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Abstract

This paper investigates the influence of plastic anisotropy on the tensile ductility of a

high-strength aluminium alloy. To this end, finite element simulations of smooth and

notched tension tests in different material directions are performed with an anisotropic

plasticity model. The stress and strain histories from these simulations are then applied

in localization analyses with the imperfection band approach, using the anisotropic plas-

ticity model outside the band and an anisotropic version of the Gurson model inside the

band. The imperfection within the band is represented by a volume fraction of void

nucleating particles. The high-strength aluminium alloy AA7075-T651 is considered in

this study. The results show that the directional dependency of the tensile ductility of

the alloy found experimentally is predicted with good accuracy using the adopted ap-

proach. The numerical study indicates that plastic anisotropy plays an important role in

determining the anisotropic tensile ductility of this high-strength aluminium alloy.
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1. Introduction

This paper is concerned with the roles played by anisotropy in the failure process

of a high-strength aluminium alloy. More precisely, the aim of the current study is to

evaluate to which extent the observed anisotropy in tensile ductility of a high-strength,

age-hardened aluminium alloy can be ascribed to plastic anisotropy.

The anisotropy of aluminium alloys stems from the manufacturing process. Extruded

profiles, rolled plates and plastically formed structural components invariably exhibit

anisotropy, but the strength of the anisotropy varies. The plastic anisotropy with regards

to yielding and plastic flow is mostly governed by the crystallographic texture, and is,

at least qualitatively, well described by crystal plasticity [1, 2, 3]. In phenomenological

models, the plastic anisotropy in yielding and plastic flow is described by an anisotropic

yield surface [4, 5, 6], while the ductility of aluminium alloys depends on several factors.

It has been found experimentally that the tensile ductility decreases with increasing yield

stress [7, 8, 9]. Simulations indicate that this finding is partially due to changes in the

deformation pattern and stress state in the necked region of the tensile specimen, since

higher yield strength usually correlates with reduced work hardening [10]. The main

microstructural feature known to influence ductility is the distribution of second-phase

particles or inclusions [11]. The mechanism of ductile failure consists of nucleation,

growth and coalescence of voids around these particles. These processes have been

shown to depend markedly on the stress state, often represented by the stress triaxiality

and the Lode angle [12]. If the particles are present as stringers along the rolling or

extrusion direction, the result is anisotropic damage evolution and failure [13, 14, 15].

Another micro-structural feature found to influence particularly the toughness of

age-hardening aluminium alloys is the precipitate-free zones along the grain boundaries

[16, 17]. These alloys get their strength from a high density of small hardening precip-
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itates which are formed during artificial ageing of the alloy. However, narrow regions

around the grain boundaries are free of hardening precipitates and thus act as soft zones

in which deformations tend to localize [18]. The main trend found experimentally is

that precipitate-free zones in high-strength aluminium alloys increase the propensity for

inter-granular fracture which decreases the toughness of the alloy [16, 17]. If the grains

are elongated as a result of the extrusion or rolling process, grain boundary failure could

induce anisotropy in the failure strain. Another source of anisotropic tensile ductility

is the plastic anisotropy, because it changes the stress level and the plastic flow of the

material with loading direction.

Ductile failure has been widely investigated in the literature using different tech-

niques. Hybrid experimental and numerical approaches have been successfully em-

ployed by several authors, among them, Bao and Wierzbicki [19], Barsoum and Faleskog

[20], Li et al. [21] and Gruben et al. [22] investigated ductile failure in aluminium alloys

and advanced high strength steels under a wide range of stress states. With the recent

increase in computational power, unit cell simulations have become an attractive way

to study ductile failure[23, 24, 25, 26]. These simulations enable the study of the local

deformation fields and can provide a deeper knowledge of the growth and coalescence

of voids. Unit cell simulations have also been employed to study strain localization phe-

nomena, as for instance in Barsoum and Faleskog [27, 28], Dunand and Mohr [12] and

Tekoglu et al. [29]. These analyses have been employed to highlight and confirm several

experimental observations such as the influence of the Lode parameter on ductile failure.

Studies employing an anisotropic matrix material are more scarce. Some noticable stud-

ies are those of Benzerga and Besson [30], Chien et al. [31], Wang et al. [32], Steglich

et al. [33], Keralavarma and Benzerga [23, 34] and Dæhli et al. [35], in which unit cell

simulations were used to investigate void growth and coalescence in a homogeneized

anisotropic matrix and typically compared to anisotropic porous plasticity models. To
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the authors’ best knowledge, strain localization analyses employing unit cell simulations

with an anisotropic matrix material have not yet been reported in the literature. Despite

the increase in computational power, strain localization analyses using such unit cells

are still difficult to carry out. The orientation of the localization band cannot be re-

stricted to a 2D setup (as in [27, 28, 12, 29]) and a large number of orientations should

be investigated within a 3D setup, thus leading to prohibitive computational times.

Two widely accepted ideas on the characteristics of structural materials are adopted

in this paper. On the one hand, real materials are usually not homogeneous and contain

various types of non-uniformities such as particles and voids. On the other hand, it is

generally observed that inelastic phenomena, such as plastic deformation and/or damage

evolution, localize into small zones prior to failure initiation. As shown by Tekoglu et

al. [29], localization occurs either simultaneously or prior to void coalescence depending

on the stress triaxiality. Thus, the localization phenomenon can be considered in many

instances to be a precursor to and a severe warning against initiation of ductile failure.

Apart from unit cell simulations, strain localization phenomena have been widely

studied in the literature. Marciniak and Kuczynski [36] used the possibly pre-existing

non-uniformities to explain localized necking in sheets deformed in biaxial tension. The

introduction of inhomogeneities in the sheet material allowed for the development of

a local neck. Rudnicki and Rice [37] discussed the conditions for the localization of

plastic deformation in plastically dilatant materials with pressure sensitive yielding for

homogeneous materials. In that study, localization was investigated as a bifurcation and

they found that materials are resistant to such bifurcation localization for axisymmetric

extension or compression types of loadings. Rice reconsidered the localization condi-

tions in a more general context in [38], where he also introduced the idea of Marciniak

and Kuczynski [36], putting this approach into a general and rigorous formulation. Ya-

mamoto [39], Needleman and Rice [40], Saje et al. [41], Pan et al. [42], Mear and
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Hutchinson [43], Tvergaard and Needleman [44], Nahshon and Hutchinson [45], Gruben

et al. [46] and Morin et al. [47] used this formulation in various contexts with the com-

mon objective of removing the resistant character of localization for homogeneous ma-

terials. The idea is that the presence of an imperfection with slightly different properties

from the rest of the material leads to a concentration of strain within this imperfection

and promotes localization in the material. The same idea has long been used to obtain

realistic buckling loads both in elastic and plastic ranges by introducing imperfections

[48, 49, 50, 51]. As shown by Morin et al. [47] and Dæhli et al. [52], strain localiza-

tion analyses using the imperfection approach [38] are able to provide good qualitative,

and reasonable quantitative, agreement with unit cell simulations in terms of predicted

ductility. The computational efficiency of the strain localization analyses relaxes the re-

striction on the number of band orientations investigated when studying localization in

anisotropic materials.

This study extend a framework presented by Gruben et al. [46] and Morin et al. [47]

to anisotropic aluminium alloys by incorporating plastic anisotropy into the strain local-

ization analyses. The general theoretical framework proposed by Rice [38] is employed

to predict the initiation of ductile failure. Based on this framework, the imperfection

is taken in the form of a planar band. For a given loading process, the constitutive

equations lead to homogeneous states inside and outside the planar band while finite

discontinuities of the deformation fields can occur at the interface. Strain localization is

here defined by the loss of ellipticity of the governing equations inside the imperfection

band. At localization by loss of ellipticity, the rate-of-deformation field becomes infinite

inside the imperfection band whereas it is finite outside. Beside its planar geometry, the

imperfection must also be characterized with respect to its constitutive behaviour. This

can be done in a number of ways, but all need to incorporate a softening mechanism [37]

in order to trigger loss of ellipticity in the framework of associative inelastic behaviour,
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which is considered in the paper. In the context of initiation of ductile fracture, as en-

visaged here, a natural choice is void nucleation and growth where these voids generally

arise from cracking of second-phase particles, such as inclusions, dispersoids and pre-

cipitates, or from decohesion at particle-matrix interfaces [11], even if other processes

can be in play. The Gurson model [53] is used here with some of its improvements

as proposed by Tvergaard [54] and by Chu and Needlemann [55] with the nucleation

of voids. In addition, the plastic anisotropy of the matrix material is heuristically ac-

counted for by modifying the definition of the equivalent stress [35]. While strain lo-

calization analyses, using the imperfection approach, are computationally efficient [47],

their predictions are strongly dependent upon the constitutive equations used inside the

imperfection band. Nevertheless, the important question of how the predicted failure

properties depend on the choice of the imperfection and its material properties is not

considered in this study. As done by Gruben et al. [46] and in most of the simulations of

Nahshon and Hutchinson [45], the material outside the imperfection band is considered

to be sound (void free) and described by an anisotropic metal plasticity model. Here, we

have implicitly assumed that all damage evolution is confined to the imperfection band

and that any damage mechanism outside the band is negligible. This is a rather strong

assumption, but should lead to conservative estimates of the ductility in the framework

of an imperfection analysis. Thus, ductile failure is considered to initiate when loss of

ellipticity is detected within the imperfection band. An illustration of the methodology

applied in this study is given in Figure 1. Finite element simulations of tensile tests are

conducted using metal plasticity. The deformation histories for all elements within the

minimum cross-section of the specimen are extracted and used in localization analyses.

The overall failure strain is determined by the element first reaching localization. This

way, both the strain to failure and the location of failure initiation are predicted. A more

detailed presentation of the methodology is given in Section 5.2.
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In the next section, a brief description of the investigated aluminium alloy together

with the experimental programme designed to exhibit its failure properties is given. Sec-

tion 3 presents the Gurson model modified heuristically to account for plastic anisotropy,

while Section 4 briefly describes the localization analysis in the presence of an imper-

fection band. Section 5 is devoted to the numerical implementation of the localization

approach and the details of the numerical procedures used to construct the failure loci.

The results of the numerical study are presented, compared with the experimental find-

ings and discussed in Section 6, while Sections 7 provides some concluding remarks.
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Figure 1: Methodology of the localization analyses: the deformation gradients F(t) of each element (ob-
tained by a preliminary finite element analysis) within the minimum cross-section ¬ are used to carry out an
imperfection analysis ­ to find the local equivalent plastic strains at localization p f (®, ¯) and the macro-
scopic failure strains ε f (°, ±) are mapped onto the initial cross section using the relationship between the
local equivalent plastic strains p and the logarithmic strain εl.
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2. Summary of previous experimental study

The material considered in this study is a 20-mm thick rolled plate of the high-

strength aluminium alloy AA7075-T651. Temper T651 implies that the material is arti-

cially aged to peak hardness and subsequently stress relieved by slight stretching, while

the combined cold and hot rolling process gives a crystallographic texture that leads to

anisotropic characteristics. The bulk of the AA7075-T651 alloy has a complex non-

recrystallized microstructure with flat and elongated grains in the rolling plane of the

plate. The alloy contains coherent precipitates, dispersoids of different sizes and large

iron-based intermetallic inclusions [14]. In addition, the alloy has precipitate free zones

at the nanoscale created during the artificial aging, and these zones are generally located

around the grain boundaries. It is referred to Fourmeau et al. [56, 57] for a more detailed

description of the experimental study of this alloy.
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Figure 2: Overview of the specimens used in the experimental study: a) smooth specimen, b) R2 specimen
(notch radius is 2 mm) and c) R08 specimen (notch radius is 0.8 mm). All measures are in mm. The finite
element meshes used in the subsequent numerical simulations are also shown.

Axisymmetric tensile specimens were used to study the in-plane behaviour of the
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Figure 3: Summary of the experimental results: a) Cauchy stress-logarithmic strain curves for the smooth,
2 mm notch radius (R2) and 0.8 mm notch radius (R08) specimens carried out in the rolling direction
(Θ = 0◦), transverse direction (Θ = 90◦) and at 45◦ from the rolling direction (Θ = 45◦), b) strain and stress
ratios as function of the material orientation based on the experimental results and the Yld2004-18p yield
surface [58] and c) failure strains for the smooth, 2 mm notch radius (R2) and 0.8 mm notch radius (R08)
specimens as function of the material orientation with their scatter bands.

AA7075-T651 alloy. Smooth specimens were sampled in seven different orientations of

the plate (0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ with respect to the rolling direction (RD))

to reveal the anisotropic properties of the material, while notched specimens with two

different notch root radii (R = 2.0 mm and R = 0.8 mm) were taken in three different

directions of the plate (0◦, 45◦ and 90◦ with respect to the rolling direction) to study

the behaviour at increased stress triaxiality. The geometries of the tensile specimens are

given in Figure 2. The tests were performed in a universal testing machine at room tem-

perature and a nominal strain-rate of 5 × 10−4 s−1 (i.e., quasi-static loading conditions).
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During testing, the force and the diameters of the minimum cross-section of the speci-

men were continuously measured until fracture. By assuming plastic incompressibility,

the Cauchy stress σ and the logarithmic strain εl were calculated from the measured

force F and current minimum cross-section area A as

σ =
F
A
, εl = ln

(A0

A

)
= ln

 D2
0

DNDD⊥

 (1)

where A0 = πD2
0/4 and D0 are the initial area and cross-section diameter of the specimen,

respectively. The current elliptical cross-section area of the specimen was calculated as

A = πDNDD⊥/4, where DND is the diameter in the normal direction of the plate (ND)

and D⊥ is the diameter in the transverse direction of the specimen.

Figure 3 a) shows representative curves from smooth and notched specimen tests in

terms of Cauchy stress and logarithmic strain averaged over the minimum cross-section

diameter for three directions (0◦, 45◦ and 90◦). The scatter between parallel tests was

found to be negligible. A significant anisotropy in both the flow stress and strain to

failure was exhibited, especially for the smooth specimen. Figure 3 b) gives strain and

stress ratios (see [56] for definitions) as a function of loading direction for the smooth

specimens. Again, significant variation with orientation was obtained. Finally, Figure

3 c) illustrates the variation in strain to failure with loading direction. It was noted that

the anisotropy in strain to failure was in general related to the directional variation of the

strain ratio. Thus, the lower the strain ratio, the lower was the strain to failure.

3. Anisotropic porous plasticity

3.1. Description of the model

The Gurson model [53] is used to induce strain softening in the strain localization

analyses. In order to include anisotropic plasticity, the equivalent stress of the Gurson
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model is defined by the Yld2004-18p yield function [58], whereas the other parts of

the model remain unaltered. The credibility of this heuristic modification of the Gurson

model has recently been studied by Dæhli et al. [35], and the agreement between the

porous plasticity model and 3D unit cell analyses was found to be acceptable. A similar

extension has previously been proposed and employed by Steglich et al. [33]. Several at-

tempts have been made in the literature to derive rigourously an anisotropic porous plas-

ticity model [30, 59, 60]. These models, while being able to describe anisotropic void

growth and the complex interactions between the shape of the void and the anisotropy of

the matrix material, are based on the orthotropic Hill yield criterion [61] for the matrix

material. As the main focus of this study is placed on the effect of material anisotropy on

ductile failure, the heuristic modification of the Gurson model [35] is preferred in order

to get a better description of the matrix plastic anisotropy.

The model is formulated using the corotational stress approach. Thus, all tensor

quantities are referred to a coordinate frame that rotates with the material axes. The

corotational stress and rate-of-deformation tensors are then defined by σ̂ = RT · σ · R

and D̂ = RT · D · R, where σ and D are the Cauchy stress tensor and the rate-of-

deformation tensor, respectively. The rotation tensor R is defined by the rate equation,

Ṙ = W · R, where W is the spin tensor. Possible changes in the plastic anisotropy due to

texture evolution during deformation are neglected in this study.

The rate-of-deformation tensor D̂ is additively decomposed into elastic and plastic

parts, so that

D̂ = D̂e + D̂p (2)

The corotational stress rate tensor is defined by the hypoelastic relation

˙̂σ = Ĉ : D̂e (3)
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where Ĉ is the isotropic elasticity tensor defined in terms of Young’s modulus E and

Poisson’s ratio ν. The Gurson yield function is given by

Φ =

(
σeq (σ̂)
σM

)2

+ 2q1 f cosh
(
q2

2
σ̂ : I
σM

)
−

(
1 + q3 f 2

)
(4)

where σeq (σ̂) is the equivalent stress defined by the Yld2004-18p yield function, σM is

the flow stress of the matrix, f is the porosity, q1, q2 and q3 are parameters introduced

by Tvergaard [54] and I is the second-order identity tensor. We refer to [56] and [58]

for the definition of the equivalent stress of the Yld2004-18p yield function. Associative

plastic flow is assumed and thus

D̂p = λ̇
∂Φ

∂σ̂
(5)

where λ̇ is the plastic parameter, defined by the loading-unloading conditions in Kuhn-

Tucker form

Φ ≤ 0, λ̇ ≥ 0, λ̇Φ = 0 (6)

The behaviour of the matrix material is given by

σM = σ0 + Q
(
1 − exp (−Cp)

)
(7)

where σ0 is the initial yield stress, Q and C are hardening parameters, and the equivalent

plastic strain p is obtained as

p =

∫
ṗ dt =

∫
σ̂ : D̂p

(1 − f )σM
dt (8)

The evolution of the porosity is decomposed into growth and nucleation of voids, viz.

ḟ = ḟg + ḟn (9)
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The initial value of the porosity is denoted f0. Based on matrix incompressibility, the

void growth rate ḟg is obtained by

ḟg = (1 − f ) D̂p : I (10)

Following [55], the void nucleation rate ḟn is taken as

ḟn = Aṗ (11)

where

A =
fn

sn
√

2π
exp

−1
2

(
p − pn

sn

)2 (12)

In this equation, fn is the volume fraction of void nucleating particles, pn is the mean

equivalent plastic strain for nucleation, and sn is the associated standard deviation.

3.2. Parameter identification

Two sets of material parameters are required in the porous plasticity model, the ones

pertaining to the matrix material (anisotropic yield surface and isotropic work hardening)

and the ones related to the porous behaviour (the parameters introduced by Tvergaard

[54]). The initial void volume fraction f0 and void nucleation parameters fn, pn and sn,

which are usually used as material parameters, are here restricted to the imperfection

analyses and their identification is detailed later in the manuscript. The non-quadratic

anisotropic yield function Yld2004-18p proposed by Barlat et al. [58] was calibrated

using tensile tests in seven in-plane directions, an upsetting test (through-thickness com-

pression test), and shear tests in three in-plane directions, assuming orthotropic sym-

metry (see Fourmeau et al. [56] for details). The initial yield stress σ0 as well as the

isotropic work-hardening parameters Q and C were calibrated using the tensile test in
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the rolling direction. The list of material parameters is omitted in this article and the

readers are referred to [56] for more details. The porous plasticity parameters q1, q2 and

q3 should, in principle, be calibrated for the given work-hardening rule and anisotropic

yield surface, as done by Dæhli et al. [35], but are here given standard values from the

literature (q1 = 1.5, q2 = 1.0 and q3 = q2
1).

4. Strain localization theory

Localization theory is used hereafter to exhibit the roles played by anisotropy in the

failure process of the material. As proposed in Rice [38], an imperfection in the form

of a planar band with slightly weaker material properties than the rest of the material,

in which it is embedded, is considered. The presence of this imperfection allows strain

localization to occur at reasonable strain levels [39]. This approach is used herein and

is briefly recalled in this section, whereas for a detailed presentation of the method the

readers are referred to [38, 45, 47].

The stress and strain rates as well as the constitutive relations inside the band are

allowed to be different from those outside the band, with the requirement of equilibrium

and compatibility across the band being enforced. The equation for continuing equilib-

rium is expressed as

n · Ṗb = n · Ṗ (13)

where Ṗ is the rate of the nominal stress tensor, n is the normal to the band in the current

configuration and the subscript b denotes a quantity inside the band. The orientation of

the imperfection band with respect to the global Cartesian coordinate system (X,Y,Z) is
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defined by

n =


cos φ

cos θ sin φ

sin θ sin φ


(14)

where φ is the angle between n and the X-axis, and θ is the angle between the Y-axis and

the projection of n onto the YZ plane. For an anisotropic material, the critical orientation

of the band n is found within the bounds φ ∈ [0, π] and θ ∈ [0, 2π]. The orientation of

the band relative to the global axes of a tension specimen is illustrated in Figure 4.

Figure 4: Definition of the band orientation relative to the global axes of the tension specimen.

Compatibility implies that the velocity gradient Lb inside the band takes the form

[38]

Lb = L + q̇ ⊗ n (15)

where L is the velocity gradient of the material outside the band and q̇ is a vector that
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represents the rate-of-deformation non-uniformity. The unit vector m = q̇/‖q̇‖ deter-

mines the instantaneous character of the imperfection band. If m · n = 0, the band has

the character of a shear band, while if m· n = 1, the band has the character of a dilatation

band.

By combining Equations (13) and (15), an equation for the rate-of-deformation non-

uniformity q̇ is obtained as

(n · Ct
b · n) · q̇ = n ·

(
Ct − Ct

b

)
: L (16)

where Ct and Ct
b are the tangent modulus tensors outside and inside the band, respec-

tively (see Morin et al. [47] for details). Loss of ellipticity, or strain localization, occurs

when the acoustic tensor of the band material, At (n) = n ·Ct
b · n, becomes singular, viz.

det
(
n · Ct

b · n
)

= 0 (17)

For materials undergoing associative plastic flow, this condition is not met for reasonable

stress levels unless strain softening is present in the constitutive response of the material

in the imperfection band [38]. In this study, the anisotropic porous plasticity model

with associative plastic flow described above is used inside the imperfection band, while

the material outside the band is described using an anisotropic metal plasticity model

obtained by restricting the initial void content f0 and void nucleating particles fn to be

equal to zero.

The localization analysis by the imperfection band approach has been implemented

numerically in a stand-alone FORTRAN programme, as described in detail by Morin et

al. [47].
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5. Numerical procedures

5.1. Finite element analyses

The finite element simulations of the smooth and notched tensile tests are car-

ried out in ABAQUS/standard [62] using solid elements with reduced integration. An

overview of the finite element meshes applied for the three specimens is given in Figure

2. These meshes are the same as those used in [56, 57] and the element length is approx-

imately 0.3 mm. The porous plasticity model described in Section 3 is implemented in

ABAQUS/Standard using a user-material subroutine (UMAT). When running the finite

element simulations of the tension tests, the initial porosity f0 and the volume fraction of

void nucleating particles fn are set to zero, thus reducing the anisotropic porous plasticity

model to an anisotropic metal plasticity model with isochoric plastic flow.
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Figure 5: Experimental versus simulated stress-strain curves for the smooth and notched tensile tests: a) in
the rolling direction and b) at 45◦ from the rolling direction.

Figure 5 presents the results from a selection of numerical simulations compared to

the corresponding experiments. The smooth and notched specimens (with 2 mm radius

and 0.8 mm radius) extracted from the rolling direction and at the 45◦ direction are used

as examples to evaluate the accuracy of the chosen anisotropic metal plasticity model.
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From Figure 5 a), it appears that a good correlation is obtained for the smooth tensile

test in the rolling direction while the stress level is overestimated in the presence of

a notch. When the specimens are oriented at 45◦ from the rolling direction (Figure 5

b)), the stress level is slightly underestimated in the smooth tensile tests as a result of the

calibrated yield surface (Figure 3 b)) which underestimate the yield stress in this material

orientation. The simulated notched specimens still exhibit a higher stress level than in

the experiments but the discrepancy is somewhat reduced compared to the simulations

in the rolling direction. In this study, the exponent of the Yld2004-18 yield surface [58]

was fixed to 8, while Fourmeau et al. [56] showed that by increasing the exponent to 12 a

better description of the stress level in the notched specimens could be obtained. Despite

the discrepancies in the simulations of the notched tensile tests, the overall agreement

between the numerical models and the experimental tests is found acceptable.

5.2. Localization analyses

The exact location of incipient ductile failure within the tensile specimens is not

known, but it is reasonable to assume that failure initiates at the minimum cross-section.

Accordingly, localization analyses are performed for all elements across the minimum

cross-section, as defined in Figure 2. The numerical procedure is as follows (see also

Figure 1):

1. The deformation gradient F(t) of each element within the minimum cross-section

is calculated based on the nodal displacements and the isoparametric shape func-

tions.

2. An imperfection analysis is run for each of these elements based on the extracted

deformation gradient F(t) for a large number of band orientations defined by φ0 ∈

[0, π] and θ0 ∈ [0, 2π], using a domain reduction method as described in Morin et

al. [47] which involves around 1200 bands.
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3. For each element, a local failure strain p f is calculated as the minimum equivalent

plastic strain outside the band at loss of ellipticity inside the band for all band

orientations.

4. The local failure strain p f of each element is mapped onto the minimum cross-

section of the specimen.

5. Using the relationship between the local equivalent plastic strain of the elements

and the macroscopic logarithmic strain εl from the finite element simulation of the

specimen, the macroscopic failure strain ε f corresponding to localization within

the actual element is mapped onto the minimum cross-section of the specimen.

6. The actual failure strain corresponds to the minimum value of ε f over the mini-

mum cross-section and its position is assumed to be the location of failure initia-

tion.

The numerical procedure of finding the location of incipient failure and the macroscopic

failure strain ε f is illustrated in Figure 1. In the subsequent sections, the localization

band is defined as the one for which loss of ellipticity occurs first, thus leading to the

lowest macroscopic failure strain ε f .

6. Numerical results

6.1. Calibration of the imperfection method

When running an imperfection analysis, the magnitude of the imperfection has to

be calibrated. By applying void nucleation in the Gurson model inside the localiza-

tion band, the calibration involves three parameters, namely the volume fraction of void

nucleating particles fn, the mean equivalent plastic strain for nucleation pn, and the as-

sociated standard deviation sn. The calibration of these three parameters requires the

use of at least three different experimental tests, and here it is based on the smooth and
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notched tests in the rolling direction of the material. The parameters of the void nucle-

ation rule are identified based on a sensitivity analysis until a reasonable agreement with

the experimental data is found.
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Figure 6: Calibration of the void nucleation parameters: a) effect of the volume fraction of void nucleating
particles fn, b) effect of the standard deviation sn and c) effect of the mean equivalent plastic strain for
nucleation pn.

The effects of the different parameters involved in the void nucleation rule are pre-

sented in Figure 6. As shown in Figure 6 b), the standard deviation of the void nucleation

rule sn has a strong effect on the failure strain of the smooth and R2 specimens. In con-

trast, the amount of void nucleating at particles fn (Figure 6 a)) has a rather strong effect

for the smooth specimens but a limited impact for the R2 and R08 specimens. According
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to Figure 6 c), the mean equivalent plastic strain pn at nucleation has a small effect on

the failure strain of the smooth sample, but is more important for the two notched sam-

ples. As the smooth specimens exhibit larger ductility, localization is more influenced

by the amount of void nucleating particles (Figure 6 a)) rather than when the voids are

nucleated (Figure 6 c)). In contrast, the R08 specimens are slightly more sensitive to pn

as they exhibit reduced ductility, and the failure predictions are therefore more sensitive

to when voids starts to nucleate.

Based on the sensitivity analyses, the void nucleation parameters are taken as

fn = 0.03, pn = 0.1 and sn = 0.005. These parameters are applied in all remaining

localization analyses of this study. It is worth noting that the obtained volume fraction

of void nucleating particles fn is within the range of observed particles content for this

aluminium alloy [14].

An attempt was also made to model the imperfection based on a volume fraction of

initial voids f0 instead of a volume fraction of void nucleating particles fn. To obtain the

same ductility as when void nucleation is employed in the smooth tensile test, an initial

void content f0 of 2.7% was required. While there was no significant differences in the

case of a smooth tensile test between the two voiding mechanisms, the failure prediction

in the notched specimens was found to be overly conservative when a volume fraction of

initial voids was applied. Therefore, all results presented in the next sections are based

solely on void nucleating particles.

6.2. Details of an imperfection analysis

Before presenting the validation of the proposed approach it is important to detail the

process leading to localization in an imperfection analysis. In this perspective, a selec-

tion of the important quantities driving an imperfection analysis are presented in Figure

7 for the case of the smooth tensile test in the rolling direction for the material outside
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(black curves) and inside (red curves) the band. All quantities are plotted as a function

of the logarithmic strain εl computed from the diameter reduction of the specimen.
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Figures 7 a) and b) present the von Mises equivalent stress σvm and hydrostatic

stress σh = 1
3σ : I normalized with respect to the initial yield stress σ0 in the rolling

direction. Since the material inside the band is defined with void nucleation, the band

does not have any initial porosity and exhibits the same von Mises equivalent stress and

hydrostatic stress as the one outside the band (Figure 7 a) and b)) until the nucleation

process takes place. At this point (Figure 7 f)), the stress state inside the band starts to

drift both in terms of the stress triaxiality T (Figure 7 c)) and Lode parameter L (Figure

7 d)). The stress triaxiality T and the Lode parameter L are defined as

T =
σh

σvm
, L =

2σ2 − σ1 − σ3

σ1 − σ3
(18)

where σ1, σ2 and σ3 are the ordered principal stresses. The Lode parameter L equals

−1 for generalized axisymmetric tension, 0 for generalized shear and +1 for generalized

axisymmetric compression. It is interesting to note that the localization band exhibits

strong variation in the stress triaxiality which is increasing compared to the value outside

the band and that the Lode parameter L is drifting from generalized axisymmetric tension

(L = −1) to generalized shear (L = 0), as also seen by Morin et al. [47]. As the void

nucleation process proceeds, the imperfection starts to experience a higher equivalent

plastic strain rate than the material outside the band until loss of ellipticity is reached

(Figure 7 e)).

Even if the quantities of the localization band differ from those outside the band

after the initiation of void nucleation, all stress quantities and equivalent plastic strains

are related to the material outside the band in the remaining sections.

6.3. Assessment of the imperfection method

The identified imperfection model (i.e., the void nucleating localization band) is as-

sessed against the experimental failure strains obtained with the smooth tensile tests and
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notched tensile tests carried out in the remaining material orientations. Figure 8 shows

the comparison between the experimental failure strains and the predictions based on

the imperfection analyses. The reported failure strains (from the localization analyses)

correspond to the time when loss of ellipticity is detected in one element. An overall

good agreement is found for the smooth tensile tests, while the predicted failure strains

are conservative for the tests carried out at 45◦ and 60◦ from the rolling direction. Even

if the imperfection band approach is applied here to predict failure, this methodology

should in fact be conservative as localization is preceding ductile failure. Moreover, the

tests carried out at 45◦ and 60◦ from the rolling direction exhibit a significantly larger

ductility than the one in the rolling direction. Under such deformations, the shape of

the voids, induced by the deformation of the matrix material, might become important

and should perhaps be considered in the anisotropic porous plasticity model, as done by

Keralavarma and Benzerga [59], Keralavarma et al. [23] and Morin et al. [60]. Never-

theless, the proposed methodology appears capable of predicting anisotropic failure in

view of the results from the smooth tensile tests.
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Figure 8: Failure strains obtained with imperfection analyses compared with the experimental measure-
ments for the smooth and notched specimens.

24



Figure 9 presents the failure strains predicted by the localization analyses in each

element of the minimum cross-section of the smooth specimens. The initiation of ductile

failure is usually assumed to occur in the centre of a tensile test specimen [63]. In

the present analyses, loss of ellipticity is always reached in the centre of the smooth

specimen independently of the orientation of the specimen which seems in line with

observations from the literature. For each of the specimen orientations illustrated in

Figure 9, the magnitude of the predicted failure strains is indicated by black and white

colourbars. As the overall ductility is increasing, necking becomes more pronounced

and a larger spread appears in the failure strains. For the lowest ductility, reached in

the rolling direction, the maximum predicted failure strain in the cross-section is close

to 0.25 while the minimum is close to 0.19. Thus, the failure strain field appears rather

smooth. In the case of the largest ductility, obtained at 45◦ of the rolling direction, the

maximum predicted failure strain is close to 0.65 while the minimum is close to 0.37. As

necking has more time to develop in this specimen, the failure strain field map is more

heterogeneous and the difference between the minimum and maximum failure strain is

larger. The orientation of the localization band, though difficult to relate to the failure

plane of the tensile tests, shows some interesting features. When loss of ellipticity is

predicted in the rolling direction, the localization band contains the transverse direction

as shown by Børvik et al. [64] and form an angle of approximately 45◦ to the loading

axis. The localization bands of the remaining material orientations do not contain any

specific material axes as shown by Fourmeau et al. [57] and form an angle in between

32◦ and 39◦ to the loading axis, with the minimum being in the 45◦ tensile test. By

looking at the complementary angle α, defined as cosα = m · n, the deformation mode

of the localization band can be interpreted. When the complementary angle α is equal to

90◦ the localization band experiences a shear deformation mode, while α = 0◦ implies a

dilatation mode. In the smooth tensile test, the complementary angle α varies from 86◦
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to 84◦ at loss-of-ellipticity with its maximum in the tensile tests carried out in the rolling

and transverse directions and its minimum in the test carried out at 45◦ to the rolling

direction. This indicates that the localization bands are subjected to a shear-dominated

deformation mode.
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Figure 9: Failure strain maps on the minimum cross section obtained with the localization analyses as
function of the material orientation for the smooth specimens. The location of failure initiation is indicated
by the red elements.

The failure strains predicted for the notched specimens with a 2 mm radius (see also

Figure 8) exhibit a lower failure strain in the rolling direction compared to the exper-

iments, while the magnitude of the failure strains for the specimens at 45◦ and 90◦ to

the rolling direction are rather reasonable. Due to the presence of a notch, the strain

and stress states across the specimen become more heterogeneous [57]. These hetero-

geneities combined with the anisotropic behaviour of the investigated aluminium alloy

lead to different locations for the initiation of ductile failure, indicated by the red ele-

ments in Figure 10. Accordingly, the field map of the failure strains exhibits rather dif-

ferent patterns depending of the orientation of the specimen. For instance, ductile failure
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initiates in the root of the notch for the specimens in the rolling direction (Θ = 0◦) and

transverse direction (Θ = 90◦), while it is almost mid-way from the center of the speci-

men to the root of the notch for the specimen oriented at 45◦ to the rolling direction, see

Figures 10 a), c) and b) respectively. These results indicate a strong interplay between

the anisotropic behaviour of the material and the geometry of the specimen.
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Figure 10: Failure strain maps on the minimum cross section obtained with the localization analyses for the
notched specimens with a radius of 2 mm at: a) 0◦, b) 45◦ and c) 90◦ with respect to the rolling direction.
The location of failure initiation is indicated by the red elements.

From Figure 8, it appears that the predicted failure strains for the notched specimens

with a radius of 0.8 mm exhibit negligible anisotropy compared to the experiments.

Moreover, the magnitude of the predicted failure strains is quite conservative compared

with the experimental results. It is believed that the main reason behind the underesti-

mated failure strain is the parameters employed in the void nucleation rule. The obtained

parameters are based on a trade-off solution which allows a better description of the fail-

ure strains obtained in the rolling direction for the smooth and the 2 mm radius notched

specimen, but underestimate the ductility for the specimens with the sharpest notch (see

Figure 6). Moreover, the use of a void free material outside the imperfection band might

be a rather strong assumption in the case of the 0.8 mm radius notch specimens. In these

experiments, a damage mechanism taking place outside the imperfection band could
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have a stronger impact on the results as the stress triaxiality is high. Another potential

explanation for the underestimation of the ductility might be related to the higher stress

level predicted in the numerical simulations compared to the experiments (Figure 5). As

stated earlier, increasing the exponent of the Yld2004-18p [58] from 8 to 12 reduces the

stress level in the numerical analyses [57]. This effect was evaluated in the present study

by re-running all analyses with this higher exponent, but no significant improvements

were observed. While increasing the exponent of the Yld2004-18p yield surface helps

to better capture the stress level of the experiments, it increases at the same time the

curvature of the yield surface and this might trigger localization earlier. This effect was

observed by Dæhli et al. [52] where localization analyses were run, in a similar setup

as in the present study, for a von Mises and a Hershey/Hosford yield surface [65, 66].

Despite the mismatch in the magnitude of the failure strain it is interesting to look at the

location of failure initiation (Figure 11). While the notched specimen with a radius of 2

mm exhibits large differences in the location of failure initiation and in the failure strain

field map (Figure 10), a notch with 0.8 mm radius appears to initiate failure in the root

of the notch even though it is not initiated at the same location (Figure 11).
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Figure 11: Failure strain maps on the minimum cross section obtained with the localization analyses for the
notched specimens with a radius of 0.8 mm at: a) 0◦, b) 45◦ and 90◦ with respect to the rolling direction.
The location of failure initiation is indicated by the red elements.
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In the case of the notched specimens, the localization bands do not show any pre-

ferred orientation and do not include any specific material axes. The localization bands

form an angle of about 37◦, while the complementary angle α is slightly smaller than

the ones found for the smooth specimens. This indicates that the localization bands still

exhibit a shear-dominated deformation mode in the range of investigated stress triaxial-

ities. As indicated by Morin et al. [47], an imperfection band based on void nucleation

would exhibit a shear-dominated deformation mode even at large stress triaxialities.

6.4. Analysis of the simulation results

In this section, we present an analysis of the simulation results obtained in an attempt

to identify the sources for the predicted anisotropy in tensile ductility. To this end,

two stress quantities are extracted from the material outside the localization band in the

critical element (i.e., the element where localization occurs first). These are the von

Mises equivalent stress σvm and the hydrostatic stress σh which are normalized with

respect to the initial yield stress σ0 of the material in the rolling direction. Additionally,

the equivalent plastic strain p developed outside the localization band as well the void

content f of the localization band are extracted. It should be recalled that the localization

band orientation is defined here as the orientation first experiencing loss of ellipticity

among all orientations in the critical element. All these quantities are plotted as function

of the logarithmic strain εl obtained from the diameter reduction of the specimens.

Figure 12 shows the said quantities extracted from the smooth tensile specimens in

the rolling direction (Θ = 0◦), transverse direction (Θ = 90◦) and at 45◦ with respect

to the rolling direction (Θ = 45◦). When changing the orientation of the specimen with

respect to the rolling direction, the yield stress changes and leads to different stress levels

inside the specimens (Figure 12 a)). Due to the lower stress ratio at 45◦ to the rolling

direction (see Figure 3 b)), the magnitude of the stress is lowered and as a result the
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Figure 12: Evolutions as function of the logarithmic strain εl of: a) the normalized von Mises equivalent
stress, b) the normalized hydrostatic stress, c) the equivalent plastic strain outside the localization bands
and d) the void content inside the localization bands for the smooth tensile tests carried out at 0◦, 45◦ and
90◦ to the rolling direction.

hydrostatic stress is the lowest for this material orientation (Figure 12 b)). For the same

reason, a lower yield stress is found in the transverse direction (Θ = 90◦) compared to

the rolling direction (Figure 12 a)) and the resulting hydrostatic stress outside the band is

therefore slightly reduced in the tensile test carried out in the transverse direction (Figure

12 b)). Figure 12 c) shows the evolution of the equivalent plastic strain at the location

of failure initiation as a function of the logarithmic strain. Only small differences are

present between the specimens at 0◦ and 90◦ to the rolling direction, while the specimen

oriented at 45◦ exhibits a somewhat slower evolution of the equivalent plastic strain.

While the different stress levels are related to the anisotropic yielding of the material, the

local evolutions of the equivalent plastic strain can be related to the anisotropic plastic
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flow through the strain ratios. The applied aluminium alloy has a low strain ratio in the

rolling direction (R0 ≈ 0.6), a larger in the transverse direction (R90 ≈ 0.9), and an even

larger at 45◦ from the rolling direction (R45 ≈ 1.3) (Figure 3 b)). The strong interaction

between the geometrical constraint of the neck and the anisotropic plastic flow triggers

different evolutions of the equivalent plastic strain depending on the orientation of the

specimens. When combining the stress level with the development of the equivalent

plastic strain in the center of the specimen, the localization bands, in which plastic strain

driven void nucleation is present, display different void evolutions (Figure 12 d)). The

void nucleation appears to be delayed at 45◦ from the rolling direction compared to the

transverse and rolling directions. When the void nucleation process is completed, the

effect of the stress level becomes very important and the void growth becomes much

slower for the test oriented at 45◦ from the rolling direction due to the reduced yield

stress. The differences in hydrostatic stress, i.e., the driving force of void growth, appear

to be a key factor in the observed anisotropic failure. Based on Figure 12 d), the evolution

of the porosity is rather strong from a macroscopic point of view, in particular near

localization. With the relatively large amount of void nucleating particles present inside

the band, significant void growth is obtained despite the low stress triaxiality of these

experiments. The evolution in Figure 12 d) suggests that a coalescence criterion, as

proposed by Pardoen and Hutchinson [67], Keralavarma and Chockalingam [68] or Torki

et al. [69], may not be required in the present analyses.

Figure 13 shows the same quantities for the notched specimens with 2 mm radius.

In contrast to the smooth tensile tests (Figure 9), the notched specimens with 2 mm

radius exhibit different locations for failure initiation (Figure 10) which interacts with the

plastic anisotropy of the material. For instance, the von Mises equivalent stresses (Figure

13 a)) developed at the location of failure initiation exhibit the same trends as for the

smooth specimen (Figure 12 a)), but the resulting hydrostatic stresses are quite different
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(Figure 13 b)). This effect is linked to the location of failure initiation and the different

stress triaxialities resulting from the heterogeneities introduced by the notch. According

to the analyses of the smooth tensile tests, a higher hydrostatic stress should lead to a

lower ductility since void growth is very sensitive to this quantity, but the results obtained

for the 2 mm radius notched specimen show otherwise. The reason for this difference is

linked to the local evolution of the equivalent plastic strain as shown in Figure 13 c). Due

to a combined effect of the anisotropic plastic flow and the location of failure initiation, a

complex stress redistribution takes place in the specimen oriented at 45◦ from the rolling

direction which slows down the evolution of the local equivalent plastic strain. As a
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result of the spread of plasticity in the specimen, void nucleation is delayed (Figure 13

d)) in the 45◦ specimen compared to the ones in the rolling and transverse directions.

The opposite occurs in the specimen oriented in the transverse direction compared to the

rolling direction. Both the equivalent and hydrostatic stresses developed in the specimen

in the transverse direction are slightly lower than in the rolling direction. Again based

on the analyses carried out on the smooth specimen, the ductility of the specimen in

the transverse direction should be higher than the one in the rolling direction, but the

results indicate the opposite. Due to the stress redistribution, the specimen oriented in

the transverse direction exhibits a slightly faster evolution of the equivalent plastic strain

at the location of failure initiation (Figure 13 c)). This difference is enough to trigger the

void nucleation sooner than in the specimen in the rolling direction and thus localization

is reached earlier.

Similar analyses can be carried out for the notched specimen with radius of 0.8 mm

but are not shown here for brevity.

Concluding remarks

The anisotropic failure of the aluminium alloy AA7075-T651 is investigated in this

study. To this end, strain localization analyses employing the imperfection approach

are used in an attempt to predict and understand anisotropic ductile failure. Smooth

and notched tension tests, previously carried out on this alloy [57], are simulated with

an anisotropic metal plasticity model. The local evolutions of the deformation gradient

extracted from the critical cross-section of these specimens are then used in a series of

imperfection analyses. The imperfection bands are modelled with an anisotropic porous

plasticity model [35] in order to introduce strain softening and trigger loss of ellipticity.

The proposed simulation approach, based on a homogeneized microstructure, is able to

predict the observed anisotropic ductile failure in the plane of the rolled plate (without
33



details of the material’s microstructure). The anisotropic failure observed in the smooth

specimens is well predicted, from a qualitative point of view, and in most of the material

orientation quantitatively as well. The prediction of failure initiation in the notched

specimens is rather correct qualitatively, while a conservative estimate of the ductility

is obtained for the specimens with the sharpest notch. While it is difficult to study

the effect of plastic anisotropy on ductile failure experimentally, the proposed numerical

approach provides a simple way to carry out such studies. Based on the present analyses,

anisotropic ductile failure appears as a complex problem influenced by the stress level

and the redistribution of stresses which are combined effects of the anisotropy of the

alloy and the specimen’s geometry.

While the proposed numerical approach provides reasonable agreement with the

available experiments, there are other sources of anisotropic tensile ductility than plastic

anisotropy. Morphological anisotropy due to the flat, elongated grains, the distribution

of primary particles and the precipitate free zones along the grain boundaries can also

contribute to the anisotropic tensile ductility but will not be captured with the current

description of the material inside the imperfection band. However, a model including

these effects, when available, is easily introduced in the imperfection band analysis.
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