
This is the Accepted version of the article

 On Enhancing Visual Query Building over KGs Using Query Logs

Citation:
Klungre V., Soylu A., Giese M., Waaler A., Kharlamov E. (2018) On Enhancing Visual
Query Building over KGs Using Query Logs. In: Ichise R., Lecue F., Kawamura T., Zhao D.,
Muggleton S., Kozaki K. (eds) Semantic Technology. JIST 2018. Lecture Notes in
Computer Science, vol 11341. Springer, Cham
DOI: https://doi.org/10.1007/978-3-030-04284-4_6

This file was downloaded from SINTEFs Open Archive, the institutional repository at SINTEF
http://brage.bibsys.no/sintef

Klungre V., Soylu A., Giese M., Waaler A., Kharlamov E

This is the Accepted version.
It may contain differences form the journal's pdf version

On Enhancing Visual Query Building
Over KGs Using Query Logs

(Short Paper)

Vidar Klungre1, Ahmet Soylu2,3, Martin Giese1,
Arild Waaler1, and Evgeny Kharlamov1,4

1 University of Oslo, Oslo, Norway
{vidarkl, martingi, arild, evgeny.kharlamov}@ifi.uio.no

2 Norwegian University of Science and Technology, Gøvik, Norway
ahmet.soylu@ntnu.no

3 SINTEF Digital, Oslo, Norway
4 University of Oxford, Oxford, United Kingdom

evgeny.kharlamov@cs.ox.ac.uk

Abstract. Knowledge Graphs have recently gained a lot of attention
and have been successfully applied in both academia and industry. Since
KGs may be very large: they may contain millions of entities and triples
relating them to each other, to classes, and assigning them data values, it
is important to provide endusers with effective tools to explore informa-
tion incapsulated in KGs. In this work we present a visual query system
that allows users to explore KGs by intuitively constructing tree-shaped
conjunctive queries. It is known that systems of this kind suffer from the
problem of information overflow: when constructing a query the users
have to iteratively choose from a potentially very long list of options,
sich as, entities, classes, and data values, where each such choice corre-
sponds to an extension of the query new filters. In order to address this
problem we propose an approach to substantially reduce such lists with
the help of ranking and by eliminating the so-called deadends, options
that yield queries with no answers over a given KG.

1 Motivation and Overview

Motivation. Knowledge Graphs (KGs) are collections of interconnected enti-
ties annotated with classes and data values, which have become powerful assets
for enhancing search and are now widely used in both academia and industry.
Prominent examples of large-scale knowledge graphs include Yago [23], Google’s
Knowledge Graph [1], that are used by search engines, and Siemens [16] and
Statoil [15] corporate KGs.

Many existing knowledge graphs are either available as Linked Open Data, or
they can be exported as RDF datasets [4] enhanced with OWL 2 ontologies [3]
capturing the relevant domain background knowledge. SPARQL [11] has become
the standard language for querying KGs stored as RDF datasets with OWL 2
ontologies, and an increasing number of applications offer SPARQL endpoints to

Fig. 1: Example visual query system OptiqueVQS

access KGs. Writing SPARQL queries, however, requires some proficiency in the
query language and is not well-suited for the majority of users [25,12]. Thus, an
important challenge that has attracted a great deal of attention in the Semantic
Web community is the development of simple yet powerful query interfaces for
non-expert users [19,2,9,10,26,7].

Visual Query Building. An important class of such interfaces for KGs is visual
query building systems [20], where the users can construct queries by combin-
ing classes and properties offered by the system, and by setting constraints on
classes and/or properties by selecting appropriate values offered by the system.
Consider in Figure 1 a prominent example of a system for visual query building,
OptiqueVQS [22,21], that we developed in tight collaboration with companies
such as Statoil and Siemens. In the following example we illustrate the query
formulation process in OptiqueVQS that should help the reader in understand-
ing the mode of interaction between the users and visual query systems and will
also help us to clarify challenges that we address in this work.

Example 1. In Figure 1 one can see a real world query that was constructed by a
Statoil engineer when we conducted a user study. The engineer constructed the
following query:

Give me all the wellbore cores extracted from a wellbore interval, such
that it overlaps with another wellbore interval whose stratigraphic unit is
named ‘BRENT’, along with all the permeability measurements of their
samples and the values of these measurements in standard unit.

Now we explain OptiqueVQS in more details. The system has three main widgets:
The first widget (W1 in bottom-left of Figure 1) is menu-based and it allows
the user to navigate through concepts of an ontology by selecting relationships
between them. The second widget (W2 on top of Figure 1) is diagram-based and
it presents typed variables as nodes and object properties as arcs and gives an
overview of the query formulated so far. The third widget (W3 in bottom-right
of Figure 1) is form-based and it presents the attributes of a selected concept for
selection and projection operations.

W1 initially lists all the concepts in the ontology and a user starts formulat-
ing a query by selecting a starting concept. The concept chosen from W1 becomes
the active node (i.e., pivot) and appears in W2 as a variable node. W1 then lists
concept - object property pairs pertaining to the pivot, since there is now an
active node. The user can continue adding more typed variables into the query
by selecting a pair from W1. The selected concept-object property pair is added
to the query over the pivot, and the formulated query is presented as a tree in
W2. The concept from the last chosen pair automatically becomes the active node
(i.e., pivot), and the active node can be changed by clicking on the corresponding
variable node in W2. The user can constrain attributes (i.e., using the form el-
ements) and/or select them for output (i.e., using the “eye” icon) through W3.
The user can also refine the type of a variable node through a special multi-select
form element, called “Type”, in W3. (Not included in screenshot.)

To run the constructed query, the user clicks the “Run Query” button and the
system allows to see sample query results and to manipulate them, e.g., to apply
sorting and aggregation operations, see the widget W4 in Figure 2. Moreover,
the user can view and interact with the query in textual SPARQL mode (i.e.,
textual and visual modes are synchronised). In the top part of Figure 2 one can
see the SPARQL version of our example query from Figure 1. The user can also
save, modify, and load queries.

Information Overload Problem. An important challange for visual query
systems applied in the context of KGs is information overload [24,14]: a number
of options for query construction that a visual query system offers to a user is
comparable to the size of data over which the query is constructed. Since large
scale KGs contain millions of entities, data values, and up to hundreds of classes,
the number of options hampers the query construction process. Our OptiqueVQS
system is not an exception and it also suffers from the information overload
problem. Indeed, consider in Figure 1, even for a small ontology the number
of suggestions given in W1 for a pivot concept would require a user to scroll
down in the list several times due to high number of potential concept-object
property pairs and reasoning effect. The latter requires propagating concept
restrictions upwards and downwards in the hierarchy and results in new concept-
object property pairs for a given concept originating from its parent and child
concepts [8]. The same applies to W3 not only in terms of data properties being
suggested but also potential values being offered for each property. For example,

Fig. 2: Query from Example 1 in SPAQRL, presented in OptiqueVQS

the potential values offered for the name attribute in the example is too extensive:
Statoil database has several thousands of names and their variations.

Query Logs in Enhancing Query Building. In this work we propose to
exploit query logs, that is, queries that the users have constructed when they
used the visual query system, to enhance the query building process and reduce
the information overload. Our first idea is to exploit query logs in ranking and
top-k computation, that is, we show to the user only those components for query
construction that occur often enough in the logs. Our second idea is to show to
the user only those components for query construction that are not deadends,
that is, if the user relies on any of them in query construction then the resulting
query will not return empty answers over the underlying dataset. As we discuss
later in the paper, deadend elimination is computationally demanding and we
rely on query logs to reduce the cost of such elimination.

This is a preliminary study, we are still developing our approaches. In the
following section we give more details on our ideas.

2 Our Approach and Further Directions

The main hypothesis behind our approach is that the queries over KGs that
are often used by users during query construction are more important than
the ones used less often or not used at all. We analyse the frequency of usage
for queries and their fragments from query logs and then use the frequency to
optimise suggestions of elements of KGs that we suggest to users during query
construction sessions.

Queries and Query Logs. We assume that the reader is familiar with the basic
notions of RDF and SPARQL, queries, databases, query evaluation and refer
the reader to [3,11] for further details. In this work we consider only tree-shaped
conjunctive queries over classes, object properties, data properties, entities, data
values, and variables since they are supported by OptiqueVQS [21]. Given a
database D and a query Q, with ans(Q,D) we denote the answer set of Q over
D. A query log Q is a set of queries. A query pattern P is a query that contains
no entities or data values. Given a query Q, a query pattern for Q, denoted p(Q),
is Q where all entities and data values are substituted with fresh variables in
such a way that the same entities are and the same values are substituted with
the same variables. With Q1 ⊆ Q2 and P1 ⊆ P2 we denote that the query Q1 is
a subquery of Q2 and that the pattern P1 is a subquery of P2. Finally, a query
suggestion E is a query that consists of one atom. Then, given a query Q, with
Q ∧ E we denote a query obtained by extending Q with E by adding E to Q
with the conjunction.

Ranking Based on Query Logs. Given a query log Q and a query pattern P ,
we define the conditional probability of P wrt to Q as the frequency of queries
from Q whose patterns contain P as in Equation (1) on the left, where | · | as
usual denotes the cardinality of a set. Now we define how a given pattern T is
‘important’ for another pattern P wrt the query log Q as the ranking function
in Equation (1) on the right.

Pr(P | Q) =
|{Q ∈ Q | P ⊆ p(Q)}|

|Q|
, r(T | P,Q) =

Pr(T ∩ P | Q)

Pr(P | Q)
(1)

Let Q be a query that is constructed by a user, Q be a query log, and E a query
suggestion. Finally, we define the ranking of a suggestion E for Q wrt Q as the
average rank of Q∧E for patterns in Q, that is, rQ,Q(E) =

∑
Q′∈Q r(p(Q∧E) |

p(Q′),Q)/|Q|. In other words, the rank of a suggestion E is defined via the
importance of the pattern of E to the pattern of Q wrt the query log Q.

This approach can be further extended by incorporating the semantic dis-
tance between concepts and properties involved as a cofactor into the ranking
function, so that that queries from Q that are semantically distant from Q con-
tribute less to the ranking. For example, Huang et al. [13] suggest a similarity
measure using the depth of compared concepts and properties and their least
common ancestors from the root of hierarchy to compute similarity between con-
cepts and properties and combining them to compute similarity between triple
patterns, hence queries.

Deadend Elimination Based on Query Logs. In this approach we eliminate
so called contextual deadends [24,5], that is, query extensions E for a query
Q such that the query Q ∧ E evaluated over a given database D gives the
empty set of answers. For us both Q and D form the context for E. Given a
set of suggestions E and a context Q and D, a naive way to eliminiate deadends

would be to go over E , to pick E ∈ E one after another, to check whether
ans(Q ∧ E,D) = ∅, and to delete from E all E for which it is the case. The
suggestions that remain in E at the end of this procedure would not be deadends.
A disadvantage of this approach is that such procedure requires to run |E| queries
over D and this is computationally demanding for a large |E|. Indeed, even when
|E| = 10, 000 modern RDF backends would not be able to process that many
queries in time acceptable for an interactive system, that is, in time that many
users would tollerate to wait [5]. Indeed, it will take on average 15 seconds for
such well known systems as Sesame [6]5 Stardog [18]6, and RDFox [17]7 to run
that many queries. At the same time, |E| = 10, 000 can easily occur in practice,
indeed, observe that DBpedia contains more that 6 million entities and many of
them can be potentially relevant for being suggested, e.g., via the linked-to object
property8. Even for |E| = 1, 000 the average query evaluation time is about 3
seconds [5] and DBpedia contains more than 2, 700 data and object properties
that can potentially be relevant and suggested to a user.

In order to speedup deadend elimination we propose to rely on query logs.
Our idea is, given a database D and a query log Q, to select among the queries in
the log the most promising query patterns P , that is, the most frequent ones, and
to pre-materialise answers ans(P,D) for each P s as databases DP in a ‘smart
way’ (see details below). Then, given a query Q and a set of suggestions E one can
verify for each E ∈ E the emptiness of the answer set ans((P∩Q)∧E,DP) instead
of ans(Q∧E,D) and do not suggest those E to the user that pass the emptiness
test. One can show that this procedure is an approximation of the naive one
described above, that is, there are cases when (i) ans((P ∩Q)∧E,DP) = ∅, but
ans(Q ∧E,D) 6= ∅, and (ii) ans((P ∩Q) ∧E,DP) 6= ∅, but ans(Q ∧E,D) = ∅.
One can partially address Cases (i) by the way that DP is materialised: one can
materialise ans(P ′, D), for P ′ that slightly extends P with all possible extensions
at the output variable. One can show that this approach does not affect Cases
(ii) and our preliminary experiments show that this also helps to significantly
reduce the number of Cases (i) in practice.

Further Directions. Our current research effort is targeted towards evaluating
the approaches for ranking and deadend elimination as well as towards combin-
ing and improving them. For example, the approach that we see as promising is
to first compute top-k suggestions given a query partially constructed by a user
and a query log, and then to eliminate the deadends among the top-k. Our pre-
liminary evaluation of our approximate approach to deadend elimination shows

5 Sesame is a widely-used Java framework for processing RDF data. It offers an easy-
to-use API that can be connected to all leading RDF storage solutions.

6 Stardog is a Java-based triple store providing reasoning support for all OWL 2
profiles as well as a SPARQL implementation.

7 RDFox is an in-memory RDF triple store that supports shared memory parallel
Datalog reasoning. It is written in C++ and comes with a Java wrapper allowing
for a seamless integration with Java-based applications.

8 https://wiki.dbpedia.org/dbpedia-version-2016-04

https://wiki.dbpedia.org/dbpedia-version-2016-04

that we can eliminate up to 80% of deadends using pre-materialised views that
contain about 10% of the original data. This gives us a significant improvement
in terms of time over the naive approach without a dramatic compromise on the
quality of deadend elimination.

3 Conclusion

The information overload is a challenging problem that is vital for the query
building over large scale KGs. In this short paper we presented our preliminary
work on enhancing visual query building over KGs by addressing the overload
problem with the help of query logs. We presented a ranking model and an
way to eliminate deadends, as well as a discussion how they can be combined
and further improved. We are excited to present our work to the Semantic Web
community.

Acknowledgements This work is partially funded by EU H2020 TheyBuy-
ForYou (780247) project.

References

1. Google’s Knowledge Graph. http://www.google.co.uk/insidesearch/features/
search/knowledge.html.

2. iSPARQL QBE. http://dbpedia.org/isparql/.
3. W3C: OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/.
4. W3C: Resource Description Framework (RDF). http://www.w3.org/RDF/.
5. Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska,

and Dmitriy Zheleznyakov. Faceted search over rdf-based knowledge graphs. J.
Web Sem., 37-38:55–74, 2016.

6. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema. In Proc. of ISWC,
pages 54–68, 2002.

7. Enrico Franconi, Paolo Guagliardo, Marco Trevisan, and Sergio Tessaris. Quelo:
an Ontology-Driven Query Interface. In DL, 2011.

8. Bernardo Cuenca Grau, Martin Giese, Ian Horrocks, Thomas Hubauer, Ernesto
Jiménez-Ruiz, Evgeny Kharlamov, Michael Schmidt, Ahmet Soylu, and Dmitriy
Zheleznyakov. Towards query formulation, query-driven ontology extensions in
OBDA systems. In OWLED, 2013.

9. Florian Haag, Steffen Lohmann, Stephan Siek, and Thomas Ertl. Visual querying
of linked data with QueryVOWL. In Joint Proceedings of SumPre 2015 and HSWI
2014-15. CEUR-WS, 2015.

10. Sanda M. Harabagiu, Dan I. Moldovan, Marius Pasca, Rada Mihalcea, Mihai Sur-
deanu, Razvan C. Bunescu, Roxana Girju, Vasile Rus, and Paul Morarescu. FAL-
CON: boosting knowledge for answer engines. In TREC, 2000.

11. Steve Harris and Andy Seaborne. SPARQL 1.1 Query language. W3C Recommen-
dation, 21 March 2013.

12. Philipp Heim, Thomas Ertl, and Jürgen Ziegler. Facet Graphs: Complex Semantic
Querying Made Easy. In ESWC, pages 288–302, 2010.

http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://dbpedia.org/isparql/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/RDF/

13. Hai Huang, Chengfei Liu, and Xiaofang Zhou. Computing Relaxed Answers on
RDF Databases. In WISE, volume 5175 of LNCS, pages 163–175. Springer, 2008.

14. Evgeny Kharlamov, Luca Giacomelli, Evgeny Sherkhonov, Bernardo Cuenca Grau,
Egor V. Kostylev, and Ian Horrocks. Semfacet: Making hard faceted search easier.
In CIKM, pages 2475–2478, 2017.

15. Evgeny Kharlamov, Dag Hovland, Martin G. Skjæveland, Dimitris Bilidas, Ernesto
Jiménez-Ruiz, Guohui Xiao, Ahmet Soylu, Davide Lanti, Martin Rezk, Dmitriy
Zheleznyakov, Martin Giese, Hallstein Lie, Yannis E. Ioannidis, Yannis Kotidis,
Manolis Koubarakis, and Arild Waaler. Ontology based data access in statoil. J.
Web Sem., 44:3–36, 2017.

16. Evgeny Kharlamov, Theofilos Mailis, Gulnar Mehdi, Christian Neuenstadt,
Özgür L. Özçep, Mikhail Roshchin, Nina Solomakhina, Ahmet Soylu, Christoforos
Svingos, Sebastian Brandt, Martin Giese, Yannis E. Ioannidis, Steffen Lamparter,
Ralf Möller, Yannis Kotidis, and Arild Waaler. Semantic access to streaming and
static data at siemens. J. Web Sem., 44:54–74, 2017.

17. Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Parallel
Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems.
In AAAI, pages 129–137, 2014.

18. Héctor Pérez-Urbina, Edgar Rodŕıguez-Dı́az, Michael Grove, George Konstantini-
dis, and Evren Sirin. Evaluation of Query Rewriting Approaches for OWL 2. In
Proc. of SSWS+HPCSW, 2012.

19. Alistair Russell and Paul R. Smart. NITELIGHT: A graphical editor for SPARQL
queries. In ISWC (Posters and Demos), 2008.

20. Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Evgeny Kharlamov, Dmitriy
Zheleznyakov, and Ian Horrocks. Ontology-based end-user visual query formu-
lation: Why, what, who, how, and which? Universal Access in the Information
Society, 16(2):435–467, 2017.

21. Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Guillermo Vega-Gorgojo, and
Ian Horrocks. Experiencing OptiqueVQS: a multi-paradigm and ontology-based
visual query system for end users. Universal Access in the Information Society,
15(1):129–152, 2016.

22. Ahmet Soylu, Evgeny Kharlamov, Dimitry Zheleznyakov, Ernesto Jimenez Ruiz,
Martin Giese, Martin G. Skjaeveland, Dag Hovland, Rudolf Schlatte, Sebastian
Brandt, Hallstein Lie, and Ian Horrocks. OptiqueVQS: a visual query system over
ontologies for industry. Semantic Web, 9(5):627–660, 2018.

23. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In WWW, pages 697–706, 2007.

24. Daniel Tunkelang. Faceted Search. Synthesis Lectures on Information Concepts,
Retrieval, and Services. Morgan & Claypool Publishers, 2009.

25. Andreas Wagner, Günter Ladwig, and Thanh Tran. Browsing-oriented Semantic
Faceted Search. In DEXA, pages 303–319, 2011.

26. Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong Yu. SPARK: adapting
keyword query to semantic search. In ISWC, pages 694–707, 2007.

	On Enhancing Visual Query Building Over KGs Using Query Logs (Short Paper)

