only
on local measurements can be achieved by introducing an
additional df/dt-based term in the power balance of the virtual
swing equation of a VSM. The obtained results are verified by
time domain simulation of the studied system configuration.

II. SYSTEM OVERVIEW AND MODELLING

This section provides an overview of the system configura-
tion and the VSM scheme assumed in this paper. Moreover,
the applied mathematical models will be presented.

A. Reference power system configuration

This paper will consider the power system configuration
presented in Fig. 1, represented by two equivalent synchronous
generators, referred to as G1 and G2, connected via a trans-
mission line. The two generators are locally controlled with a
conventional governor to regulate their speed and an exciter
to control their rotor field. In Fig. 1 these regulators are
displayed separately for G2 and aggregated in the block
labelled ”Generator Controller” for G1. The transmission line
is modelled as a constant impedance. This power system
has been configured to exhibit oscillations between the two
equivalent generators.

As shown in Fig. 1, a VSC-HVDC terminal is connected in
parallel to G1. The HVDC terminal is assumed to be a 2 level
VSC with an LCL ac filter. The dynamics on the dc side of the
HVDC terminal are neglected and the dc link is modelled as
a constant dc voltage source. The HVDC terminal is assumed
to be controlled as a VSM. The main function of the HVDC
terminal is import or export of power, and the VSM-based
control is introduced for providing inertial support to the ac

system. However, this paper will explore the capabilities of
the VSM-controlled HVDC terminal to damp the oscillations
between the generators.

B. Virtual Synchronous Machine Overview

The circuit configuration of the HVDC terminal and the
VSM control scheme are displayed in Fig. 2. The converter-
side series inductance and resistance in the LCL filter are
denoted as Lc and Rc while the grid-side series inductance and
resistance are denoted as Lo and Ro. The filter capacitance is
indicated as Cf . The grid voltage is denoted as ug , while ic is
the converter-side current, and io is the current injected to the
grid. The control of the VSM is based on the scheme presented
in [11] with an inner current control loop cascaded with an
external voltage control. The two controllers are implemented
in a synchronous reference frame (SRF). Space vectors in
the SRF are noted with an arrow over the variable name,
while dq axis components are noted in the subscript (e.g.
~ug = ug,d + juq,d). The converter-side current is controlled
with a space-vector-based PI controller applied to ic, while the
capacitor voltage uf is controlled by another PI controller.

The phase angle orientation of the control system is given
by an inertia model. The inertia model of the VSM is based
on a classical swing equation representation of a synchronous
machine and modelled in the Laplace domain as [10]:

JV · s · ωs = Pm − Pe − Pd −Kω (1)

where JV is the virtual inertia, Kω is the droop coefficient, ωs

is the angular frequency of the VSM and ω∗
s is its reference

value, Pe is the electrical output power, and Pm is the
mechanical power. The variable Pd represents the damping
of the swing equation, including the additional power that is
used in this paper to damp the power system oscillations. This
term will be further discussed in Section III.

The phase angle used for Park transformations in the control
system is obtained by integrating the generator frequency:

θs = 1/s · ωs (2)

The variable eq represents the amplitude of the voltage ref-
erence for the voltage controller and is used to control the
reactive power:

eq = KQ · (Q∗ −Q−QD) · 1/s, (3)
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Fig. 3. Mathematical model of the power system with a VSM integrated

where QD is the reactive power difference provided by the
voltage droop, Q∗ is the reference value, Q is the reactive
power injected to the grid, and KQ is the controller gain. The
voltage droop in the reactive power reference is calculated as:

QD = DQ · (|~u∗g| − |~ug|), (4)

where DQ is the droop coefficient and |~u∗g| is the grid voltage
set point.

C. Power system modelling

The mathematical model of the electrical grid presented in
Section II-A can be expressed in terms of transfer functions.
The synchronous generators are represented with a first or-
der transfer function representing their swing equations. For
G1, J1 and D1 indicate the inertia and the damping factor.
The mechanical power is denoted as Pm1 while the electro-
mechanical power is indicated as Pe1. Thus, the generator
angular frequency can be obtained as:

ω1(s) = 1/(J1s+D1) · (Pm1(s)− Pe1(s)). (5)

The phase of the generator voltage θ1 can be obtained by
integration of the angular frequency as:

θ1(s) = 1/s · ω1(s). (6)

The output power of the generation units is controlled via
a governor represented as a first order transfer function with a
time constant Tg1 and a droop coefficient R1. The mechanical
power for G1 is calculated as:

Pm1(s) = (R1/(Tg1s+ 1))(ω∗(s)− ω1(s)), (7)

where the superscript “*” represents the set-point value. The
same notation is applied for G2.

Assuming that the connection between the VSM and G1
is mainly inductive, the power transfer in steady state can be
calculated as (see Fig. 2):

Ps1 =
|~u1||~uf |

(Lo + Lg)ω∗ sin θs1 ≈
|~u1||~uf |

(Lo + Lg)ω∗ θs1, (8)

where subscript “s” refers to the VSM and θs1 is the angle
difference between the VSM and G1:

θs1(s) = θs(s)− θ1(s). (9)

The approximation assumes that θs1 is small. Therefore, the
coefficient Ks1 in Fig. 3 can be calculated as:

Ks1 = |~uo1||~uof |/((Lo + Lg)ω
∗), (10)

where the superscript “o” represents steady state.
The same approach is applied to model the connection

between the G1 and G2. Indeed, the power transferred between
the two generators can be expressed on the general form of:

P12 = K12 · sin θ12 ≈ K12 · θ12, (11)

where K12 is a steady-state coefficient that models the
transmission line connecting G1 and G2. The approximation
assumes a small phase difference θ12 between the two gener-
ators, defined as:

θ12(s) = θ1(s)− θ2(s). (12)

The phase difference can be calculated by integrating the
difference between the generators frequencies, leading to:

θ12(s) =
ω1(s)− ω2(s)

s
=
ω12(s)

s
. (13)

Imposing the power balance on the two areas leads to:

Pe2(s) = −P12(s), (14)

Pe1(s) = P12(s)− Ps1(s). (15)

Therefore, equation (5) can be rewritten as:

ω1(s) = 1/(J1s+D1) · (Pm1(s) + Ps1(s)− P12(s)). (16)

The mathematical model presented in this subsection can
be summarised in the schematic displayed in Fig. 3.

III. VSM DAMPING STRATEGIES

The term Pd in (1) represents the damping effect of the
virtual swing equation of a VSM. However, the frequency
droop Kω can also contribute to the damping of the VSM
speed. The implementation of the damping term is a notable
differentiating characteristic between the VSM implementa-
tions available in literature. In this paper, the implementation
of the damping term is considered for two distinct objectives: i)
ensuring a damped behaviour of the VSM, and ii) contributing
to attenuation of power system oscillations. For this purpose
the damping term is defined as the sum of two terms, as:
Pd(s) = Pds(s) + Pd1(s) = Ds(s) · ωs(s) +D1(s) · ω1(s). (17)

The transfer function Ds(s) is applied to the rotating speed
of the VSM inertia, while D1(s) is applied to the external
measured frequency. In principle, additional terms for damping
of oscillations in G2 can also be added to the formulation,
but this would require communications or a model-based
estimation of ω2 and will not be considered in this paper.
The two terms Pds(s) and Pd1(s) will be further explained in
the following subsections.
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A. Damping Strategy based on VSM speed

The term Pds(s) is calculated by high-pass filtering the
speed of the VSM according to [23], and is implemented with
the transfer function:

Pds(s) = Ds(s) · ωs(s) = KDs
Twss

Twss+ 1
· ωs(s), (18)

where Tws is the filter time constant and KDs is the gain of
the compensator. The wash-out (high-pass) filter prevents in-
fluence on the steady-state droop characteristic associated with
Kω . The vale of Tws should be large enough to influence the
oscillation frequencies to be damped, but not too large because
this will increase the power requirements during transients.
This implementation will be labelled as “self-damping”.

B. Damping Strategy based on Estimated Grid Frequency

This second damping term is based on high-pass filtering of
the frequency estimated from the voltage at the VSM terminals
and defined as follows:

Pd1(s) = D1(s) · ω̂1(s) = KD1
Tw1s

Tw1s+ 1
· ω̂1(s), (19)

where Tw1 is the time-constant of the filter. The value of ω1 is
not known, so it has to be estimated (ω̂1). For this purpose, a
PLL has been applied in this paper. Although more advanced
models can be utilized, the estimation time of the PLL is
modelled with a first-order LPF, leading to:

ω̂1(s) = 1/(TPLLs+ 1) · ω1(s), (20)

where TPLL is the time constant of the PLL. Higher-order
filters can be used to model the PLL, and this is of interest
for further research. For the practical implementation, an
additional low-pass filter should be added in series with the
PLL to filter high-frequency noise. This damping strategy will
be called “grid-damping” in the rest of the paper. For sake
of clarity, the resulting control scheme for the VSM after
integrating the two damping terms is summarized in Fig. 4.

IV. NUMERICAL RESULTS

This section presents numerical results for assessing the
effect of the two damping terms on the dynamic properties
the VSM and its capability for attenuating power system
oscillations. A case study is first introduced based on the
configuration described in section II. Thus, tuning consid-
erations are presented on a simplified representation of the
system together with a general eigenvalue stability analysis.
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full view and (b) zoom. VSM frequency damping (c) full view and (d) zoom.

Finally, these trends and the performance of the damping
implementations are verified with time domain simulations.

A. Case Study Description

The nominal grid conditions are 400 kV RMS (phase-to-
phase) and 50 Hz. The parameters of the LCL filter are L1 =
0.04 pu (R1 = 0.004 pu), L2 = 0.016 pu (R2 = 0.001 pu), and
Cf = 0.05 pu (Rd = 0 pu). The current controller is designed
with a phase margin of 60 degrees and a cross-over frequency
of 250 Hz. The voltage controller is designed with a phase
margin of 60 degrees and a cross-over frequency of 60 Hz.
The connection between G1 and the VSM is represented as a
series impedance with Lg = 0.07 pu and Rg = 0.02 pu. The
parameters of the electrical model of the grid are J1 = 0.02,
R1 = 0.3, D1 = 0, Tg1 = 0.05, J2 = 0.02, D2 = 0, R2 = 0.3,
and Tg2 = 0.05. The value of K12 was set to 0.7, while K1s

was calculated with (10). The time constants of the wash-out
filters were set to Tw1 = Tws = 0.5 s. The parameters of the
VSM controller were set to JV = 0.02, Kω = 0.2, KQ = 10,
and DQ = 50 ·103. For small-signal analysis, a simplified first
order model of the PLL has been assumed according to [24],
with a time constant of TPLL = 0.03 s. However, a detailed
discrete-time implementation of a DSOGI-PLL according to
[25] has been used for time-domain simulations.

B. Eigenvalue Analysis

The dynamic performance and the stability properties of
the power system when adding the damping terms are first
performed by eigenvalue analysis on a simplified model. The
validity of these results will be verified by detailed simulations
in Section IV-C. Fig. 5 shows the eigenvalues of the system
depicted in Fig. 3 when the gains for the damping terms KDs

and KD1 are modified. In the left subplots, only the grid
damping term is varied while the self damping term is disabled
(i.e. KDs = 0). Vice versa, in the right subplots only the
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self damping term is modified while the grid damping term is
disabled (KD1 = 0). For the grid-damping, the resonant poles
move away from the imaginary axis when KD1 increases.
However, there is a pair of complex poles that initially move
away from instability, but return towards the unstable region
when the value of KD1 continue increasing. For the case of
self-damping (to the right), the damping of the complex poles
slightly improves when the gain is increased, before the poles
move quickly towards the unstable region. This implies that
the capability of damping the oscillations in the power system
is lower than for the grid-damping.

Fig. 6 shows the lowest damping factor of all the poles
included in the system model as a function of the parameters
KD1 and KDs. Damping increases up to a point where,
suddenly, another eigenvalue reaches the stability limit. The
damping of the closed-loop poles related to the inter-area
oscillation improves also for higher gains. However, as shown
in the pole-zero analysis in Fig. 5 the low-frequency poles
move towards the unstable region when the gains increase.
By observing the figure, it can be seen that a combination of
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KDs and KD1 provides the highest damping value and that the
best results are obtained when both parameters have similar
values.

C. Time Domain Simulations

A simulation model of a HVDC-VSC terminal connected
to a grid is used to validate the proposed damping schemes.
The model has been developed in the Matlab/Simulink en-
vironment. The sampling and switching frequencies were 5
kHz. Pulse width modulation with third harmonic injection
was used. Classical decoupling equations were used for the
current and voltage controllers.

1) Oscillating grid: Fig. 7 shows the performance of the
electrical grid when the VSM is excluded and a 0.1 pu
load is connected to G1. Initially, the frequency of both
areas was constant. However, when the load was connected,
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the low-frequency resonance of the grid was excited. This
result highlights the existence of a poorly damped oscillation
between G1 and G2.

2) VSM excluding Damping: Fig. 8 shows the transient
performance of the electrical system when the VSM is con-
nected to G1. In this case, the proposed damping terms are not
included in the formulation of the VSM. Although the dynamic
response is still poorly damped, it can be noticed that the
settling time of the oscillations has been significantly reduced
compared to the case in Section IV-C1. Thus, the results,
demonstrate that already the droop gain of the VSM-based
control can have a non-negligible influence on the damping
of the power system oscillations. However, the damping can
be further improved by utilisation of the additional damping
terms presented in this paper. It can also be noticed that
even though the a simplified model was used to analyse the
low-frequency oscillations, the oscillation frequency resulting
from the simulations matches with the prediction from the
eigenvalue analysis.

3) Damping of Oscillations: Fig. 9 shows the numerical
results obtained when the combined damping technique is
applied. Oscillations in the G1 and the VSM frequencies
present in Fig. 8 have been clearly reduced. Also, the power
injected from the VSM to grid is reduced compared to Fig. 8.

V. CONCLUSION

In this paper, two alternative implementations for damping
in a VSC HVDC controlled as a VSM have been presented and
assessed comparatively. The first alternative requires only the
rotating speed of the VSM inertia, while the second is based on
the estimated frequency of the voltage measured at converter
terminals. A reference power system with two generators
interconnected by a transmission line has been modelled and
the effect of a 150 MVA VSM on its dynamic behaviour
is examined. Eigenvalue analysis and numerical simulations
demonstrated that the VSM can effectively contribute to the
damping of power system oscillations. Although the damping
based on estimated frequency has the strongest influence on
the power system oscillations, the highest impact is obtained
when both damping terms are present and optimally tuned.
Both implementations in this paper adopt a first order high pass
filter to isolate and identify the oscillatory mode. However,
more advanced or higher order filters could be applied to
further improve the performance of the system but this is
considered as a topic for further research.
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