Probabilistic robust design of control systems for high-fidelity cyber-physical testing

Thomas Saudera,c, Stefano Marellib, Asgeir J. Sørensena

aCentre for Autonomous Marine Operations and Systems, Department of Marine Technology, NTNU, 7491 Trondheim, Norway
bChair of Risk, Safety and Uncertainty Quantification, Institute of Structural Engineering, ETH Zürich, Stefano-Franscini-Platz 5, CH-8093 Zürich, Switzerland
cSINTEF Ocean, P.O. Box 4762 Torgard, 7465 Trondheim, Norway

Abstract

Cyber-physical empirical methods consist in partitioning a dynamical system under study into a set of physical and numerical substructures that interact in real-time through a control system. In this paper, we define and investigate the fidelity of such methods, that is their capacity to generate systems whose outputs remain close to those of the original system under study. In practice, fidelity is jeopardized by uncertain and heterogeneous artefacts originating from the control system, such as actuator dynamics, time delays and measurement noise. We present a computationally efficient method, based on surrogate modeling and active learning techniques, to (1) verify that a cyber-physical empirical setup achieves probabilistic robust fidelity, and (2) to derive fidelity bounds, which translate to absolute requirements to the control system. For verification purposes, the method is first applied to the study of a simple mechanical system. Its efficiency is then demonstrated on a more complex problem, namely the active truncation of slender marine structures, in which the substructures’ dynamics cannot be described by an analytic solution.

Key words: cyber-physical empirical method, fidelity, artefacts, probabilistic robustness, adaptive kriging

1 Introduction

Empirical methods constitute the cornerstone of most scientific fields. They consist in generating knowledge about a system through observation, to verify hypotheses and build models of the reality that surrounds us. Cyber-physical empirical methods (CPEMs) have been developed and applied in diverse engineering fields such as civil engineering [McCrum and Williams, 2016], aerospace [Wallace et al., 2007], automotive [Miselhorn et al., 2006], engine development [Filipi et al., 2006], electrical power engineering [Edrington et al., 2015], thermomechanics [Whyte et al., 2015], and floating wind energy [Sauder et al., 2016, Bayati et al., 2017]. CPEM aim at studying a dynamical system by partitioning it into physical and numerical substructures that interact in real-time through a control system. While the behaviour of the physical substructures is partly unknown, the numerical substructures are described by state-of-the-art, validated and, in general, non-analytic computational models. CPEM therefore augment classical empirical methods with validated numerical models, to address problems that classical empirical methods alone, or models alone, can not conveniently or reliably address. This is for example the case: (1) when the system under study is “ill-conditioned”, i.e. when it contains a large span of characteristic spatial dimensions and/or time constants. In that case, the part of the system that does not fit in the laboratory, or whose dynamic is slow, can advantageously be replaced by a numerical model [Sauder et al., 2018]. (2) when scaling effects should be tackled, such as in the case of model testing of floating wind turbines [Allen and Goupee, 2017]. (3) when component testing should be performed, that is when the focus is on the performance of a specific uncertain substructure, that is interacting with the other substructures as part of a complex system.

The control system at the heart of a CPEM plays a crucial role for its validity as an empirical method. Indeed, the dynamical properties of a cyber-physical empirical
setup must reflect those of the real system under study, and this, in spite of heterogeneous artefacts such as time delay or sensor noise, which are inevitably introduced by the components of the control system. This performance requirement, which we denote high fidelity, is the subject of this paper. Even if CPEM are developed in a controlled laboratory environment, some uncertainty is entailed to the artefacts: sensor noise variance, or the interconnection delays between the substructures, remain for example uncertain at the design stage, and can be quantified accurately only when the setup is realized. However, the amount of uncertainty on these quantities can be estimated from expert judgment [Jaynes, 1957] or dedicated surveys [Schwarz, 1978], and modeled within a probabilistic framework.

In this setting, our objective is to analyze whether a CPEM achieves probabilistic robust fidelity, i.e. high fidelity with a probability $1 - P_f$ larger than a defined admissible threshold $1 - \varepsilon_{adm}$, with $\varepsilon_{adm} \in (0, 1)$. An account of probabilistic robust analysis and design methods for control systems has been given in [Calafiore et al., 2011]. Their advantages in terms of conservatism and complexity when compared to the classical worst-case robustness approaches have been discussed in details in [Tempo et al., 2013, Chapter 5], and are illustrated by a simple case study in [Chen et al., 2005]. The main drawback of probabilistic approaches is that estimating P_f implies the evaluation of a multidimensional integral, which is challenging in high-dimensions and when non-analytic models are involved. As we will see, this a typical situation encountered when dealing with CPEMs. To address such problems, randomized algorithms have been developed [Tempo et al., 2013], which rely on sampling the performance function. The required number of samples is however shown to be large for low P_f, i.e for highly reliable systems [Alamo et al., 2015].

The main scientific contribution of this paper is the development of a new method to verify the probabilistic robust fidelity of CPEMs, and to derive fidelity bounds, which can be used as specifications to the control system. The devised method is non-intrusive, and thus not limited to analytic models, which allows its application to the wide class of dynamical systems studied with CPEMs. (2) allows handling an arbitrary number and type of artefacts, which exhibit parametric uncertainty, and (3) is based on surrogate modelling and active learning techniques to achieve unprecedented computational efficiency, even for high-dimensional and high-reliability problems.

The paper is organized as follows. In Section 2, we define quantitatively the fidelity φ of a CPEM, and formulate the robust fidelity and fidelity bounds problems. The solution to these problems is described in Section 3, and illustrated by two example cases in Section 4. Finally, conclusions are given in Section 5.

Figure 1. Model of the cyber-physical experimental setup.

Notations. We let $\mathbb{N}_Q = \{0, 1, ..., Q\}$, $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ and $\mathbb{N}^*_Q = \mathbb{N}_Q \setminus \{0\}$. The uniform distribution with support $[a, b]$ is denoted $\mathcal{U}(a, b)$, and $\mathcal{N}(\mu, \Sigma)$ denotes the multivariate Gaussian distribution with mean μ and covariance matrix Σ. The symbol \sim means "distributed as". For $i \in \mathbb{N}^*$, $\theta^{(i)}$ refers to a sample of the random vector Θ, while θ_i refers to the i^{th} component of θ.

2 Problem statement and definition of fidelity

Let s denote the total number of substructures, and let $\tau(t) = (\tau_1(t), ..., \tau_s(t))$ represent an exogenous excitation signal, with support $[0, T]$, acting on the substructural partition. A generic way of modelling CPEM, suitable for all the applications listed in Section 1, is
the following interconnected system: \(\forall i \in \mathbb{N}^*_N \), \(x_i = f_i(x_i, u_{ij}, r_i) \) and \(y_i = h_i(x_i) \), where \(x_i \) is the internal state of substructure \(\Sigma_i \) and \(y_i \) its output. \(u_{ij} \) is the input to \(\Sigma_i \) originating from \(u_j \). Following e.g. bond graph terminology, if \(y_i \) is a flow, then \(\forall j \neq i, u_{ij} \) must be efforts, and vice versa. The interconnections between the substructures are subjected to heterogeneous artefacts, such as measurement noise or communication-induced time delays: \(\forall i \in \mathbb{N}^*_N, \forall j \in \mathbb{N}^*_N \setminus \{i\}, \forall t > 0, u_{ij}(t) = \Delta_{ij}((y_j(t'))_{t \in [0,t], \theta}) \), where \(\theta \) is a \(M \)-tuple parameter defined on a domain \(D \subset \mathbb{R}^M \), that describes the artefact’s properties for the whole system. The components of \(\theta \) may include sensor noise variance, or the amount of communication-induced time delay between two substructures. Fig. 1 presents this structure for \(s = 3 \). The effects of given artefacts on a reference signal are illustrated in [Sauder et al., 2018].

Owing to the presence of numerical substructures among the \(\Sigma_i \), studying the robustness of such an interconnection would in principle imply the use of digital or hybrid control theory, see e.g. [Tabuada et al., 2014, Goebel et al., 2012]. In the particular case of CPEM, however, the “cyber” parts of the system (the numerical substructures) represent continuous dynamical systems. Assuming that adequate time-stepping algorithms are employed, see e.g. [Bursi et al., 2013], we can make abstraction of their continuous dynamical systems. Thus, given a dynamical system and a sub-structural partition, can artefacts that are likely to be introduced by the control system lead to an unacceptable loss of fidelity? (2) Fidelity bounds. What is the set \(\{ \theta \in D | f(\theta) \geq f_{adm} \} \), i.e. the absolute constraints on the control system to guarantee sufficiently high fidelity?

3 Solution

Let us first pinpoint that solving problems (1) and (2) above is equivalent to identifying the domain of failure \(D_f \subset \mathbb{R}^M \) defined by

\[
D_f = \{ \theta \in D | f(\theta) < f_{adm} \}. \tag{3}
\]

Indeed, letting \(\mathbb{I}_{D_f}(\theta) \) be the indicator function for the set \(D_f \), the probability of failure \(P_f := P[f(\Theta) < f_{adm}] \) is simply

\[
P_f = \int_{D_f} f_{\Theta}(\theta) d\theta = \int_{D} \mathbb{I}_{D_f}(\theta) f_{\Theta}(\theta) d\theta \tag{4}
\]

Because of the non-analytic character of the \(f \) functions, a sampling-based approach must be employed to determine \(D_f \). A naive Monte-Carlo simulations (MCS) approach, would consist in drawing \(N \) samples of \(\Theta \), calculate \(f(\Theta^{(i)}) \) for each of them, and then compare the result to \(f_{adm} \). \(P_f \) could then be estimated by...
Table 1
Some examples of elementary artefacts, their possible sources, and the corresponding describing parameters (component of \(\vartheta \)). Fourth and fifth columns: probabilistic description of the artefacts involved in example cases I and II (Section 4). The signal loss artefact is parametrized by a probability of occurrence \(\xi \in [0,1] \) and an inverse duration parameter \(\zeta > 0 \). When it occurs, the duration \(d \) of the signal loss is distributed as \(f_D(d) = \xi e^{-\zeta d} \). For example case II, \(x \) and \(z \) refer to the horizontal and vertical components of the force measurement, and \(\text{sens.} \) and \(\text{act.} \) refer to the artefacts modelling the sensing and actuation part of the loop, respectively. For more details, see Section 4.2.

\[
N^{-1} \sum_{i \in N} \| D_f(\vartheta^{(i)}) \|.
\]

However, since \(\| D_f(\vartheta^{(i)}) \| \) follows a binomial distribution, estimating \(P_f \) with a confidence interval of \(\delta \) (typically 5%) requires performing at least \(\tilde{N} \geq (1-P_f)(\delta^2P_f)^{-1} \) simulations (see also [Chernoff, 1952] for bounds not depending directly on \(P_f \)). This is practically unfeasible when the \(f \) functions are computationally expensive, and when \(P_f \) is small, which is in fine what is expected from the control system design.

Our strategy to characterize \(D_f \) and evaluate \(P_f \) is to replace \(\varphi(\vartheta) \) by a suitable surrogate model, which can be interrogated, and with which MCS can be performed at a negligible cost. The formulation and identification of this model will be outlined in Sections 3.1 and 3.2, respectively. Using active learning, the surrogate model is refined by parsimonious and targeted sampling of \(\varphi(\vartheta) \). This will be detailed in Section 3.3. Before proceeding, let us note that sampling \(\varphi(\vartheta) \) implies that the system described in Section 2 must be co-simulated for \(t \in [0,T] \), accounting for the presence of artefacts. To do so, an iterative procedure must ensure flow- and effort-consistency between the substructures and artefacts at each time step. Providing details regarding the co-simulation is not within the scope of the present paper, but the interested reader may consult [Sauder et al., 2018] for details and examples.

3.1 Polynomial-chaos kriging (PCK) model of \(\varphi(\vartheta) \)

In the following, we assume that an initial set \(E \) of \(N \) samples of \(\Theta \) has been generated using a space-filling sampling method, such as latin hypercube sampling. The corresponding values of \(\varphi \) are evaluated, and gathered in \(F = [\varphi(\vartheta^{(1)}), \varphi(\vartheta^{(2)}), \ldots, \varphi(\vartheta^{(N)})]^{\top} \). We will now introduce the chosen surrogate model for \(\varphi \), which combines the benefits of polynomial chaos-based and kriging-based models to surrogate complex functions [Schöbi et al., 2015].

\[
K(\vartheta, \omega) = \sum_{a \in A} a_a \psi_a(\vartheta) + \sigma^2 Z(\vartheta, \omega, l)
\]

Definition 2 [Schöbi et al., 2016] A Polynomial-Chaos Kriging (PCK) surrogate model is a Gaussian random process \(K(\vartheta, \omega) \) of the form:

\[
K(\vartheta, \omega) = \sum_{a \in A} a_a \psi_a(\vartheta) + \sigma^2 Z(\vartheta, \omega, l)
\]

where \(Z \) is a zero-mean, unit variance stationary Gaussian process with variance \(\sigma^2 \), \(\omega \) is the underlying probability space represented by a parametric correlation function \(R(\vartheta, \theta', l) \), while the \(\psi_a \)s for a sparse polynomial chaos expansion, i.e. a wisely selected finite set of orthonormal polynomials with respect to \(\Theta \) [Blatman and Sudret, 2011]. The \(\psi_a \)s are used as regressors, and are weighted by a set of coefficients \((a_a) \), gathered in a \(|A| \)-tuple which we denote \(\beta \). \(Z \) is assumed in this work to be described by the general Matérn correlation function\(^1\).

A PCK constitutes a surrogate model, since its coefficients \(\beta, \sigma \) and \(l \) can be tuned based on \(E \) and \(F \), so that the mean and most probable value of \(K \) at a point \(\theta \), i.e. \(E[K(\vartheta, \omega)] \), surrogates \(\varphi(\vartheta) \). Furthermore, the key aspect of this model is that the uncertainty of the PCK estimate can be quantified through \(\text{Var}[K(\vartheta, \omega)] \). Indeed, assuming that the coefficients \(\beta, \sigma \), and \(l \), involved in (5) are known, the following statement can be made.

\[
\text{Var}[K(\vartheta, \omega)] = \sum_{i=1}^{M} \left(\frac{\partial \varphi^{(i)}}{\partial \vartheta} \right)^2 K_{\omega} \left(\sqrt{2h} \right)
\]

where \(h = \sum_{i=1}^{M} \left(\frac{\partial \varphi^{(i)}}{\partial \vartheta} \right)^2 \), and where \(l \in (R^+)^M \) contains scale parameters describing the amount of correlation between neighbours for each component \(\theta_i \). \(\Gamma \) and \(K_{\omega} \) are the Gamma and the modified Bessel function of the second kind, respectively. \(\nu \) is the shape parameter related to the smoothness properties of the process. See e.g. [Dubourg, 2011].
Claim 3 \(\varphi(\theta) \) can be estimated at any point in \(\mathcal{D} \) by
\[
\varphi(\theta) \approx \mu_K(\theta) := f(\theta)^\top \beta + r(\theta)^\top R^{-1}(F - F\beta) \tag{7}
\]
with an uncertainty
\[
\sigma_K^2(\theta) := \sigma^2(1 - r(\theta)^\top R^{-1}r(\theta)^\top) \tag{8}
\]
where \(f(\theta) \in \mathbb{R}^{\lvert A \rvert \times 1} \) contains the \(\psi_\alpha(\theta) \) polynomials evaluated at \(\theta \), \(F \in \mathbb{R}^{\lvert A \rvert \times N} \) contains, in each column the \(\psi_\alpha(\theta) \) polynomials evaluated at \(\theta^{(i)} \), \(r \in \mathbb{R}^{N \times 1} \) is the cross-correlation vector with \(\forall i \in \mathbb{N}_N, r_1(\theta) = \mathcal{R}(\theta, \theta^{(i)}, l) \), and \(R \in \mathbb{R}^{N \times N} \) is the correlation matrix with \(\forall i, j \in \mathbb{N}_N, R_{ij} = \mathcal{R}(\theta^{(i)}, \theta^{(j)}, l) \).

PROOF. By definition, a Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution. From Definition 2, \([\varphi(\theta), F^\top]^\top \) is then the realization of a random vector \(V \in \mathbb{R}^{N+1} \) distributed as:
\[
V \sim \mathcal{N} \left(\begin{bmatrix} f(\theta)^\top \beta \\ F\beta \end{bmatrix}, \sigma^2 \begin{bmatrix} 1 & r(\theta)^\top \\ r(\theta) & R \end{bmatrix} \right) \tag{9}
\]
According to [Santner et al., 2003, Theorem 3.2.1], the estimator of \(\varphi(\theta) \) with minimum mean-squared prediction error is \(E[V_i|\{V_2,...,V_N\}] \). As derived in [Eaton, 2007, p.117], this conditional expectation is a Gaussian random variable, whose mean \(\mu_K(\theta) \), and thus most probable value, is equal to the right hand side of (7). Its variance is given by (8). \(\Box \)

It is important to make the distinction between the randomness of \(\Theta \) and the randomness introduced through \(\omega \) in Definition 2. While the former is a reality of our robust fidelity problem, the latter gives us a tool to model the epistemic uncertainty on \(\varphi(\theta) \) at locations where it has not been evaluated, and leads to the result stated in Claim 3.

3.2 Determination of the PCK model parameters

The PCK model coefficients in (5) are found based on the available data \((\mathcal{E}, F)\) as follows. In a first step, an optimal sparse set of polynomials \((\psi_\alpha)_{\alpha \in A} \) is determined through solution of an \(\ell_1 \)-regularized sparse least squares problem with the so-called least angle regression method. The exact procedure is outlined in [Blatman and Sudret, 2011], and not detailed here due to space constraints. Then,

Claim 4 the coefficients \(\beta \) and \(\sigma^2 \) can be estimated by:
\[
\hat{\beta} = (F^\top R^{-1}F)^{-1} F R^{-1} F \tag{10}
\]
\[
\hat{\sigma}^2 = \frac{1}{N} (F - F\hat{\beta})^\top R^{-1} (F - F\hat{\beta}) \tag{11}
\]

PROOF. Let us assume in a first stage that \(l \) in (6) is fixed. The optimal coefficients \(\hat{\beta} \) and \(\hat{\sigma}^2 \) in (5) are those which lead to a process \(K \) whose most likely realization is \(\varphi(\theta) \). Since by construction, \(K \) is a Gaussian process, the optimal coefficients \(\beta \) and \(\sigma^2 \) in (5) are those which maximize the likelihood, or log-likelihood of \(F \), expressed as
\[
\log L(F|\beta,\sigma^2) = - \frac{N}{2} \log 2\pi \sigma^2 - \frac{1}{2} \log |R| - \frac{1}{2\sigma^4} (F - F\beta)^\top R^{-1}(F - F\beta) \tag{12}
\]
The values of \(\beta \) and \(\sigma^2 \) maximizing this expression necessarily satisfy the first-order optimality conditions \(\nabla_\beta \log L = 0 \) and \(\nabla_{\sigma^2} \log L = 0 \). Since \(R \) is symmetric, they read
\[
F^\top R^{-1}(F - F\beta) = 0 \tag{13}
\]
which leads to (10) and (11). \(\Box \)

The hyperparameter \(l \) in \(R \) is determined as the one minimizing the leave-one-out cross validation error \(E_{Loo} \) of the PCK model. In principle, \(E_{Loo} \) is calculated as follows: a PCK model is established as described above, using all but one samples in \(\mathcal{E} \), and the error between the PCK model and the actual value of \(\varphi \) is evaluated at the sample that was not included. This operation is repeated for each sample in \(\mathcal{E} \), and the \(E_{Loo} \) is obtained from the arithmetic mean of the \(N \) results, see [Bachoc, 2013]. In the present work, we used a genetic algorithm [Goldberg, 1989] to find the global optimum \(l \).

3.3 Adaptive Kriging (AK)

We recall that our objective is to characterize \(\mathcal{D}_f \). At the initial stage, \(N \) is in general chosen large enough to obtain good estimates of the expected fidelity \(E[\varphi(\Theta)] \), the variance \(\text{Var}[\varphi(\Theta)] \), and some useful sensitivity information [Sauder et al., 2018], but as we will see in the Example cases, it is generally too small to properly characterize \(\mathcal{D}_f \). However, by using the PCK model, estimates of \(\varphi(\theta) \) and the associated uncertainty are available anywhere in \(\mathcal{D} \) from (7) and (8). Taking advantage of this information, the surrogate model \(K \) can be refined by active learning as suggested in [Schöbi et al., 2016], and summarized in the following.

Let the limit state hypersurface be the set \(\mathcal{L} = \{ \theta \in \mathcal{D}|\varphi(\theta) = \varphi_{\text{adm}} \} \), and \(\Phi \) be the standard normal cumulative distribution function. First, a 5% confidence
bound the estimated \mathcal{L} is defined through the sets $\mathcal{D}_f^+ = \{ \theta \in \mathcal{D} | \mu_k(\theta) - k \alpha \theta < \varphi_{\text{adm}} \}$, and $\mathcal{D}_f^- = \{ \theta \in \mathcal{D} | \mu_k(\theta) + k \alpha \theta < \varphi_{\text{adm}} \}$, with $k = \Phi^{-1}(97.5\%) \approx 1.96$. The relative complement $\mathcal{M}_f = \mathcal{D}_f^+ \setminus \mathcal{D}_f^-$ is denoted the limit state margin \mathcal{L} [Dubourg, 2011]: it defines a location where (1) φ is probably close to φ_{adm}, and/or (2) there is a large uncertainty on the value of φ. This is where $K \in \mathbb{N}^*$ new relevant samples of Θ should be generated, and added to \mathcal{E} to reﬁne the PCK model.

These K samples are selected among a large set of auxiliary samples of Θ (with typical cardinality 10^5-10^6) generated using MCS. The probability of misclassiﬁcation P^*_m of each sample located in \mathcal{L} is evaluated as

$$P^*_m(\theta) := \Phi \left(-\frac{\mu_k(\theta) - \varphi_{\text{adm}}}{\sigma_k(\theta)} \right) \quad (15)$$

which corresponds to the probability of the PCK model to predict that θ is in \mathcal{D}_f while it is actually not, or vice-versa. If the enrichment is performed with $K = 1$, \mathcal{E} is simply enriched with the sample θ^m featuring the largest P^*_m. If $K > 1$, K clusters of points in \mathcal{L} with high P^*_m values are identiﬁed, and a sample representative of each cluster is selected using a K-means clustering algorithm [Zaki and Meira, 2014, Chapter 13]. Both approaches will be illustrated in the example cases. The enriched sets \mathcal{E} and \mathcal{F} are then used to deﬁne a new, reﬁned, PCK model as described in Section 3.2. As it will be demonstrated in the following example cases, the locations of \mathcal{E} and \mathcal{D}_f become, step by step, more exact, and the probability of failure P_f can be estimated from (4) by performing MCS using the PCK model and the auxiliary sample set.

The uncertainty on the estimated P_f is quantiﬁed by comparing the probabilities of failure estimated from \mathcal{D}_f^+ and \mathcal{D}_f^-, respectively. If the difference between them is less than 5% of P_f (evaluated from the estimated \mathcal{D}_f), convergence is considered to be achieved. Convergence towards the true value of P_f when $N \to \infty$ is guaranteed by the fact that (1) the learning function (15) weights uncertain areas of \mathcal{D}, and thus eventually explores the whole space \mathcal{D}, and (2) the resulting PCK (5) will interpolate exactly $\varphi(\theta)$ since it is an universal approximation function. Note that no formal proof of optimal convergence, as compared to other established methods, is available for this algorithm. It has, however, been shown to be more computationally efﬁcient (see e.g. [Echard et al., 2011]) and more precise (see e.g. [Schöbi et al., 2016]) than existing methods, and is able to tackle non-connected failure regions \mathcal{D}_f.

3.4 Summary of the method

We have outlined a procedure that generates a PCK model K surrogating $\varphi(\theta)$, with particularly high accuracy near the limit state \mathcal{L}. As a result, the probabilistic robust fidelity of a cyber-physical empirical setup (problem 1) can simply be analyzed by interrogating the PCK model on a large set of auxiliary samples and using (4). The PCK model can also be interrogated to verify that the as-built setup, characterized by an estimated θ, satisﬁes the fidelity bounds (problem 2). Finally, in a design phase, the optimal control system can be found as the one minimizing some cost function $c(\theta)$, while ensuring high-enough fidelity:

$$\min_{\theta \in \mathcal{D}} c(\theta) \text{ subject to } \mu_k(\theta) - \varphi_{\text{adm}} \geq 0 \quad (16)$$

4 Example cases

The devised method will be demonstrated on two examples, which differ by the type of dynamical system under study, but also by the number and nature of the considered artefacts. Case I serves as a veriﬁcation of the method. The mechanical system is simple, analytically described, and subjected to a small number of artefacts. It can therefore conveniently be analyzed by classical methods. Case II is an industrial problem originating from the ﬁeld of ocean engineering, arguably diﬃcult to approach with classical methods. In both cases, the cyber-physical empirical setup contains $s = 2$ substructures, interconnected as shown in Fig. 1b. Σ_1 is numerical, and Σ_2 is physical (but also simulated here, for the purpose of the analysis). Σ_2 is subjected to an exogenous load τ_2. It is decided to measure the force (eﬀort) y_2 at the interface between the substructures, and to control the linear velocity (flow) y_1 of the interface. The γ_j functions involved in the deﬁnition of the fidelity (2) will be detailed for each case. The UQLab framework is used to perform the probabilistic analysis, see [Marelli and Sudret, 2014].

4.1 Case I: coupled oscillators

We ﬁrst consider the linear oscillators coupled and substructured as represented in Fig. 2. We set $m = 1$kg, $k = 1$N/m, and $c = 1\% \times 2\sqrt{k}m$, leading to a lightly damped system. We investigate its response to a step force τ_2 acting on mass m_3, from 0 to 1N with $T = 100$s. The velocity V_2 of the mass m_3 is the QoI, and the following cost function ($Q = 1$) is used in deﬁnition of the
The following remarks are in order when considering Fig. 5. (1) The fact that failure clearly occurs in well-defined regions of the $\alpha - \tau$ plane is consistent with (18): the individual values of τ_s and τ_a (resp. α_s and α_a) are irrelevant for this system, it is their sum (resp. product) that matters. Note, however, that in general such knowledge is not available, and that such structures are not easily identifiable, especially when dealing with a high-dimensional Θ. (2) As expected, loss of fidelity occurs when τ becomes large and when α deviates (i.e. decreases) from unity. In contrast, by inspection of (18), it can be established that the dynamical system becomes unstable for $\tau \geq 40$ ms when $\alpha = 1$, and that the stability margin may be increased only by decreasing α, when $\tau=40$ms. While stability is in general necessary to ensure high fidelity of a cyber-physical empirical setup, it is obviously not a sufficient condition. (3) While most of the samples selected by the enrichment algorithm are located near \mathcal{L}, some of them seem inadequately generated in regions with high fidelity. The reason is that they typically feature an unlikely large value of α_s, combined with an unlikely small value of α_a (or vice-versa). Even if $\alpha = \alpha_s \alpha_a$ is close to unity, such a combination falls in an unexplored region of \mathcal{D}, leading to a large value of $\sigma_{\mathcal{D}}$ and thus P_m, in (15). The corresponding sample is therefore selected by the AK algorithm. This is commonly referred to as sample space exploration.

4.2 Case II: active truncation of a slender structure

We will now show how the proposed method allows tackling more complex robust fidelity problems, in higher dimension spaces, and in which non-analytic description of the substructures must be used. We revisit the case study detailed in [Sauder et al., 2018], in which a floating oil production platform is considered, moored in 1200m water depth with a polyester mooring line. The objective is to perform hydrodynamic model testing of this system at a scale $\lambda = 1/60$. Due to space limitations in the hydrodynamic laboratories, the mooring line is truncated 240m below the free surface, as shown in Fig. 6. The upper portion of the line (Σ_2), is represented by a reduced-scale physical model in the hydrodynamic laboratory, while its lower portion (Σ_1) is simulated with the finite element method. The control strategy is as indicated in the introduction of Section 4. The mooring line is subjected to current and wave loads. The latter are represented by a force $(F_x(t), F_z(t))^T$ acting on the top of the line, see the upper plot in Fig. 7.

The following artefacts are assumed to affect the setup. The force sensors (one for the horizontal component F_x, and one for the vertical component F_z), located at
the truncation point, suffers from calibration error (parameters θ_1 and θ_2, respectively), bias (θ_3 and θ_4, respectively), and measurement noise (θ_5 and θ_6, respectively). Time delays are induced by communication and data processing (parametrized by θ_7 on the sensor side, and θ_{10} on the actuator side). Signal loss and subsequent jump, occur both due to communication errors with the underwater force sensors (θ_8 and θ_9 parametrize the probability and inverse duration parameters, respectively), and due to nonlinear iterations of the numerical substructure that do not complete on time (θ_{11} and θ_{12}). Fig. 1c shows how the elementary artefacts are composed to create Δ_{12} and Δ_{21}. The two middle plots in Fig. 7 show how the artefacts affect the force $y_2 = (f_x, f_z)^T$ and velocity $y_1 = (v_x, v_z)^T$ at the truncation point. The probabilistic description of Θ is given in the last column of Table 1. For this Case, $Q = 2$ and the QoI are the velocity components of the top of the line, which we denote V_x and V_z. The fidelity φ is calculated based on the
oratories. This complex problem, of great interest to ultra-deepwater floating systems in hydrodynamic lab-

tive Kriging. Example case II demonstrated that the PCK surrogate model, gradually enhanced by Adap-

tive Kriging. Example case II demonstrated that the control system. In particular we showed how fi-

jective was to require probabilistic robust fidelity of the analysis of control systems orchestrating CPEMs. The ob-

 we have presented a method for the design and anal-

ysis of control systems, involving a variety of heterogeneous artefacts, and its analysis using existing analytical or sampling-based methods would be practically unfeasible. The presented method is part of a larger framework, in which the sensitivity of fidelity to each compo-

ment of the control system can be efficiently established [Sauder et al., 2018]. It is expected that the combination of surrogate modelling and active learning techniques, applied here to the analysis of CPEM, can contribute to solve, in an efficient and pragmatic manner, a much wider class of probabilistic robust control problems.

Acknowledgements

This work was supported by the Research Council of Norway through the Centres of Excellence funding scheme, Project number 223254 - AMOS, and through the project 254845/O80 “Real-

Time Hybrid Model Testing for Extreme Marine Environments”.

References

Figure 7. Case II. From top to bottom: times series of the (1) force $f(t)$ applied to the top of the line, (2) force at the truncation point (3) velocity of the truncation point and (4) velocity of the top of the line, that is the QoI for this problem. The black lines correspond to the system without artefacts ($\phi = \infty$). The other curves correspond to a random realization of Θ. The blue curves correspond to quantities evaluated on Σ_1 side (y_1 and u_{12} in Fig 1b), and red curves to quantities evaluated on Σ_2 side (y_2 and u_{21}). Note that despite the significant discrepancies at the truncation point, induced by the artefacts, the QoI are correctly reproduced by this setup, which illustrates the difference between resilience and fidelity (see discussion in Section 2), and motivates the use of selection/comparison functions γ_Ω in (2).

Figure 8. Case II. The grey dots represent the samples in the initial set E. The blue dots corresponds to areas of the twelve dimensional space with large probability of misclassification ($P_m > 0.45$) at the first step of the enrichment process. The red diamonds represent the $K=16$ samples selected by the clustering algorithm, at this step.

Figure 9. Evolution of the estimated probability of failure during the enrichment process for example cases I and II.

