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Abstract

Cyber-physical empirical methods consist in partitioning a dynamical system under study into a set of physical and numerical
substructures that interact in real-time through a control system. In this paper, we define and investigate the fidelity of such
methods, that is their capacity to generate systems whose outputs remain close to those of the original system under study. In
practice, fidelity is jeopardized by uncertain and heterogeneous artefacts originating from the control system, such as actuator
dynamics, time delays and measurement noise. We present a computationally efficient method, based on surrogate modeling
and active learning techniques, to (1) verify that a cyber-physical empirical setup achieves probabilistic robust fidelity, and
(2) to derive fidelity bounds, which translate to absolute requirements to the control system. For verification purposes, the
method is first applied to the study of a simple mechanical system. Its efficiency is then demonstrated on a more complex
problem, namely the active truncation of slender marine structures, in which the substructures’ dynamics cannot be described
by an analytic solution.
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1 Introduction

Empirical methods constitute the cornerstone of
most scientific fields. They consist in generating
knowledge about a system through observation, to
verify hypotheses and build models of the real-
ity that surrounds us. Cyber-physical empirical
methods (CPEMs) have been developed and ap-
plied in diverse engineering fields such as civil en-
gineering [McCrum and Williams, 2016], aerospace
[Wallace et al., 2007], automotive [Misselhorn et al., 2006],
engine development [Filipi et al., 2006], electrical power
engineering [Edrington et al., 2015], thermomechan-
ics [Whyte et al., 2015], and floating wind energy
[Sauder et al., 2016,Bayati et al., 2017]. CPEM aim at
studying a dynamical system by partitioning it into
physical and numerical substructures that interact in
real-time through a control system. While the behaviour
of the physical substructures is partly unknown, the nu-
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merical substructures are described by state-of-the-art,
validated and, in general, non-analytic computational
models. CPEM therefore augment classical empirical
methods with validated numerical models, to address
problems that classical empirical methods alone, or
models alone, can not conveniently or reliably address.
This is for example the case: (1) when the system un-
der study is “ill-conditioned”, i.e. when it contains a
large span of characteristic spatial dimensions and/or
time constants. In that case, the part of the system
that does not fit in the laboratory, or whose dynamic
is slow, can advantageously be replaced by a numeri-
cal model [Sauder et al., 2018]. (2) when scaling effects
should be tackled, such as in the case of model testing
of floating wind turbines [Allen and Goupee, 2017]. (3)
when component testing should be performed, that is
when the focus is on the performance of a specific un-
certain substructure, that is interacting with the other
substructures as part of a complex system.

The control system at the heart of a CPEM plays a cru-
cial role for its validity as an empirical method. Indeed,
the dynamical properties of a cyber-physical empirical
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setup must reflect those of the real system under study,
and this, in spite of heterogeneous artefacts such as time
delay or sensor noise, which are inevitably introduced
by the components of the control system. This perfor-
mance requirement, which we denote high fidelity, is the
subject of this paper. Even if CPEM are developed in a
controlled laboratory environment, some uncertainty is
entailed to the artefacts: sensor noise variance, or the in-
terconnection delays between the substructures, remain
for example uncertain at the design stage, and can be
quantified accurately only when the setup is realized.
However, the amount of uncertainty on these quantities
can be estimated from expert judgment [Jaynes, 1957] or
dedicated surveys [Schwarz, 1978], and modeled within
a probabilistic framework.

In this setting, our objective is to analyze whether a
CPEM achieves probabilistic robust fidelity, i.e. high
fidelity with a probability 1 − Pf larger than a de-
fined admissible threshold 1− εadm, with εadm ∈ (0, 1).
An account of probabilistic robust analysis and de-
sign methods for control systems has been given in
[Calafiore et al., 2011]. Their advantages in terms of
conservatism and complexity when compared to the
classical worst-case robustness approaches have been
discussed in details in [Tempo et al., 2013, Chap-
ter 5], and are illustrated by a simple case study in
[Chen et al., 2005]. The main drawback of probabilistic
approaches is that estimating Pf implies the evalua-
tion of a multidimensional integral, which is challenging
in high-dimensions and when non-analytic models are
involved. As we will see, this a typical situation en-
countered when dealing with CPEMs. To address such
problems, randomized algorithms have been developed
[Tempo et al., 2013], which rely on sampling the per-
formance function. The required number of samples is
however shown to be large for low Pf , i.e for highly
reliable systems [Alamo et al., 2015].

The main scientific contribution of this paper is the de-
velopment of a new method to verify the probabilistic
robust fidelity of CPEMs, and to derive fidelity bounds,
which can be used as specifications to the control sys-
tem. The devised method (1) is non-intrusive, and thus
not limited to analytic models, which allows its applica-
tion to the wide class of dynamical systems studied with
CPEMs, (2) allows handling an arbitrary number and
type of artefacts, which exhibit parametric uncertainty,
and (3) is based on surrogate modelling and active learn-
ing techniques to achieve unprecedented computational
efficiency, even for high-dimensional and high-reliability
problems.

The paper is organized as follows. In Section 2, we define
quantitatively the fidelity ϕ of a CPEM, and formulate
the robust fidelity and fidelity bounds problems. The
solution to these problems is described in Section 3, and
illustrated by two example cases in Section 4. Finally,
conclusions are given in Section 5.

(a) Generic representation of a CPEM with three sub-
structures Σi, and exogenous excitation τ .

(b) Interconnected set of three substructures Σi subjected
to artefacts ∆ij . Note that the yi output signals are dou-
bled here for clarity.

(c) Synthesis of each ∆ij from elementary artefacts, ex-
amples of which are listed in Table 1.

Figure 1. Model of the cyber-physical experimental setup.

Notations. We let NQ = {0, 1, ..., Q}, N∗ = N\{0} and
N∗Q = NQ \ {0}. The uniform distribution with support

[a, b] is denoted U(a, b), and N (µ,Σ) denotes the multi-
variate Gaussian distribution with mean µ and covari-
ance matrix Σ. The symbol ∼ means “distributed as”.
For i ∈ N∗, θ(i) refers to a sample of the random vector
Θ, while θi refers to the ith component of θ.

2 Problem statement and definition of fidelity

Let s denote the total number of substructures, and
let τ(t) = (τ1(t), ..., τs(t)) represent an exogenous ex-
citation signal, with support [0, T ], acting on the sub-
structural partition. A generic way of modelling CPEM,
suitable for all the applications listed in Section 1, is
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the following interconnected system: ∀i ∈ N∗s, ẋi =
fi(xi, uij , τi) and yi = hi(xi), where xi is the internal
state of substructure Σi, and yi its output. uij is the in-
put to Σi originating from yj . Following e.g. bond graph
terminology, if yi is a flow, then ∀j 6= i, uij must be ef-
forts, and vice versa. The interconnections between the
substructures are subjected to heterogeneous artefacts,
such as measurement noise or communication-induced
time delays: ∀i ∈ N∗s,∀j ∈ N∗s \ {i},∀t > 0, uij(t) =
∆ij((yj(t

′))t′∈[0,t], θ), where θ is a M -tuple parameter

defined on a domain D ⊂ RM , that describes the arte-
fact’s properties for the whole system. The components
of θ may include sensor noise variance, or the amount
of communication-induced time delay between two sub-
structures. Fig. 1 presents this structure for s = 3. The
effects of given artefacts on a reference signal are illus-
trated in [Sauder et al., 2018].

Owing to the presence of numerical substructures
among the Σi, studying the robustness of such
an interconnection would in principle imply the
use of digital or hybrid control theory, see e.g.
[Tabuada et al., 2014,Goebel et al., 2012]. In the par-
ticular case of CPEM, however, the “cyber” parts of
the system (the numerical substructures) represent
continuous dynamical systems. Assuming that ade-
quate time-stepping algorithms are employed, see e.g.
[Bursi et al., 2013], we can make abstraction of their
digital nature, and treat the problem as a classical prob-
abilistic robust control problem. Note, however, that
some aspects related to the digital nature of the hard-
ware, such as quantization, sampling, and zero-order
hold, can be approached by the present method, by
modeling them as artefacts.

We will in the following now introduce the definition of
the fidelity of a CPEM. For i ∈ N∗s, let x̄i denote the
state of Σi when ∀j 6= i, uij ≡ yj (i.e. without artefacts).
For a given Q ∈ N∗, let (γq)q∈N∗

Q
, be a family of cost

functions satisfying

∀q ∈ N∗Q, (∀i ∈ Ns, xi|θ → x̄i)⇒ (γq → 0) (1)

Definition 1 The fidelity ϕ is defined on D as

ϕ(θ) := −1

2
log

∑
q∈N∗

Q

γ2
q ({xi|θ(t), x̄i(t)}i∈N∗s ,t∈[0,T ]) (2)

The rationale behind Definition 1 is the following. (1)
Each γq function compares selected quantities of inter-
est (QoI) derived from the states (x1, x2, ..., xs)|θ with
the corresponding QoI derived from (x̄1, x̄2, ..., x̄s). If all
states xi converge towards x̄i, then all γq tend to zero,
and ϕ→∞. Fidelity quantifies therefore the capability
of the CPEM to generate QoI that are similar to the real
system, when subjected to same excitation. (2) The re-
ciprocal is however not true: high fidelity can be achieved

even if some states xi which are not of interest, i.e. not
included in the calculation of any γq, differ from x̄i. This
is a major difference with the concept of resilient cyber-
physical systems, see e.g. [Fawzi et al., 2014]. A high fi-
delity value does not imply a correct estimation of the
complete state xi in presence of artefacts, but rather a
correct estimation of selected state-derived quantities of
interest. This will be illustrated in Example case II. (3) If
the cyber-physical empirical setup becomes unstable be-
cause of the introduced artefacts, some γq may blow up
in some domains of D. On the other hand, when study-
ing high-fidelity setups, we may be interested in empha-
sizing the difference between small values of the γq. The
logarithm is introduced for this reason. (4) A sum of the
squares, rather a maximum function, is used to combine
the cost functions γq, which preserves the smoothness
properties of the functions θ 7→ γq(θ). Using a maximum
function instead would have compromised the differen-
tiability of ϕ even if the γq were smooth functions. This
choice will prove convenient when analyzing the prob-
lem.

As a probabilistic robust approach to fidelity is consid-
ered, we assume the artefact parameter θ to be the re-
alization of a random vector Θ with a known (but ar-
bitrary) distribution fΘ. Given a minimum admissible
fidelity ϕadm ∈ R, the two problems addressed in the
in the present paper can then be formulated as follows.
(1) Robust fidelity : does P [ϕ(Θ) < ϕadm] < εadm hold?
In other words, given a dynamical system and a sub-
structural partition, can artefacts that are likely to be
introduced by the control system lead to an unaccept-
able loss of fidelity? (2) Fidelity bounds. What is the set
{θ ∈ D|ϕ(θ) ≥ ϕadm}, i.e. the absolute constraints on
the control system to guarantee sufficiently high fidelity?

3 Solution

Let us first pinpoint that solving problems (1) and (2)
above is equivalent to identifying the domain of failure
Df ⊂ RM defined by

Df = {θ ∈ D|ϕ(θ) < ϕadm}. (3)

Indeed, letting IDf
(θ) be the indicator function for the

set Df , the probability of failure Pf := P [ϕ(Θ) < ϕadm]
is simply

Pf =

∫
Df

fΘ(θ)dθ =

∫
D
IDf

(θ)fΘ(θ)dθ (4)

Because of the non-analytic character of the fi func-
tions, a sampling-based approach must be employed to
determine Df . A naive Monte-Carlo simulations (MCS)
approach, would consist in drawing N samples of Θ,
calculate ϕ(θ(i)) for each of them, and then compare
the result to ϕadm. Pf could then be estimated by
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Table 1
Some examples of elementary artefacts, their possible sources, and the corresponding describing parameters (component of θ).
Fourth and fifth columns: probabilistic description of the artefacts involved in example cases I and II (Section 4). The signal
loss artefact is parametrized by a probability of occurrence ζ1 ∈ [0, 1) and an inverse duration parameter ζ2 > 0. When it
occurs, the duration d of the signal loss is distributed as fD(d) = ζ2e

−ζ2d. For example case II, x and z refer to the horizontal
and vertical components of the force measurement, and sens. and act. refer to the artefacts modelling the sensing and actuation
part of the loop, respectively. For more details, see Section 4.2.
Type of artefact Example of sources Describing parameter(s) Example case I Example case II

Gain sensor calibration error scaling factor Θ1 ∼ N (1, 0.0052) [-] Θ1 ∼ N (1, 0.0152) [-] (x)

actuator limitations Θ3 ∼ N (1, 0.0052) [-] Θ2 ∼ N (1, 0.0152) [-] (z)

Bias zero measurement bias value - Θ3 ∼ N (1, 0.052) [N] (x)

sensor drift - Θ4 ∼ N (1, 0.052) [N] (z)

Noise measurement noise variance - Θ5 ∼ U(0.0252, 0.052) [N2] (x)

- Θ6 ∼ U(0.0252, 0.052) [N2] (z)
Constant time delay computational time duration Θ2 ∼ U(0, 20) [ms] Θ7 ∼ U(0, 5) [ms] (sens.)

communication time Θ4 ∼ U(0, 20) [ms] Θ10 ∼ U(0, 5) [ms] (act.)
Signal loss unfinished iteration process probability of occurrence - Θ8 ∼ U(1%, 10%) [-] (sens.)

faulty measurement - Θ11 ∼ U(1%, 10%) [-] (act.)

inverse duration parameter - Θ9 ∼ U(0.77, 3.87) [s−1] (sens.)

- Θ12 ∼ U(0.77, 3.87) [s−1] (act.)
Quantization analog to digital conversion resolution - -
Zero-order hold sampling sampling period - -
Saturation actuator limitations limit(s) - -

N−1
∑
i∈N∗

N
IDf

(θ(i)). However, since IDf
(θ(i)) follows

a binomial distribution, estimating Pf with a confi-
dence interval of δ (typically 5%), requires performing
at least N ≥ (1 − Pf )(δ2Pf )−1 simulations (see also
[Chernoff, 1952] for bounds not depending directly on
Pf ). This is practically unfeasible when the fi func-
tions are computationally expensive, and when Pf is
small, which is in fine what is expected from the control
system design.

Our strategy to characterize Df and evaluate Pf is to
replace ϕ(θ) by a suitable surrogate model, which can
be interrogated, and with which MCS can be performed
at a negligible cost. The formulation and identification
of this model will be outlined in Sections 3.1 and 3.2, re-
spectively. Using active learning, the surrogate model is
refined by parsimonious and targeted sampling of ϕ(Θ).
This will be detailed in Section 3.3. Before proceeding,
let us note that sampling ϕ(θ) implies that the system
described in Section 2 must be co-simulated for t ∈ [0, T ],
accounting for the presence of artefacts. To do so, an iter-
ative procedure must ensure flow- and effort-consistency
between the substructures and artefacts at each time
step. Providing details regarding the co-simulation is not
within the scope of the present paper, but the interested
reader may consult [Sauder et al., 2018] for details and
examples.

3.1 Polynomial-chaos kriging (PCK) model of ϕ(θ)

In the following, we assume that an initial set E of N
samples of Θ has been generated using a space-filling
sampling method, such as latin hypercube sampling.
The corresponding values of ϕ are evaluated, and gath-
ered in F = [ϕ(θ(1)), ϕ(θ(2)), ...ϕ(θ(N))]>. We will now
introduce the chosen surrogate model for ϕ, which
combines the benefits of polynomial chaos-based and
kriging-based models to surrogate complex functions
[Schöbi et al., 2015].

Definition 2 [Schöbi et al., 2016] A Polynomial-Chaos
Kriging (PCK) surrogate model is a Gaussian random
process K(θ, ω) of the form:

K(θ, ω) =
∑
α∈A

aαψα(θ) + σ2Z(θ, ω, l) (5)

where Z is a zero-mean, unit variance stationary Gaus-
sian process with variance σ2, ω is the underlying prob-
ability space represented by a parametric correlation
function R(θ, θ′, l), while the (ψα)α∈A form a sparse
polynomial chaos expansion, i.e a wisely selected fi-
nite set of orthonormal polynomials with respect to Θ
[Blatman and Sudret, 2011]. The (ψα) are used as re-
gressors, and are weighted by a set of coefficients (aα),
gathered in a |A|-tuple which we denote β. Z is as-
sumed in this work to be described by the general Matérn
correlation function 1 .

A PCK constitutes a surrogate model, since its coeffi-
cients β, σ and l can be tuned based on E and F , so
that the mean and most probable value of K at a point
θ, i.e. E[K(θ, ω)], surrogates ϕ(θ). Furthermore, the key
aspect of this model is that the uncertainty of the PCK
estimate can be quantified through Var[K(θ, ω)]. Indeed,
assuming that the coefficients β, σ, and l, involved in (5)
are known, the following statement can be made.

1 The general Matérn correlation function is defined by:

R(θ, θ′, l) = 21−νΓ−1(ν)
(
2νh2)ν/2 Kν

(√
2νh2

)
(6)

where h2 =
∑M
i=1

(
|θi−θ′i|
li

)2

, and where l ∈ (R+)M contains

scale parameters describing the amount of correlation be-
tween neighbours for each component θi. Γ and Kν are the
Gamma and the modified Bessel function of the second kind,
respectively. ν is the shape parameter related to the smooth-
ness properties of the process. See e.g. [Dubourg, 2011].
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Claim 3 ϕ(θ) can be estimated at any point in D by

ϕ(θ) ≈ µK(θ) := f(θ)>β + r(θ)>R−1(F − Fβ) (7)

with an uncertainty

σ2
K(θ) := σ2(1− r(θ)>R−1r(θ)>) (8)

where f(θ) ∈ R|A|×1 contains the ψα(θ) polyno-
mials evaluated at θ, F ∈ R|A|×N contains, in
each column the ψα(θ) polynomials evaluated at
θ(i), r ∈ RN×1 is the cross-correlation vector with
∀i ∈ N∗N , ri(θ) = R(θ, θ(i), l), and R ∈ RN×N is the

correlation matrix with ∀i, j ∈ N∗N , Rij = R(θ(i), θ(j), l).

PROOF. By definition, a Gaussian process is a col-
lection of random variables, any finite number of which
have a joint Gaussian distribution. From Definition 2,
[ϕ(θ),F>]> is then the realization of a random vector
V ∈ RN+1 distributed as:

V ∼ N

([
f(θ)>β

Fβ

]
, σ2

[
1 r(θ)>

r(θ) R

])
(9)

According to [Santner et al., 2003, Theorem 3.2.1],
the estimator of ϕ(θ) with minimum mean-squared
prediction error is E[V1|[V2, ..., VN ]>]. As derived in
[Eaton, 2007, p.117], this conditional expectation is a
Gaussian random variable, whose mean µK(θ), and thus
most probable value, is equal to the right hand side of
(7). Its variance is given by (8). 2

It is important to make the distinction between the ran-
domness of Θ and the randomness introduced through
ω in Definition 2. While the former is a reality of our ro-
bust fidelity problem, the latter gives us a tool to model
the epistemic uncertainty on ϕ(θ) at locations where it
has not been evaluated, and leads to the result stated in
Claim 3.

3.2 Determination of the PCK model parameters

The PCK model coefficients in (5) are found based
on the available data (E ,F) as follows. In a first step,
an optimal sparse set of polynomials (ψα)α∈A is de-
termined through solution of an `1-regularized sparse
least squares problem with the so-called least angle re-
gression method. The exact procedure is outlined in
[Blatman and Sudret, 2011], and not detailed here due
to space constraints. Then,

Claim 4 the coefficients β and σ2 can be estimated by:

β̂ =
(
F>R−1F

)−1
FR−1F (10)

σ̂2 =
1

N
(F − Fβ)TR−1(F − Fβ) (11)

PROOF. Let us assume in a first stage that l in (6) is

fixed. The optimal coefficients β̂ and σ̂2 in (5) are those
which lead to a process K whose most likely realization is
ϕ(θ). Since by construction,K is a Gaussian process, the

optimal coefficients β̂ and σ̂2 in (5) are those which max-
imize the likelihood, or log-likelihood of F , expressed as

logL(F|β, σ2) =

−N
2

log 2πσ2 − 1

2
log |R| − 1

2σ2
(F − Fβ)>R−1(F − Fβ)

(12)

The values of β and σ2 maximizing this expression
necessarily satisfy the first-order optimality conditions
∇β(logL) = 0 and ∇σ2(logL) = 0. Since R is symmet-
ric, they read

FTR−1(F − Fβ) = 0 (13)

− N

2

1

σ2
+

1

2σ4
(F − Fβ)>R−1(F − Fβ) = 0 (14)

which leads to (10) and (11). 2

The hyperparameter l inR is determined as the one min-
imizing the leave-one-out cross validation error ELOO
of the PCK model. In principle, ELOO is calculated as
follows: a PCK model is established as described above,
using all but one samples in E , and the error between
the PCK model and the actual value of ϕ is evaluated
at the sample that was not included. This operation is
repeated for each sample in E , and the ELOO is ob-
tained from the arithmetic mean of the N results, see
[Bachoc, 2013]. In the present work, we used a genetic
algorithm [Goldberg, 1989] to find the global optimum l.

3.3 Adaptive Kriging (AK)

We recall that our objective is to characterizeDf . At the
initial stage, N is in general chosen large enough to ob-
tain good estimates of the expected fidelity E[ϕ(Θ)], the
variance Var[ϕ(Θ)], and some useful sensitivity informa-
tion [Sauder et al., 2018], but as we will see in the Ex-
ample cases, it is generally too small to properly charac-
terize Df . However, by using the PCK model, estimates
of ϕ(θ) and the associated uncertainty are available any-
where in D from (7) and (8). Taking advantage of this
information, the surrogate model K can be refined by
active learning as suggested in [Schöbi et al., 2016], and
summarized in the following.

Let the limit state hypersurface be the set L = {θ ∈
D|ϕ(θ) = ϕadm}, and Φ be the standard normal cu-
mulative distribution function. First, a 5% confidence
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bound about the estimated L is defined through the sets
D+
f = {θ ∈ D|µK(θ)− kσK(θ) < ϕadm}, and D−f = {θ ∈
D|µK(θ) + kσK(θ) < ϕadm}, with k = Φ−1(97.5%) ≈
1.96. The relative complement Mf = D+

f \D
−
f is denoted

the limit state margin L [Dubourg, 2011]: it defines a
location where (1) ϕ is probably close to ϕadm, and/or
(2) there is a large uncertainty on the value of ϕ. This
is where K ∈ N∗ new relevant samples of Θ should be
generated, and added to E to refine the PCK model.

These K samples are selected among a large set of auxil-
iary samples of Θ (with typical cardinality 105-106) gen-
erated using MCS. The probability of misclassification
Pm of each sample located in L is evaluated as

Pm(θ) := Φ

(
−|µK(θ)− ϕadm|

σK(θ)

)
(15)

which corresponds to the probability of the PCK model
to predict that θ is in Df while it is actually not, or
vice-versa. If the enrichment is performed with K = 1,
E is simply enriched with the sample θnew featuring the
largest Pm. If K > 1, K clusters of points in L with
high Pm values are identified, and a sample representa-
tive of each cluster is selected using a K-means cluster-
ing algorithm [Zaki and Meira, 2014, Chapter 13]. Both
approaches will be illustrated in the example cases. The
enriched sets E and F are then used to define a new, re-
fined, PCK model as described in Section 3.2. As it will
be demonstrated in the following example cases, the lo-
cations of L and Df become, step by step, more exact,
and the probability of failure Pf can be estimated from
(4) by performing MCS using the PCK model and the
auxiliary sample set.

The uncertainty on the estimated Pf is quantified by
comparing the probabilities of failure estimated fromD+

f

and D−f , respectively. If the difference between them is

less than 5% of Pf (evaluated from the estimated Df ),
convergence is considered to be achieved. Convergence
towards the true value of Pf when N → ∞ is guar-
anteed by the fact that (1) the learning function (15)
weights uncertain areas of D, and thus eventually ex-
plores the whole space D, and (2) the resulting PCK
(5) will interpolate exactly ϕ(θ) since it is an universal
approximation function. Note that no formal proof of
optimal convergence, as compared to other established
methods, is available for this algorithm. It has, how-
ever, been shown to be more computationally efficient
(see e.g. [Echard et al., 2011]) and more precise (see e.g.
[Schöbi et al., 2016]) than existing methods, and is able
to tackle non-connected failure regions Df .

3.4 Summary of the method

We have outlined a procedure that generates a PCK
model K surrogating ϕ(θ), with particularly high accu-

Figure 2. Case I. A two mass-spring-damper system. The
grey flag-shaped block corresponds to the location of the
control system.

racy near the limit state L. As a result, the probabilistic
robust fidelity of a cyber-physical empirical setup (prob-
lem 1) can simply be analyzed by interrogating the PCK
model on a large set of auxiliary samples and using (4).
The PCK model can also be interrogated to verify that
the as-built setup, characterized by an estimated θ, sat-
isfies the fidelity bounds (problem 2). Finally, in a design
phase, the optimal control system can be found as the
one minimizing some cost function c(θ), while ensuring
high-enough fidelity:

minimize
θ∈D

c(θ) subject to µK(θ)− ϕadm ≥ 0 (16)

4 Example cases

The devised method will be demonstrated on two ex-
amples, which differ by the type of dynamical system
under study, but also by the number and nature of the
considered artefacts. Case I serves as a verification of
the method. The mechanical system is simple, analyti-
cally described, and subjected to a small number of arte-
facts. It can therefore conveniently be analyzed by clas-
sical methods. Case II is an industrial problem originat-
ing from the field of ocean engineering, arguably diffi-
cult to approach with classical methods. In both cases,
the cyber-physical empirical setup contains s = 2 sub-
structures, interconnected as shown in Fig. 1b. Σ1 is nu-
merical, and Σ2 is physical (but also simulated here, for
the purpose of the analysis). Σ2 is subjected to an ex-
ogenous load τ2. It is decided to measure the force (ef-
fort) y2 at the interface between the substructures, and
to control the linear velocity (flow) y1 of the interface.
The γq functions involved in the definition of the fidelity
(2) will be detailed for each case. The UQLab frame-
work is used to perform the probabilistic analysis, see
[Marelli and Sudret, 2014].

4.1 Case I: coupled oscillators

We first consider the linear oscillators coupled and sub-
structured as represented in Fig. 2. We set m = 1kg,
k = 1N/m, and c = 1% × 2

√
km, leading to a lightly

damped system. We investigate its response to a step
force τ2 acting on mass m2, from 0 to 1N with T = 100s.
The velocity V2 of the mass m2 is the QoI, and the fol-
lowing cost function (Q = 1) is used in definition of the
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Figure 3. Case I. Time series of the QoI, in the absence and
presence of artefacts (red and black curves, respectively).
For the latter case, three different samples of Θ, leading to
three values of ϕ are shown: θ(1) = (1.007, 4.23, 0.993, 6.75)>

(solid line), θ(2) = (1.004, 10.33, 0.998, 12.31)> (dashed line),

and θ(3) = (0.990, 18.53, 0.993, 17.17)> (dash-dot line).

fidelity (2):

γ1 =

(∫ T
0

(
V2(t)|θ − V̄2(t)

)2
dt∫ T

0
V̄2(t)2dt

) 1
2

(17)

This cyber-physical empirical setup is subject to the fol-
lowing set of artefacts. A calibration error (constant gain
αs) and a data processing-induced time delay τs are af-
fecting the force measurement. Similar artefacts affect
the velocity actuation (parametrized by αa and τa, re-
spectively), representing a first approximation of the ac-
tuator dynamics. The artefact parameters are gathered
in θ = (αs, τs, αa, τa)>. The probabilistic properties of
each component of Θ are detailed in the fourth column
of Table 1. Fig. 3 shows how artefacts influence the QoI,
and how this translates into a loss of fidelity. As a design
choice, we require a minimum fidelity ϕadm = 0.7 (worst
case in Fig. 3), with reliability 1− εadm=0.999.

In the present case, some properties of the cyber-physical
empirical setup can be established from frequency do-
main analysis. The transfer function, in the Laplace do-
main, between τ2 and the QoI V2 reads

H(s) =
s [P (s) + αe−τs(k + cs)]

P (s)2 + αe−τs(k + cs)ms2
(18)

where P (s) = ms2 + cs+ k, α = αsαa and τ = τs + τa.
Equation (18) indicates that αs and αa (resp. τs and τa)
play symmetric roles, and that the total scaling factor α
and the total delay τ are of importance for this system.

The PCK model K is calibrated, as outlined in Section
3.2, from an initial set E containing N = 100 samples
of Θ, see Fig. 5. Note that none of the artefacts’ real-
ization in the initial set E leads to unacceptable fidelity.
E is step-wise enriched with new samples as described
in Section 3.3 and illustrated in Fig. 4. The full set of
samples generated during the enrichment process is rep-
resented by square markers in Fig. 5. They resolve the

fidelity bounds for this setup. Pf is evaluated from (4),
and is found to converge after ca 100 iterations (see Fig.
9) towards 1.6.10−3 > εadm, which means that robust
fidelity is not achieved for this setup.

The following remarks are in order when considering Fig.
5. (1) The fact that failure clearly occurs in well-defined
regions of the α − τ plane is consistent with (18): the
individual values of τs and τa (resp. αs and αa) are ir-
relevant for this system, it is their sum (resp. product)
that matters. Note, however, that in general such knowl-
edge is not available, and that such structures are not
easily identifiable, especially when dealing with a high-
dimensional Θ. (2) As expected, loss of fidelity occurs
when τ becomes large and when α deviates (i.e. increases
or decreases) from unity. In contrast, by inspection of
(18), it can be established that the dynamical system be-
comes unstable for τ ≥ 40 ms when α = 1, and that the
stability margin may be increased only by decreasing α,
when τ=40ms. While stability is in general necessary to
ensure high fidelity of a cyber-physical empirical setup,
it is obviously not a sufficient condition. (3) While most
of the samples selected by the enrichment algorithm are
located near L, some of them seem inadequately gener-
ated in regions with high fidelity. The reason is that they
typically feature an unlikely large value of αs, combined
with an unlikely small value of αa (or vice-versa). Even
if α = αsαa is close to unity, such a combination falls
in an unexplored region of D, leading to a large value
of σK and thus Pm, in (15). The corresponding sample
is therefore selected by the AK algorithm. This is com-
monly referred to as sample space exploration.

4.2 Case II: active truncation of a slender structure

We will now show how the proposed method allows tack-
ling more complex robust fidelity problems, in higher
dimension spaces, and in which non-analytic descrip-
tion of the substructures must be used. We revisit the
case study detailed in [Sauder et al., 2018], in which a
floating oil production platform is considered, moored
in 1200m water depth with a polyester mooring line.The
objective is to perform hydrodynamic model testing of
this system at a scale λ = 1/60. Due to space limitations
in the hydrodynamic laboratories, the mooring line is
truncated 240m below the free surface, as shown in Fig.
6. The upper portion of the line (Σ2), is represented by a
reduced-scale physical model in the hydrodynamic lab-
oratory, while its lower portion (Σ1) is simulated with
the finite element method. The control strategy is as in-
dicated in the introduction of Section 4. The mooring
line is subjected to current and wave loads. The latter
are represented by a force (Fx(t), Fz(t))

> acting on the
top of the line, see the upper plot in Fig. 7.

The following artefacts are assumed to affect the setup.
The force sensors (one for the horizontal component
Fx, and one for the vertical component Fz), located at
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Figure 4. Case I. Illustration of the enrichment procedure. In all plots, the grey points correspond to the initial space-filling
set E . In the first column, the blue points correspond to all auxiliary samples for which E[K] is close to ϕadm (projection in
the (αs, αa) plane on top, and in the (τs, τa) plane on the bottom). The second column shows the regions of large uncertainty
Var[K], and the third column to resulting high values of the learning function Pm. The red diamond marker represents θnew.
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Figure 5. Case I. Samples of θ = (αs, τs, αa, τa)>, repre-
sented in the α-τ plane. Dots represent samples from the ini-
tial set E (100 samples), while squares correspond to the en-
richment process (160 samples). Black markers corresponds
to ϕ(θ) > 0.75, blue markers to ϕ(θ) ∈ (0.70, 0.75] and red
markers correspond to ϕ(θ) ≤ 0.70.

the truncation point, suffers from calibration error (pa-
rameters θ1 and θ2, respectively), bias (θ3 and θ4, re-
spectively), and measurement noise (θ5 and θ6, respec-
tively). Time delays are induced by communication and
data processing (parametrized by θ7 on the sensor side,
and θ10 on the actuator side). Signal loss and subse-
quent jump, occur both due to communication errors
with the underwater force sensors (θ8 and θ9 parametrize
the probability and inverse duration parameters, respec-
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Figure 6. Case II. Frame on the bottom left: general illustra-
tion of the problem (not at scale). Main plot: mooring line
configuration at given time instants when subjected to the
external load τ2(t). An inline/transverse coordinate system
is used to highlight the deformations of the mooring line.
The dashed lines represent the motion envelope of the line.

tively), and due to nonlinear iterations of the numerical
substructure that do not complete on time (θ11 and θ12).
Fig. 1c shows how the elementary artefacts are composed
to create ∆12 and ∆21. The two middle plots in Fig. 7
show how the artefacts affect the force y2 = (fx, fz)

>

and velocity y1 = (vx, vz)
> at the truncation point. The

probabilistic description of Θ is given in the last column
of Table 1. For this Case, Q = 2 and the QoI are the
velocity components of the top of the line, which we de-
note Vx and Vz. The fidelity ϕ is calculated based on the
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following γq functions.

γ1 =

(∫ T
0

(
Vx(t)|θ − V̄x(t)

)2
dt∫ T

0
V̄x(t)2dt

) 1
2

(19)

γ2 =

(∫ T
0

(
Vz(t)|θ − V̄z(t)

)2
dt∫ T

0
V̄z(t)2dt

) 1
2

(20)

We set the minimum admissible fidelity to ϕadm = 0.8
with a reliability of 1− εadm = 0.999.

Fig. 8 illustrates the first step of the enrichment proce-
dure. The interesting regions (associated to large Pm)
are detected where the ratio θ2/θ1 deviates significantly
from unity (distortion of the force angle), θ8 is small
(long periods of signal loss of the force sensor), and, to
a some extent, when significant delays θ8 and θ9 occur.
These findings are consistent with the physics of the
problem, discussed in details in [Sauder et al., 2018]. A
key difference with the analysis performed in Case I, is
that K = 16 new samples of θ are added at each step
of the enrichment process. Since the new samples are
chosen by a clustering algorithm, they tend to be nicely
spread over the limit state margin. This leads to an ef-
ficient identification of all portions of Df , which can be
non-connected, and thus to a smoother convergence of
Pf . Furthermore, the co-simulations and evaluations of
ϕ for the batch of 16 new samples can be performed at
the same time, in parallel. The evolution of the estimated
probability of failure Pf during the enrichment process
is shown in Fig. 9. From the initial sample set (256 sam-
ples), Pf is estimated to 2.5 × 10−2 > εadm, but after
about 60 steps, Pf stabilizes around 3.6.10−4 < εadm.
Small oscillations are still visible in the 20 last steps,
which can be suppressed (this may be necessary if Pf is
very close to εadm) by increasing the cardinality of the
auxiliary sample sets, used to compute (4). Note that
even if dim(D) = 12, the total number of required steps
remained of the order of 102. [Schöbi et al., 2016] also
showed that this number was relatively insensitive to the
order of magnitude of Pf .

5 Conclusion

We have presented a method for the design and anal-
ysis of control systems orchestrating CPEMs. The ob-
jective was to require probabilistic robust fidelity of the
setup, despite the presence of parametric and uncer-
tain artefacts, inevitably introduced by the components
of the control system. In particular we showed how fi-
delity bounds could efficiently be established by using
a PCK surrogate model, gradually enhanced by Adap-
tive Kriging. Example case II demonstrated that the
proposed method could be used in the verification of
ultra-deepwater floating systems in hydrodynamic lab-
oratories. This complex problem, of great interest to

the offshore industry, involves a variety of heterogeneous
artefacts, and its analysis using existing analytical or
sampling-based methods would be practically unfeasi-
ble. The presented method is part of a larger frame-
work, in which the sensitivity of fidelity to each compo-
nent of the control system can be efficiently established
[Sauder et al., 2018]. It is expected that the combination
of surrogate modelling and active learning techniques,
applied here to the analysis of CPEM, can contribute
to solve, in an efficient and pragmatic manner, a much
wider class of probabilistic robust control problems.
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