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Subjective evaluation of a noise-reduced training
target for deep neural network-based speech

enhancement
Femke B. Gelderblom, Tron V. Tronstad, Erlend Magnus Viggen

Abstract—Speech enhancement systems aim to improve the
quality and intelligibility of noisy speech. In this study, we
compare two speech enhancement systems based on deep neural
networks. The speech intelligibility and quality of both sys-
tems was evaluated subjectively, by a Speech Recognition Test
based on Hagerman sentences and a translation of the ITU-
T P.835 recommendation, respectively. Results were compared
with the objective measures STOI and POLQA. Neither STOI
nor POLQA reliably predicted subjective results. While STOI an-
ticipated improvement, subjective results for both models showed
degradation of speech intelligibility. POLQA results were overall
hardly affected, while the subjective results showed significant
changes in overall quality, both positive and negative, in many
of the tests. One of the systems was trained to remove all noise; a
strategy that is common in speech enhancement systems found in
the literature. The other system was trained to only reduce the
noise such that the signal-to-noise ratio increased with 10 dB.
The latter system subjectively outperformed the system that
attempted to remove noise completely. From this, we conclude
that objective evaluation cannot replace subjective evaluation
until a measure that reliably predicts intelligibility and quality for
deep neural network based systems has been identified. Results
further indicate that it may be beneficial to move away from
more aggressive noise removal strategies towards noise reduction
strategies that cause less speech distortion.

Index Terms—speech enhancement, artificial neural networks,
subjective evaluation, speech intelligibility, speech quality

I. INTRODUCTION

THE field of speech enhancement (SE) deals with improv-
ing speech signals that have been degraded by noise [1].

Speech enhancement is commonly applied in automatic speech
recognition (ASR) systems as a preprocessing step to improve
these systems’ accuracy in noisy environments [2], [3], [4].
Recently, research into this application has flourished, result-
ing in significant performance increases of ASR systems. This
success has also lead to a renewed interest in the application
of speech enhancement for human listeners, where the goal
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is to make the speech easier to understand (i.e., increase
speech intelligibility) and/or more comfortable and less tiring
to listen to (i.e., increase speech quality) [3], [5], [6]. The
latter application is especially important within the fields of
telecommunication and hearing assistive technology.

There exists a wide range of SE techniques. As in many
other fields, techniques based on deep neural networks (DNNs)
[7], [8] are currently receiving a lot of interest due to their
potential to outperform earlier techniques. For ASR systems,
performance is measured by a SE system’s ability to decrease
the word error rate. For human listeners, performance is
ideally determined through subjective evaluation of speech
intelligibility and/or speech quality [1]. These tests generally
compare the listeners’ evaluations of noisy speech before
and after enhancement, to quantify the effect of different SE
strategies.

However, since these subjective evaluations are time-
consuming to perform, objective measures are often calcu-
lated instead. These objective measures typically quantify
a degraded speech signal in comparison to a clean speech
signal. For speech intelligibility, a popular objective measure
is STOI, which performs well against competing intelligibility
measures [9] and has a reference implementation freely avail-
able [10]. For speech quality, popular measures are PESQ [11]
and its successor POLQA [12]. Although PESQ also has a
downloadable reference implementation [13], licenses must be
purchased to use PESQ and POLQA.

When evaluating the change in intelligibility or quality
obtained with SE systems, measures based on clean speech
and unenhanced noisy speech are calculated to establish a
reference. Then, the same measures are calculated for clean
speech and enhanced noisy speech. Comparison of these
results then predicts how much the SE system affects speech
intelligibility or quality.

However, these objective measures have been designed to
predict intelligibility or quality for relatively simple degrada-
tions, such as additive noise, and do not necessarily perform
well for more complex degradations [9], [14], [15]. DNN-
based SE systems perform a complex nonlinear processing of
the noisy signal, and multiple authors have found that STOI
is not a reliable predictor of whether or not a given DNN-
based system actually improves speech intelligibility [16],
[17], [18]. Until a specific objective measure has been shown
to give reliable predictions for these systems, time-consuming
subjective evaluations are required to test DNN-based SE
systems.
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When training a DNN using supervised learning techniques,
we must always specify the format of the input and the
target output. In speech enhancement, a common input is the
logarithmic half-spectra of several adjacent semi-overlapping
frames of the noisy speech signal, and a common target output
is the logarithmic half-spectrum of one corresponding frame
of the clean speech signal [5], [6], [17], [4], [19], [20], [21],
[22], [23], [24]. In this way, the training process leads the DNN
towards returning perfectly noise free speech. This approach
has shown significant merit for application in ASR systems.

While SE systems often manage to reduce or even remove
the presence of noise, the output speech is generally audibly
degraded by this process, especially at low signal-to-noise
ratios (SNRs), as SE systems cannot perfectly distinguish
between speech and noise when attempting to remove only the
latter [25], [24]. In fact, our previous study on one possible
realization of a DNN-based SE system [17] found that this
degradation significantly reduced the speech intelligibility,
compared to that of the noisy speech before the enhance-
ment was carried out. We found that the speech recognition
threshold (SRT), which is the SNR at which 50 % of words
are understood, degraded on median by around 4 dB, in stark
contrast with the positive performance predicted by STOI.

However, this is not surprising, when put in the perspective
that humans are very sensitive to degradation in speech signals,
while capable of scoring 100 % intelligibility despite noisy
conditions. This motivates studying training methods that look
for a suitable compromise between noise reduction and speech
degradation, in addition to methods that focus on finding noise
free speech.

Supervised training of a DNN involves optimizing some
statistical measure, called the loss function, which is based on
the difference between the desired DNN output and the actual
DNN output for a given input. A typical loss function in DNN-
based SE is the mean-squared-error (MSE) value based on
the target clean speech and the DNN’s output. By iteratively
adjusting the weights of the DNN to obtain a lower MSE, the
training process moves the DNN’s output towards the target
output.

One way of shifting the “focus” of the DNN training
towards speech and away from noise, in the hope of indirectly
reducing speech degradation, would be to use more speech-
aware loss functions. Kumar et al. proposed using a weighted
squared error based on absolute thresholds of hearing, but
did not report results that allow for direct performance of
this loss function to a standard MSE approach [25]. Others
investigated using STOI as a training target, but did not obtain
improvements of such a degree that it is obvious that they
will show in a subjective evaluation [26], [27], [28]. We
also investigated a number of other options, such as an MSE
loss function weighted according to the SII band importance
weights [29] or gammatone weights inspired by the objective
intelligibility measure by Dau et al. [30]. However, none of our
unpublished pilot studies based on these approaches showed
enough promise to warrant continuing with subjective testing
on a larger scale.

Another alternative to guide the training process is to go
away from using a noise free target. This article investigates

using a DNN target output that is not perfectly clean speech;
rather, it corresponds to the input signal at a 10 dB higher
SNR. This target, which is closer to the input, ensures that
noise is still significantly reduced relative to the speech, but in
a less aggressive manner. This may reduce the overall speech
degradation, and consequently increase the speech quality and
intelligibility compared to the more aggressive clean-speech
target where the noise reduction likely has a stronger negative
impact on the speech [25], [24]. A 10 dB improvement in
SNR is clearly perceptible, since it perceptually corresponds
to a halving/doubling of the loudness of the noise/speech
signal [31]. Even though intelligibility improvement rates have
been shown to vary a lot between test situations (from 1 % per
dB to 44 % per dB, with a mean value of 7.5 % per dB) [32],
a 10 dB improvement of the SNR should always be clearly
measurable in subjective testing. The optimal may both be
higher (less noise) or lower (less distortion), but finding an
optimal value of the target’s SNR improvement is out of the
scope of this study.

In the study reported in this article, we trained two DNN-
based SE systems based on these two targets, as described in
Section II-A. We subsequently generated a large number of
sound clips where clean sentences were mixed with different
background noises at various SNRs and enhanced with either
of the SE systems, as described in Section II-B. Our test
subjects (Section II-E) were asked to perform subjective eval-
uations of the speech intelligibility (Section II-C) and speech
quality (Section II-D) of these clips. Additionally, we calcu-
lated STOI and POLQA scores for comparison (Section II-F).
We provide our results in Section III and discuss them further
in Section IV, before we conclude in Section V.

II. METHOD

A. Data and DNN setup

In this work, we used the same general DNN setup as in
our previous work [17], which is loosely based on the system
by Xu et al. [6] and implemented using Keras [33]. As the
details are given in [17], we will only give the essentials here.

The clean speech for training and validation of the
DNN was taken from the Norwegian speech audio dataset
NB Tale [34]. This forms part of the Norwegian language
library Språkbanken, and is set up similarly to the widely used
English-language TIMIT dataset. Periods of silence lasting
longer than 75 ms were trimmed to 75 ms where their levels
were 40 dB or more below the peak of the given sentence,
to capture the average dynamic range of speech [35]. The
clean speech was divided into training, validation, and test
sets that did not overlap in either speakers or sentences, with
1932 sentences from 137 speakers in the training set and 816
sentences from 48 speakers in the validation set. We chose to
use Norwegian primarily because of our access to Norwegian
native speakers as test subjects. However, we expect our results
to be transferable to e.g. English, as the two are closely related
Germanic languages.

During training and validation, the input was based on
noisy speech constructed by combining this clean speech with
noises taken from the Aurora database [36], the NOISEX-92
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database [37], and Guoning Hu’s collection [38]. We chose
the same 104 noises for training and 15 unseen noises for
validation as Xu et al. Both sets contained both stationary and
non-stationary noise sources. For each set, we combined every
type of noise with every sentence in that set, giving us a total
of 1984 hours of training data and 98 hours of validation data.
For the input data, six different SNRs uniformly spaced from
−5 dB to 20 dB were used during training. Before they were
combined, the speech and noise signals were downsampled to
8 kHz, the lowest sampling rate among the noise types.

The input was constructed from single-sided log-power
spectra of frames of this noisy speech. Each frame was found
from a 256-sample (32 ms) Hann window of the time signal.
Adjacent frames overlapped by 50 % in time. These windowed
frames were Fourier transformed and redundant information
above the Nyquist limit was discarded, giving a single-sided
spectrum. Then, the log-power spectrum was found by taking
the base-10 logarithm of the magnitude of each frequency bin.
The final input vectors were found by stacking 21 such log-
power spectra, based on the adjacent overlapping frames, after
each other. The task of the DNN was to enhance only the
middle frame, and the stacking thus provided the DNN with
160 ms of past context and 160 ms of future context.

When training the DNN, we used two different training
targets, leading to two different DNN models:

• Model 1: Here, the training target was the single-sided
log-spectrum of a frame of clean speech, unaffected by
noise. This is the model we reported earlier [17].

• Model 2: Here, the training target was the single-sided
log-spectrum of a frame of clean speech mixed with the
exact same noise as in the input, but at a 10 dB higher
SNR.

The loss function was a standard mean squared error between
the DNN output and the training target.

In both models, the DNN was a simple feedforward network
with three hidden layers in addition to the input and output
layer. Each hidden layer used LeakyReLU activation functions.
The models were trained with 50 % dropout in the hidden
layers using the Adam optimizer. We trained a number of
different candidate networks over the same ranges of hyperpa-
rameters for both models. The ranges included hidden layers
with 1024, 2048, and 3072 units. The final network for each
model was chosen as the best epoch of all the candidate
networks, according to the STOI scores that we evaluated for
the validation set at 0 dB SNR after every epoch. The resulting
Model 1 used 2048 nodes per hidden layer and a learning rate
of 10−5, while Model 2 used 3072 nodes and a rate of 10−2.
The final epochs for Model 1 and Model 2 were the 8th and
the 33rd epochs, respectively.

In order not to change the experimental procedure more
than necessary, we picked Model 2 based on STOI scores
in the same way as we picked Model 1 in [17]. However,
as earlier work indicates that STOI is not a robust predictor
of the intelligibility of DNN-based SE systems, as explained
in Section I, this approach is hardly ideal as we cannot
truly expect the maximum-STOI epochs to perform best in
a subjective evaluation. However, given the relatively minor
performance changes reported in [39], [26], [27], [28] and

102 103 104
−70

−60

−50

−40

−30

−20

−10

Frequency [Hz]

N
or

m
al

iz
ed

po
w

er
sp

ec
tr

um
[d

B
]

Crossroad traffic
Cafeteria babble

Fig. 1. Long-term average spectra of the two background noises used in the
subjective evaluations. These spectra were computed using Welch’s method
using 2048-sample Hann windows, after the sounds had been normalized to
have RMS values of 1.

the fact that we merely used STOI for selection rather than
as a training target (with an expected weaker effect), we do
not expect that the approach with STOI as selection criteria
will have had a major impact on our results. Until one or
more objective measures are identified as a robust predictor of
intelligibility and/or quality, determining the best epoch or the
best hyperparameters will remain problematic, as subjective
evaluations of sufficient precision are generally too time-
consuming to be feasible for anything other than a final test
of a trained system. While an extensive study into this topic
is outside the scope of this article, Section IV does compare
STOI and POLQA scores with subjective evaluations of speech
intelligibility and speech quality, respectively.

When the trained network was used to enhance noisy
speech, the process of reconstructing a waveform from the
DNN output essentially consisted of reversing the steps used
to create the input data. As the log-spectrum output does not
contain phase information, we used the noisy input phase in
this process. Unlike in our previous publication [17], we did
not use the global variance normalization preprocessing step,
for two reasons: We found then that it did not affect the results
of the subjective intelligibility evaluation, and including it as a
factor would double the already considerable number of tests
to be performed by the test subjects.

B. Generation of test sounds

For the subjective evaluations, we generated a variety of
single-channel clips of speech in noise at various SNRs. We
generated clips both without enhancement and with enhance-
ment by Models 1 and 2.

In all the clips, the base speech was a randomly generated
five-word Hagerman sentence in Norwegian, generated as
described by Øygarden [40]. Each sentence was built up the
same way: [Name], [Verb], [Numeral], [Adjective], [Noun],
with 10 possible options for each class of word. As a basis,
we generated 500 reference speech clips of unique, noise-free
sentences.
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We then mixed these files with background noise at various
SNRs, as described later in Sections II-D and II-C. Two
different types of noise were used. We used one 17-second clip
of traffic noise from a crossroad in Trondheim, and one 25-
second clip of babble noise recorded in a university cafeteria
during a lunch break. Neither type of noise was present in
either the training or the validation described in Section II-A.
Both noises were originally recorded with a sampling rate of
44.1 kHz. The long-term average spectra of both noises before
downsampling is shown in Figure 1.

Finally, these unenhanced noisy clips were run through the
two trained DNN models described in Section II-A. Thus, for
each SNR, we ended up with 3000 unique degraded clips:
The 500 reference clips, times two types of noise, times three
types of enhancement (Unenhanced, Model 1, and Model 2).
Figure 2 shows spectrogram examples of one speech clip at
different points in this process.

C. Speech intelligibility

The speech recognition threshold (SRT), which is a common
measure of speech intelligibility [1], was determined using
the same method as in our previous work [17]. The five-
word test sentences were built up from five word categories as
described in Section II-B. The test subjects’ task was to select
the words they could hear using a graphical user interface with
ten possible words per category, a total of 50 words. Guessing
was allowed, but the test was not forced choice.

The test subject responses were given as input to an adaptive
psychometric function estimation procedure called the Ψ-
method [41], which continuously estimated the SRT during the
test. The final threshold estimate was found after 20 sentences
(i.e. 100 words in total). All parameters used in the method
were identical to the ones used in our previous study [17],
i.e. a guess and lapse rate of 0.01, psychometric function
based on a cumulative normal probability density function,
and stimulation range of the SNR from −36 dB to 10 dB in
2 dB steps.

The method was implemented in MATLAB [42] and the
sentences were presented binaurally for all test subjects. An
external sound card (Edirol UA-25) was connected with USB
cable to the computer. Headphones (Howard Leight Sync
Stereo Headband) with sound attenuating properties were used
for the playback. The test was performed in an ordinary single
room office with low background noise level. The background
noise level was not measured during the test, but considering
the headphones’ sound attenuating properties and the signal
levels involved, the results should not be affected.

Since the results from our previous study [17] did not
pass the normality distribution assumption, we decided to use
Wilcoxon tests to decide if differences were significant.

D. Speech quality

Speech quality was assessed using the method described in
ITU-T P.835 [43]. The ordinal scales presented in the recom-
mendation were translated to Norwegian by comparing and
combining the official English and French version, together
with a Danish version presented by [44]. The English and

TABLE I
ENGLISH VERSION OF THE ORDINAL SCALES USED IN ITU-T P.835 [43].

Rating Speech Noise Overall quality

5 Not distorted Not noticeable Excellent
4 Slightly distorted Slightly notice-

able
Good

3 Somewhat
distorted

Noticeable but
not intrusive

Fair

2 Fairly distorted Somewhat intru-
sive

Poor

1 Very distorted Very intrusive Bad

TABLE II
NORWEGIAN TRANSLATION OF THE ORDINAL SCALES USED IN ITU-T

P.835.

Rating Speech Noise Overall quality

5 Ikke forvrengt Ikke hørbar Veldig god
4 Litt forvrengt Hørbar, men ikke

påtrengende
God

3 Ganske forvrengt Litt påtrengende Middels
2 Betydelig

forvrengt
Påtrengende Dårlig

1 Voldsomt
forvrengt

Veldig
påtrengende

Veldig dårlig

Norwegian versions can be seen in Table I and II respectively.
Note that the Norwegian noise scale is slightly different than
the English version. Instead of using “slightly noticeable”,
“noticeable but not intrusive” and “somewhat intrusive” as
rating 4, 3 and 2, the Norwegian version uses “noticeable
but not intrusive”, “somewhat intrusive” and “intrusive”. The
reason for changing the scale was an observation made during
a pilot test for the study. Several of the participants noted that
it was difficult to distinguish between “slightly noticeable” and
“noticeable but not intrusive”. To cope with this problem, we
adapted the French version [45], which uses a slightly different
scale, in the translation.

Three different signal to noise ratios (SNRs) were tested for
both noise types; 0 dB, 10 dB, and 20 dB. Each combination
of noise type, SNR, and enhancement (including unenhanced
clips) was tested twice for different sentences, giving 36
sentences per test subject. As the subjects were asked to rate
the speech, noise, and overall quality of each sentence, each
subject made a total of 108 evaluations. The sound playback
and the test environment was the same as in the speech
intelligibility test described in Section II-C.

All participants were given an instruction before starting
the test and they were allowed to adjust the sound volume to
their preferred level. They were also presented examples of the
sounds to be used in the test. These examples were randomly
taken from all the available sentences, and they were presented
to give the test participants some idea of what to expect during
the test.

Since it is not certain that the rating scale used has equal
steps size between all ratings (i.e. it is not necessary the case
that the size of the quality change going from 5 to 4 is the
same as when going from 2 to 1), an ordinal scale analysis was
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performed to evaluate the results. A cumulative link model
(clm) from the ordinal package [46] in R [47] was used to
determine if the models were significantly different from the
reference without SE.

E. Test subjects
The speech recognition test was performed by 12 persons,

from 40 to 66 years of age (mean value 53.1). These individ-
uals were a subset of the 15 participants from the listening
test in our previous study [17]. It is assumed that the learning
effect is large for the SRT test, therefore we used the same
participants as last time to reduce the time needed for training.

23 persons attended the speech quality test, 8 females and 15
males, from 38 to 74 years of age (mean value 54.7). None
of the listeners had performed any subjective listening tests
within the last three months.

F. Objective measures
While the subjective evaluations described in Sections II-D–

II-E give us the ground truth, it is still interesting to compare
these results with those of objective measures. This compari-
son gives us more information about the reliability of the tested
objective measures for DNN-based SE systems. In this work,
we calculated the intelligibility measure STOI using the STOI
reference code [10] and the quality measure POLQA using the
implementation in the software Voice Quality Testing by GL
Communications Inc. [48]. Even though PESQ has previously
been used as an objective measure for the speech quality of
DNN-based SE systems [5], [6], we chose to evaluate its
successor POLQA due to licensing rights.

The STOI measures were calculated using the same files
as in the speech intelligibility test, with SNRs from −36 dB
to 10 dB in 2 dB steps. As a preprocessing step before the
STOI calculations, the reference clips and degraded clips were
upsampled from 8 kHz to 10 kHz. The POLQA measures were
calculated from the same files used in the speech quality test,
namely with SNRs of 0 dB, 10 dB, and 20 dB. The POLQA
scores were calculated with the High Accuracy and Level
Alignment modes activated.

III. RESULTS

A. DNN output
The most basic way to analyze model performance is by

investigating the error between the target output and the actual
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Fig. 3. Statistics for the outputs of the two models, calculated from the
difference between the models’ target outputs in dB and the actual outputs in
dB

output. Figure 3 shows the mean and the standard deviation of
the error (the difference between the target output in dB and
the actual output in dB) for both models at various SNRs of
the input. These statistics were calculated over each frame of
the validation set. Frames where the speech signal was silent
are excluded from these statistics. This means that the leftover
noise shown in 2 during non-speech periods is not included
in the error analyses.

We find that Model 2 generally hits its target much better
(less biased and with lesser spread) than Model 1 does. This
does not necessarily tell us that Model 2 outperforms Model 1
as a SE system, only that it is better at achieving its given
task. We also see that Model 1 has a large negative mean
error that increases with decreasing SNRs. This shows that
its predicted “enhanced” output is higher than the noise-free
target output, which indicates that there is still quite a lot of
noise left in the output, and that this becomes increasingly true
with worsening SNR. For Model 2 the statistics depend less on
SNR, indicating that the Model 2 task difficulty is more similar
for low and high SNRs than it was for Model 1. Indeed, the
standard deviation results show the opposite behaviour with
respect to SNR as the Model 1 results did. Model 2 shows less
spread (i.e., performs its task with higher accuracy) at lower
SNRs. Although this might seem counter-intuitive at first (a SE
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model is generally not expected to do better at worse SNR),
it makes sense from the perspective that in a situation with a
lot of noise, it is easier for this noise to be identified and as
such easier to be reduced by 10 dB.

B. Objective measures

As described in Section II-B, 500 clips were available from
each combination of SNR, noise, and enhancement, i.e., one
clip for each of the 500 original clean speech clips. Thus, we
could use these various clips to calculate statistics for STOI
and POLQA scores for each of these combinations.

The mean values of the STOI scores are shown as lines for
each type of noise and enhancement in Figure 4. Additionally,
as the STOI scores of the 500 clips for each combination of
SNR, noise, and enhancement were approximately normally
distributed, we calculated approximate confidence intervals for
these mean values, which are also shown in Figure 4. Due
to the high number of clips, the confidence intervals of the
various enhancements are quite small and seldom overlap with
the means of the other enhancements. Thus, the STOI values
unambiguously rank the three enhancements for most SNRs.

The smaller number of SNRs where we calculated POLQA
scores allows us to show the scores’ distribution in more detail,
through the histograms in Fig. 5 and Fig. 6. The median scores
are shown as lines together with the median value.
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Even if the distribution of the POLQA scores differ between
the models with varying skewness and variance, the statistical
analysis of the differences was performed using a two sample
t-test. The t-test assumes normally distributed data, but it has
been shown that for large sample sizes, the t-test might be
more robust than the non-parametric tests when the data are
a continuous variable [49]. While the mean value might not
be the best descriptor for the data, the test does gives a good
indication of whether the results differ or not. Note that the
median has been used in the illustration if Fig. 5 and Fig. 6
as this is a slightly better descriptor for skewed data. Table III
shows the results from the test performed with the function
t.test in R. An F-test to compare variances was also performed
(not shown) and used to decide if pooled variance should be
used in the t-test.

C. Subjective speech quality

The results from the speech quality test are illustrated
in Fig. 7 and Fig. 8. For more details about the statistical
analysis the reader is referred to the supplementary material
provided online. The setup for each figure is the same,
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TABLE III
RESULTS FROM TWO-SAMPLE T-TEST PERFORMED ON THE POLQA SCORES FOR THE UNENHANCED SIGNAL (U), MODEL 1 (M1) AND MODEL 2 (M2).

THE CONFIDENCE INTERVAL (95 % CI) MEANS THE CHANGE IN MEAN POLQA SCORE FOR THE MODELS BEING COMPARED.

Noise SNR Comparison p-value t df 95 % CI

Tr
af

fic

0
dB

U→M1 < .001 −4.8772 996 [−0.021 −0.050]
U→M2 < .001 18.641 994.49 [ 0.139 0.172]

M1→M2 < .001 25.336 998 [ 0.177 0.206]

10
d
B U→M1 < .001 −15.591 998 [−0.168 −0.131]

U→M2 < .001 −4.824 994.51 [−0.061 −0.026]
M1→M2 < .001 10.752 998 [ 0.086 0.125]

20
d
B U→M1 < .001 17.121 998 [ 0.129 0.163]

U→M2 < .001 14.017 998 [ 0.101 0.134]
M1→M2 .002 −3.1375 996.94 [−0.047 −0.011]

B
ab

bl
e

0
d
B

U→M1 < .001 22.321 996 [ 0.155 0.184]
U→M2 < .001 28.238 996 [ 0.209 0.241]

M1→M2 < .001 6.5668 991.34 [ 0.039 0.072]

10
d
B U→M1 .003 2.9975 998 [ 0.010 0.048]

U→M2 < .001 17.891 998 [ 0.151 0.189]
M1→M2 < .001 13.84 996.28 [ 0.121 0.161]

20
d
B U→M1 .1528 −1.4309 998 [−0.029 0.005]

U→M2 .8311 −0.213 34 998 [−0.019 0.015]
M1→M2 .2807 1.0793 998 [−0.009 0.030]

presenting the different quality assessments horizontally, and
different SNRs vertically. The bins consist of three groups;
the unenhanced reference, Model 1, and Model 2. Each plot
also indicates the significance and the direction of the change
in score when going from the unenhanced signal (U) to
the DNN models (M1: Model 1, M2: Model 2), as well as
similarly indicating the change when going from M1 to M2.
The changes’ significance is indicated by asterisks, and the
changes’ direction is indicated with arrows. We cannot show
the changes’ magnitude, as the statistical test we used does
not provide this information.

Both models have a negative effect on the quality of the
speech. All the tested situations have a significant shift in the
negative direction, i.e. the speech is more distorted. However,
we can see from the M1→M2 comparison that Model 2 does
not distort the speech as much as Model 1. This improvement
in speech quality from M1 to M2 is significant (p < .01).

The noise is reduced for both models and all cases except
20 dB SNR have significant differences. For 20 dB SNR, the
noise is generally evaluated as “noticeable, but not intrusive”.

The overall quality results are more mixed. Model 1 does
significantly worse for 10 dB and 20 dB SNR for both noise
types, and does not have any significant difference for 0 dB
SNR. The quality for the latter is not good, however, with score
one (“very bad”) as the most probable outcome. Model 2, on
the other hand, does not have any significant differences in
overall quality, except for 0 dB SNR with traffic noise, where
there is a significant positive effect. The overall quality shifts
from approximately equal probability for score one and two,
to a most probable outcome at score two. Model 2 performs
significantly better in all overall quality scores compared to
Model 1 (p < .05).

D. Speech recognition threshold

The results from the speech recognition test are presented
in Fig. 9. Each line represents results from one test subject.
We should point out that the “old” reference data from our
previous study [17] are similar to the ones in this study. Com-
paring the two reference results, using an Wilcoxon rank sum
test (also known as an independent two-group Mann-Whitney
U test), did not show any significant difference (Median
Uold ref = −9.07 dB (n1 = 15), Median Unew ref = −9.14 dB
(n2 = 12), W = 89, p = .98).

All the differences between the reference and the models
were tested using a Wilcoxon signed rank test. Table IV
shows the test statistics, and also show that all differences
are significant (p < .05). The median and confidence interval
values have been calculated using Hodges-Lehman estimators.

We also compared the two models, and the results can be
seen at the bottom of Table IV. The difference between the
results for the traffic noise was compared using a Wilcoxon
rank sum test since the two data sets had different number
of samples. For the babble noise a Wilcoxon signed rank test
was used. Again, Model 2 performs significantly better than
Model 1 for both noise types. The estimated improvement of
the SRT from M1 to M2 is 3.0 dB for traffic noise, and 1.9 dB
for babble noise.

IV. DISCUSSION

Model 1 and Model 2 were given different tasks. Where
Model 1 was trained to remove noise, Model 2 was trained to
only reduce noise such as to improve the SNR by 10 dB.

For both models, we used the noisy phase of the original
signal during speech synthetization. Such a noisy phase may
be expected to be better suited to the “less noisy” signal (from
Model 2) than the “clean” signal (from Model 1) as the former
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TABLE IV
SPEECH RECOGNITION THRESHOLD STATISTICS FROM THE ANALYSIS OF THE RESULTS.

Noise Comparison n p-value V Median 95 % CI

Traffic Uold → M1 15 < .001 120 3.9dB [ 3.2, 4.8]
Traffic U→M2 12 .002 75 1.4dB [ 0.7, 2.0]
Babble U→M1 12 < .001 78 2.4dB [ 1.7, 3.2]
Babble U→M2 12 .01 70 0.6dB [ 0.2, 1.1]
Traffic M1→M2 15(12) < .001 161+ −3.0dB [−3.9,−1.6]
Babble M1→M2 12 .002 75 −1.9dB [−2.7,−1.1]
+: Comparison was done with Wilcoxon rank sum test since the data sets had
different number of samples. The number is the observed rank sum W.

Uold M1 U M2

−10

−8

−6

−4

−2

0

SR
T

[d
B

]

Crossroad traffic noise

U M1 U M2

Cafeteria babble noise

Fig. 9. Speech recognition threshold results for traffic noise and babble.
The connected lines represent results from each of the test subjects from
unenhanced clips (U) to clips enhanced Model 1 (M1) or Model 2 (M2).
For crossroad traffic the results (Uold and M1) are taken from our previous
study [17].

is closer to the original input from which the noisy phase
was taken. Thus, different performance could possibly be the
result of better/worse suitability with respect to the speech
synthetization process. This in itself would be an advantage
of the approach taken in Model 2: After all, the noisy phase is
always readily available, whereas a clean phase would have to
be approximated. However, the mean and standard deviation
results presented in Figure 3 show that there is more going on.
First of all, from the rather large standard deviations obtained
for Model 1, one can easily argue that the resulting signal is
far from “clean”, and as such a clean phase won’t be optimal
either. Also, Model 2 performs better at its given task than
Model 1: The fact that the standard deviation of the difference
between targeted and obtained output is smaller, shows that the
model is more accurate at reducing noise rather than Model 1
is at removing it. There is also a marked lower dependence
on SNR, and the model is actually more accurate at noise
reduction when the SNR gets worse. This indicates that a
DNN-based SE system does indeed have less trouble with
reducing noise than with removing it, making the approach
worthy of investigation so long as systems aiming to remove
noise entirely do not achieve ideal results.

Both models were trained with an equal variety of hyper-
parameters, and in each case the model with the best STOI
score was selected for further subjective testing. This selection
method resulted in Model 2 having 3072 nodes per hidden

layer, where Model 1 only had 2048 nodes per hidden layer.
As such, Model 2 has a larger capacity than Model 1, and one
may argue that any differences in the results may be (partly)
due to this difference, rather than the difference in noise
removal/reduction strategy. However, the statistical results (not
reported in this article) akin to those presented in Figure 3 of
a model equal to Model 1 but with 3072 nodes per hidden
layer, show the same behaviour as the chosen Model 1. During
hyperparameter optimization, we also noticed that the lowest
MSE obtained for models with a noisy target was generally
much lower than for models with a clean target. Given this,
we are confident that any performance differences obtained
are not due to the different capacities of the model, but due
to the different noise cleaning strategies.

As in our previous study [17] the SE did not improve
the speech intelligibility. Even if STOI predicted a slight
improvement for both models in the SNR range of interest, our
subjective evaluation showed that both models did significantly
worse than the unenhanced signal. However, Model 2 per-
formed significantly better with respect to speech intelligibility
than Model 1 for both noise types, by 3.0 dB and 1.9 dB
for traffic and babble noise respectively. Compared to the
unenhanced signal, however, it still has an elevated speech
recognition threshold.

For the DNN models used in this study, calculated STOI
scores were used to select a final model from model candidates
over different sets of hyperparameters and different training
epochs. The results show that this approach might not be
justified as STOI does not seem to be a good predictor in our
case. This means that we may have trained other models that
could have performed better in our subjective evaluations, but
how to identify these models is as of yet an unsolved problem.

Even though we have shown that our selected DNN-based
SE systems did not end up actually improving speech intelli-
gibility, we should point out that other authors have trained
DNN-based systems that improve intelligibility to human
listeners [16], [50], [51]. Our results do by no means provide
evidence that DNN-based SE is not a generally promising
approach worthy to be further investigated.

In addition to the speech intelligibility test, this study also
evaluated the quality of the signal using the ITU-T P.835
recommendation. The results show that the models did not
give a general improvement of the overall quality of the signal.
No significant change to overall quality was found in 7 out
of 12 comparisons of unenhanced and enhanced signals, and
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Model 1 did actually significantly (p < .001) reduce the
overall quality in four of the six tests performed. The only
exception was for traffic noise at 0 dB SNR, where Model 2
did significantly (p < .01) better than the unenhanced signal.

For the evaluation of the quality of the noise separately,
the results were as expected. The models were trained to
reduce the background noise, and the results verify that they
achieve this in 9 out of 12 comparisons. Only the situation
with the highest SNR (20 dB), where the noise is already rated
as “noticeable but not intrusive”, does not show significant
improvement by both models. (This comes as no surprise, as
it is difficult and arguably unnecessary to improve upon a
situation that already does not bother listeners.) Note that the
highest noise score, “not noticeable”, is almost never used.
This may indicate that the step size from score four to five on
the noise scale is large, and that it is difficult to show minor
improvements of low-noise signals on this scale.

Another observation is that Model 2 performs similarly
to Model 1 with respect to noise reduction, except at the
lowest SNR (0 dB). This is surprising, since Model 2 does
not try to remove the noise, only reduce it. It is, however,
supported by the fact that a SNR of 30 dB often is referred to as
“effective clean speech”, and that people have little benefit of
improving the SNR beyond 20 dB. This suggests that it might
be beneficial to use variable training targets, with little noise
reduction for the signals with high SNR, and progressively
more reduction as the SNR gets worse. A common training
target at 20 dB SNR could be a possible solution.

The evaluation of the speech also comply with the results
from previous studies on noise reduction. Reducing noise will,
in most cases, also add distortion to the speech signal. While
Model 2 does perform better than Model 1 in all cases, it still
does add distortion to the speech.

Objective POLQA scores were compared to the overall
quality results from the subjective test to see if similar traits
could be found. The general impression is, however, that
POLQA does not predict the overall quality results from the
ITU-T P.835 test. Even if we found significant degradation
in quality for Model 1 compared to the unenhanced signal,
POLQA did not show a consistent correlation. The POLQA
scores were, in general, very similar within each SNR, and the
largest difference found was below 0.25. Even if this is more
than the theoretical accuracy for POLQA [52], such a small
difference would be very difficult to detect in a subjective
test. The subjective results does, however, show a significant
degradation of the overall quality for Model 1, while POLQA
actually shows a minor improvement in half of these situations.

Since the ITU-T P.835 recommendation was not available
in a Norwegian version, the quality assessment scales were
translated for this study. During the pilot test it was revealed
that the initial translation was confusing for the test subjects.
Several participants found it hard to differentiate between
the noise being “slightly noticeable” and “noticeable but not
intrusive”. To solve this, we used a slightly different wording,
closer to the French version of the recommendation [45].
Hence it might be difficult to compare the noise scores in
this paper with other results performed with the English scale.
The translation of the overall score labels might also affect

the (lack of) correlation with POLQA, but this minor textual
change to the scale cannot explain why the POLQA scores
and the subjective results are opposite for many of the tested
situations.

Another limitation of the study is the spoken material used
in the test. All the sentences used, both for the intelligibility
and quality test, were uttered by the same male speaker.
Strictly speaking, this means that the validity of the results
are limited to this speaker, and it might be possible that the
models could perform better for other speakers.

Similarly to our previous study [17] the sampling frequency
used was 8 kHz. This might affect the results since much high-
frequency information that might be important both for speech
intelligibility and quality assessment are lost. It is, however,
not obvious that an increased sampling frequency would have
affected the comparisons in this study since they were all done
using the same sampling frequency.

In this study two different background noises were used,
traffic noise from a busy crossroad and cafeteria babble. The
results showed similar improvements for the two noise types,
but it is possible that other types of noise could have given
different results. The SRT results are otherwise in accordance
with what we expect; it is more difficult to understand speech
in babble noise than in traffic noise.

Another possible bias is the effect of hearing loss. The
average age of the test subjects was relatively high, hence it
is expected that age-related hearing loss could be a problem.
None of the participants reported any problems with their
hearing, or wore hearing aids, but this does not mean that
they do not have an elevated hearing threshold. Such ele-
vation could have affected the results, especially the speech
intelligibility, which is known to deteriorate with increasing
hearing loss. Since all the comparisons were done within each
subject, it is expected that an improvement (or deterioration)
of the signal would affect both those with normal hearing and
those with hearing loss. It is, however, possible that a speech
enhancement is perceived differently for individuals with or
without hearing loss.

V. CONCLUSION

In this study, we compared two similar speech enhancement
systems based on deep neural networks. The first system,
Model 1, was trained with the target of removing all noise
from a noisy speech signal, as was done in previous studies [5],
[6], [17]. The second system, Model 2, was trained with the
target of improving the noisy signal’s signal-to-noise ratio by
10 dB.

A subjective evaluation of speech quality in terms of speech
degradation, noise intrusiveness, and overall quality showed
some interesting similarities and differences between the two
models. From the evaluation of overall quality, Model 2
represents a significant improvement to Model 1 in all six
situations tested. Both models significantly reduced the noise
intrusiveness except at the highest SNR of 20 dB, with Model 1
outperforming Model 2 only at the lowest SNR of 0 dB.
While both models significantly distort the speech at all SNRs,
Model 2, with its less agressive training target, distorts speech
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to a significantly smaller degree than Model 1 at all SNRs.
This reduction in distortion may be the reason why Model 2
outperforms Model 1 by 2–3 dB in a subjective evaluation
of speech intelligibility in terms of the speech recognition
threshold.

For these reasons, we believe that using less aggressive
training targets in DNN-based SE systems, along the lines
of our Model 2, is a promising approach that warrants further
investigation. However, we must point out that if we compare
our subjective evaluation results for the noisy speech enhanced
by Model 2 and the unenhanced noisy speech, we find that
Model 2 does not perform a general improvement to the signal.
Model 2 actually degrades the speech intelligibility slightly,
raising the speech recognition threshold by around 1 dB. It
however did make a significant improvement to the overall
quality in one of the six situations tested, while not affecting
performance in a statistically significant manner in the other
five situations.

In order to train better DNN-based SE systems than the
ones presented here, it is absolutely essential to be able to
distinguish between a good system and a bad one without
having to run a complete subjective evaluation, as these are
prohibitively time-consuming. However, our results comparing
the subjective evaluations with the objective measures STOI
and POLQA indicate that these measures are not appropriate
for this purpose. We found that the STOI results predicted
significant improvements in intelligibility for our DNN-based
SE systems while the subjective evaluations found significant
reductions. We also found that the weak changes in POLQA
scores failed to predict the significant changes in speech
quality found by the subjective evaluations. Therefore, we
must advise against solely using STOI and/or POLQA to
evaluate DNN-based SE systems, either for the purpose of
choosing which trained model candidate to proceed with, or
for the purpose of evaluating the final system in the place of
a subjective evaluation.

The studied systems are relatively simple implementations
of DNN-based SE. As such, their speech enhancing ability
is limited, even as indicated by objective measures. However,
there is no reason to assume that there will not also be a
mismatch between objective and subjective results in better
and/or more complicated DNN-based SE systems. Indeed,
similar mismatches have also been found elsewhere [16], [18].

Thus, we believe that we have pointed out an important issue
that impedes progress for DNN-based SE systems for direct
human applications like in telecommunication and hearing
assistive devices. To resolve this issue, we believe that it is
essential to identify or develop an objective measure that cor-
relates well with intelligibility and/or quality even for channels
with the complex nonlinear degradations that processing with
a DNN-based SE system can cause. A dedicated study on this
topic should be carried out.
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