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Abstract 

Statistical data analysis and visualization approaches to identify ship speed power performance under relative wind (i.e. apparent wind) 
profiles are considered in this study. Ship performance and navigation data of a selected vessel are analyzed, where various data anomalies, 
i.e. sensor related erroneous data conditions, are identified. Those erroneous data conditions are investigated and several approaches to isolate 
such situations are also presented by considering appropriate data visualization methods. Then, the cleaned data are used to derive various 
relationships among ship performance and navigation parameters that have been visualized in this study, appropriately. The results show that 
the wind profiles along ship routes can be used to evaluate vessel performance and navigation conditions by assuming the respective sea 
states relate to their wind conditions. Hence, the results are useful to derive appropriate mathematical models that represent ship performance 
and navigation conditions. Such mathematical models can be used for weather routing type applications (i.e. voyage planning), where the 
respective weather forecast can be used to derive optimal ship routes to improve vessel performance and reduce fuel consumption. This study 
presents not only an overview of statistical data analysis of ship performance and navigation data but also the respective challenges in data 
anomalies (i.e. erroneous data intervals and sensor faults) due to onboard sensors and data handling systems. Furthermore, the respective 
solutions to such challenges in data quality have also been presented by considering data visualization approaches. 
© 2018 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The international Maritime Organization (IMO) and other
elated authorities have enforced to implement energy efficient
hip operational conditions under various emission control
easures [1,2] in the shipping industry. The main objective

f these emission control based energy efficiency approaches
s to reduce a considerable amount of bunker fuel usage by
mproving vessel performance [3] . That can eventually mini-
ize ship emissions and related environmental pollutants due

o the shipping industry. Pre-planned ship routing with re-
pect to weather forecast plays an important role in reducing
he respective fuel consumption of vessels (IMO, 1999), often
∗ Corresponding author. 
E-mail addresses: prasad.perera@uit.no (L.P. Perera), brage.mo@ 

intef.no (B. Mo). 

w  

g  

m  

s  

ttps://doi.org/10.1016/j.joes.2018.11.001 
468-0133/© 2018 Shanghai Jiaotong University. Published by Elsevier B.V. This
 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ategorized as "Weather routing" [4] . That has also been con-
idered as another emission control based energy efficiency
easure. Weather routing is often planned in modern elec-

ronic chat display and information systems (ECDISs) un-
er integrated bridge systems (IBSs) with respect to weather
orecast, i.e. decision support systems [5–7] . In general, the
eather forecast used by such systems consists of predicting

he state of the atmosphere for a given location at a given
eriod (i.e. 6 to 16 days). Such weather predictions are cal-
ulated by various atmospheric mathematical models associ-
ted with meteorological statistical analyses [8] . As the first
tep of this process, the past and present atmospheric pres-
ure data that are collected by various satellites and global
eather observation centers are used to derive the respective
lobal wind maps. As the second step, the same global wind
aps are used to derive the required weather forecast by con-

idering the respective mathematical models of wave, ocean
 is an open access article under the CC BY-NC-ND license. 
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and tidal current, ice, atmospheric pressure and temperature
conditions. The erroneous data conditions in wind informa-
tion can introduce additional challenges in weather forecast.
e.g. an initial error of 16% in wind speed can accumulate a fi-
nal error of 25–30% in predicted wave heights [9] , therefore
accurate weather forecast can only be achieved by reliable
wind information. Weather forecast can consist of various pa-
rameters, such as wave heights, mean/peak periods and di-
rections, mean wind speed and direction, mean tidal/current
speed and direction, ice and temperature conditions. Weather
routing uses such weather parameters with ship performance
models to calculate optimal ship routes under estimated time
of departure (ETD) and estimated time of arrival (ETA) val-
ues. One should note that the global wind distribution plays
the most important role in forecasting such weather param-
eters and that can influence on pre-planned ship routes (i.e.
weather routing). 

2. Ship performance and navigation conditions 

2.1. Ship performance quantification 

Several important ship performance measures that relate
to weather routing type applications are considered in this
section. Not only hull and superstructure resistance but also
undesirable vessel motions due to various weather conditions
degrade ship performance. Hence, weather routing focuses on
reducing both ship hull and superstructure ship resistance and
undesirable vessel motions. However, many weather routing
applications can be limited to ship resistance calculations due
to the complexities in capturing un-desirable vessel motions
under various mathematical models. In general, ship resis-
tance consists of four main components: frictional and resid-
ual resistance, encounter wave resistance and wind resistance.
Frictional and residual resistance relates to the underwater
section and air resistance relates to the overwater section of
the vessel. Furthermore, ship resistance further increases due
to encounter wave conditions and undesirable vessel motions.
Wind resistance contributes 2–10% of total ship resistance
[10] and relates to ship speed, superstructure area of the ves-
sel, relative wind (i.e. apparent wind) speed and direction
[11,12] . Even though wind resistance calculations have been
considered under weather routing type applications, the re-
spective effects on ship resistance can be minimal compared
to wave resistance. There is less attention on wind profiles
under weather routing type applications due to the same rea-
sons. 

Wind profiles (i.e. global wind maps) are used to create
the environmental models of wave, ocean and tidal current,
ice, atmospheric pressure and temperature conditions as men-
tioned before. Therefore, this study also proposes to use the
relative wind profile along a ship route to evaluate vessel
speed and power performance under weather routing type
applications by assuming the respective sea states relate to
relative wind conditions. These weather routing type appli-
cations use various optimization algorithms, which estimate
the required speed power profile under weather forecast in
re-voyage conditions [13] . Since this study proposes to use
nly the relative wind profile along the ship route to calcu-
ate vessel speed power performance, that approach can also
educe the computational complexities in the respective opti-
ization algorithms. Hence, such simplified optimization al-

orithms can lead to better results in predicting ship speed
nd power performance. In addition, ship speed and power
erformance under the respective wind profiles can be com-
lemented with model tests and sea trial results. 

In general, ship model tests and sea trials are con-
ucted under calm water conditions, where the required ship
ower/thrust levels for a selected range of ship speeds are cal-
ulated. The same experiment results can be extrapolated into
ough weather situations, where the respective vessel speed re-
uctions due to the variations in ship resistance, power/thrust
onditions and propulsion efficiency can be calculated. Fur-
hermore, the same results can be verified under actual sea
rail results and that consist of measuring the required ship
peed and power values under various wave and wind condi-
ions. Ship navigation under wind and wave conditions is of-
en identified as seakeeping, where various interactions among
hip power, speed, motion and weather conditions are encoun-
ered. Ship performance and navigation data under various
eather conditions are collected by onboard sensors and data

cquisition systems to observe the actual sea keeping capa-
ilities of vessels [14,15] . 

The respective weather effects in ship speed and power
erformance can be identified realistically by these sea trial
ata. Wind and wave conditions are the primary factors that
nfluence on ship speed power variations as mentioned be-
ore. In general, head wind and wave conditions reduce ship
peed and following wind and wave conditions can improve
hip speed slightly in some navigation situations. However,
igh absolute wind and wave conditions around a vessel can
educe the propeller thrust and increase the drag from steer-
ng corrections. Therefore, wave and wind forecast around a
hip is an essential part in predicting accurate ship speed and
otion conditions (i.e. heave, pitch and roll motions) along a

oyage. Such situations are further investigated in this study.

.2. Recent studies 

Many challenges can be encountered in handling ship per-
ormance and navigation data that are collected under on-
oard sensors and data acquisition systems. These challenges
re often presented in the recent literature under various data
nalyses. Data analysis for an inland river ship in relation
o its operational energy efficiency is presented in [16] . A
erformance evaluation approach for a steam-propelled mer-
hant ship by collecting the respective data is presented by
17] . In addition, several studies on data analyses of fuel us-
ge for ship operations are presented by [18–20] . A study
n statistical analysis performed on the data sets collected
rom sea trials of a small training ship is presented in [21] . A
tudy on full-scale data analysis for a passenger ferry to eval-
ate its performance is presented in [22] . Furthermore, these
tudies are integrated with port performance evaluation sys-
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ems in some situations [23] . However, these studies ignore
he challenges that are associated with the respective sensors
nd data handling approaches. e.g. the scattering effects and
ther data anomalies due to rough weather conditions [24] . If
hese issues (i.e. erroneous data conditions) in the sensors and
ata handling approaches have not been identified properly,
hat can degrade the results of ship performance and navi-
ation data analysis. Hence, this study not only presents the
utcome of statistical data analysis of ship performance and
avigation data but also the issues that are associated with
ensors and data handling approaches. Furthermore, the so-
utions to such situations, i.e. data anomalies, in vessels are
lso proposed, where various methodologies to overcome er-
oneous data conditions are illustrated. That can be done by
ntroducing appropriate data visualization methods to capture
roper and abnormal data regions. The proper data regions
an be used to identify the respective ship performance and
avigation conditions and the abnormal data regions can be
sed to identify various data anomalies. 

.3. Data visualization 

A considerable amount of work in this study focuses on
arious visualization methods due to the same reason. There
re several contributions that can be observed from data vi-
ualization approaches [25] . The main contribution is the in-
ormation extraction that can capture proper and abnormal
egions from ship performance and navigation data sets. One
hould note that a considerable amount of domain knowledge
n shipping may require to do this data classification: proper
nd abnormal data regions. The proper and abnormal data
egions can be used to identify ship performance and naviga-
ion conditions and various data anomalies, respectively. The
ain contribution of this study is to visualize proper data re-

ions and extract relevant information to quantify ship perfor-
ance and navigation conditions [26,27] . Furthermore, data

nomaly detection can also be considered as another contribu-
ion in this study and such anomalies can further be divided
nto sensor faults and system abnormal events [28,29] . There-
ore, this study focuses to develop data visualization methods
or ship performance and navigation data sets to support the
equired analyses. The outcomes of such data analyses can
e used to evaluate ship performance and reduce respective
missions. 

.4. Ship emission considerations 

Chemical energy in bunker fuel is converted to mechani-
al energy by marine engines (i.e. marine power plant) that
rive ship propellers to generate required ship speeds. These
arine engines consist of various mechanical and electrical

nergy losses, therefore energy recovery and emission reduc-
ion approaches (i.e. exhaust recirculation and heat recovery)
ave been considered to improve ship performance. Exhaust
missions is the outcome of the combustion process of marine
ngines, where various external exhaust gas cleaning systems
re used. In general, these external exhaust gas cleaning sys-
ems can be categorized as scrubber technology to reduce
Ox emissions and selective catalytic reduction (SCR) tech-
ology for NOx emissions. Exhaust gas recirculation (EGR)
nd heat recovery applications improve ship performance and
ow temperature combustion processes with multi-fuel engine
echnology (i.e. various fuel types) have also been consid-
red to reduce exhaust emissions. Multi-fuel engine technol-
gy (i.e. with liquefied natural gas (LNG), heavy fuel oil
HFO) or marine diesel oil (MDO)) can also be a flexible so-
ution that extensively uses to satisfy various emission control
equirements in shipping [30–34] . 

Mechanical energy generated by marine engines transfers
o ship propellers to create required ship speeds. However, ad-
itional mechanical energy losses can occur due to the pro-
eller efficiency because of its fouling and cavitation con-
itions. The propulsion thrust generates the required ship
peeds. Ship resistance can be categorized as the net force
pposing to this propulsion thrust and that relates to vessel
peed, draft and trims values and wind, wave, ocean and tidal
urrent conditions. Furthermore, additional environmental fac-
ors (i.e. water depth and river banks) can also influence on
his ship resistance especially in confined waters. Therefore,
hip resistance in such situations can also introduce additional
nergy losses in vessels and the same along a vessel naviga-
ion path should be considered to develop appropriate data
riven models [35] , where that can be used towards weather
outing type applications. It is believed that data visualization
an be the first step that should be implemented to develop
uch models. Furthermore, the classification between proper
nd abnormal data regions can also play an importance role
n developing such models, where the quality of the respec-
ive data sets can influence the model accuracy [36] . The
roper data regions can be used to derive various relationships
mong ship performance and navigation parameters and that
an make the basic foundation for such models that often have
een categorized as digital models due to their discreteness in
ystem states [35] . However, the maturity of such data driven
odels to capture energy efficient vessel operational condi-

ions is yet to be achieved in the future. Vessel performance
nd navigation parameters along a navigation path that relate
o ship speed power conditions with respect to relative wind
rofiles are considered in this study and that can be an initial
tep towards such data driven models. These parameters are
tatistically analyzed, and the results are presented appropri-
tely to evaluate vessel performance, even under various data
nomalies, i.e. erroneous data conditions. 

. Data analysis 

.1. Vessel information 

A data set of ship performance and navigation parame-
ers from a selected vessel is analyzed in this study. The
essel is a bulk carrier with following approximate partic-
lars: ship length: 230 (m), beam: 30 (m), gross tonnage: 40
tons), deadweight at max draft: 73 (tons). The vessel is pow-
red by 2-stroke main engine (ME) with maximum continuous
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Fig. 1. Relative wind profile of the ship. 
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rating (MCR) of 7600 (kW) at the shaft rotational speed of
100 (rpm). Furthermore, the vessel has a fixed pitch propeller
diameter 6 (m) with 4 blades. The data points are collected
with 15 (min) sampling intervals with instance values. 

3.2. Relative wind distribution 

To consider ship speed power performance with respect
to relative wind conditions, the following vessel parameters
are considered [37,38] : speed through water (STW), speed
over ground (SOG), main engine (ME) power and relative
wind speed and direction. It is assumed that the respective
relative wind profiles (i.e. speeds and directions) relate to the
encountered sea conditions of the vessel as mentioned before,
therefore added ship resistance increases due to high wind and
wave conditions in such situations. The relative wind profiles
relate to the encountered sea states as described in Beaufort
scale [39] . These high wind conditions can often create high
waves, therefore the wind distribution along a ship route can
be used to evaluate vessel speed power performance. How-
ever, the respective data should be visualized, appropriately
to extract the respective information in ship performance and
navigation conditions. Firstly, statistical data analysis of the
relative wind distribution of the vessel is visualized. The re-
spective histograms for relative wind speeds and directions
are presented in the top two plots of Fig. 1 . The relative
wind speed and direction profiles vary from 0 (m/s) to 25
(m/s) and 0 ° and 360 °, respectively. The combined histogram
(i.e. two dimensional) of the same parameters is presented in
the bottom plot of the same figure. One should note that a
two-dimensional histogram approach of the relative wind (i.e.
apparent wind) profile of this vessel improves the information
visibility, considerably. Such approach has not been used by
he shipping industry, previously to the author’s knowledge.
he starboard and port relative wind directions are presented

rom 0 ° to 180 ° and 0 ° to −180 °, respectively. One should
ote that 0 ° represents mean head winds. Several data peaks
re noted especially around 0 ° relative wind angle in this vi-
ualization approach and that has been categorized as possible
ata anomaly regions. Further details on such data anomalies
ave been presented in the future sections of this study. 

The top views of the same plot with respect to ship STW
nd SOG values are presented in the left and right plots of
ig. 2 . A majority of high STW and SOG values are located
ear the zero relative wind angle, i.e. head-wind conditions,
ue to relative motions of the vessel. The respective contours
re also presented in these plots, where the same data peaks
hat are categorized as possible data anomalies can also be
oted. One should note that these data peaks may also relate
o data scattering effects that are discussed, previously. As
he next step of this study, the respective reasons for these
ata peaks are investigated. The sensor data of the relative
ind direction range from (0 ° to 2 °) with the respective wind

peed values (i.e. with respect to the number data points)
re presented in top and bottom plots of Fig. 3 . The results
how that the relative wind speed values are often repeat-
ng within this wind direction range. In general, the wind
peed values should not repeat for such long time periods
ue to the sensor noise. One should note that sensor noise
an introduce small parameter variations into the respective
easurements and that can eliminate the possibility of having

epeated values. It is believed that high vibration conditions
ncountered by the wind sensor may have resulted in these
epeated data points. Therefore, the wind speed values may
ave been frozen in such situations and the digital data ac-
uisition system has repeated the same values. 
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Fig. 2. Relative wind profile with STW and SOG. 

Fig. 3. Erroneous data wind sensor data. 
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However, the wind sensor is the only sensor that has en-
ountered this type of data anomalies. These repeated values
re noted as data anomaly regions and those data intervals
re removed from the respective data set, where an algorithm
s developed to remove such data intervals. One should note
hat combined histograms can be used to observe such sen-
or related data anomalies and that cannot be observed under
ingle parameter histograms. Therefore, the identification of
uch sensor related anomalies is one contribution of data vi-
ualization, as mentioned before. It is assumed that the vessel
s symmetrical around the centerline, therefore the wind pro-
le data without data anomalies from both starboard and port
ide are combined in the following step. The resulted com-
ined histogram for relative wind speeds and directions is
resented in Fig. 4 . As presented in the figure the respective
ata peaks disappeared and a smooth surface compared with
he pervious plot can be noted. Furthermore, a higher gird size
n the data plot is also selected to improve the information
isibility. The top view (i.e. contour plot) for the same figure
ith the respective STW is presented in Fig. 5 . One should
ote that high and low relative wind speed values are allo-
ated towards head (i.e. 0 °) and following (i.e. 180 °) relative
ind directions of the vessel, respectively. Since this study

valuates ship speed power performance under relative wind
rofiles, vessel slow moving situations (i.e. maneuvering) are
gnored from the data analysis. E.g. ship speed values less
han 3 (knots) are considered as maneuvering situations, and
hose values are removed from this data set to improve the
nformation visibility. Hence, the same data plot with ship
peed values greater than 3 (knots) is presented in Fig. 6 .
he same situation as a combined histogram of relative wind
irections and speeds is presented in Fig. 7 . A smooth data
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Fig. 4. One sided relative wind profile (cleaned data). 

Fig. 5. One sided relative wind profile with STW. 

 

 

 

 

 

 

 

 

 

 

Fig. 6. One sided relative wind profile (cleaned data). 
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surface compared with Fig. 4 is noted in this figure and a
considerable number of data points are allocated near ship
heading (i.e. 0 °) relative wind direction. Furthermore, relative
wind speeds approximately 5 (knots) or above are encoun-
tered by the vessel (i.e. encounter angle is less than 90 °) in
a number of ship navigation situations. Therefore, this vessel
feels head wind conditions in such ship navigation situations.

3.3. Ship speed power performance 

The next step in this statistical data analysis starts with ship
speed power performance parameters [40] . The histograms for
STW and SOG for the same vessel are presented in the top
nd middle plots of Fig. 8 . Considerable variations among
TW and SOG data distributions are noted in these results
nd tidal and ocean currents may influence on these ship
peed variations. The histogram for the respective speed dif-
erences (i.e. STW - SOG) is presented in the bottom plot
f Fig. 8 . The result shows two continuous statistical distri-
utions approximately from −8 (knots) to −5.5 (knots) as a
inor distribution and −5.5 (knots) to 6 (knots) as a major

istribution in the same figure. In general, the main statistical
istribution from −5.5 (knots) to 6 (knots) (i,e, window P)
s a reasonable distribution, if the vessel is navigation under
idal and oceans current conditions. However, the minor sta-
istical distribution from −8 (knots) to −5.5 (knots) is a pos-
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Fig. 7. One sided relative wind profile (cleaned data). 

Fig. 8. Ship speeds: STW, SOG and STW-SOG. 

Fig. 9. Speed power profile with Rel. Wind speed and angle. 
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ible but highly improbable situation, where tidal and oceans
urrents may have influenced. It is concluded that either this
hip was navigating under high tidal current conditions or
he STW sensor was creating a data anomaly region in this
ituation. 

The combined histogram for STW and ME power values
s presented in Fig. 9 . A general speed power profile for a
essel is noted in this figure with several unusual data regions.
t is observed that the unusual data region P relates to the
inor statistical distribution (approximately from −8 (knots)

o −5.5 (knots)) in the bottom plot of Fig. 8 . Therefore, this
egion is also marked as data window P in Fig. 9 . One should
ote that the vessel is navigating relatively slow STW with
igh ME power conditions in this data region. 
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Fig. 10. STW-SOG vs. Rel. Wind speed and direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Ship speed power profile with relative wind speed. 
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The speed differences between STW and SOG values vs.
respect to relative (Rel.) wind direction with respect to rel-
ative (Rel.) wind speed are presented in Fig. 10 . This data
plot is created to further investigate data region P (i.e. −8
(knots) < STW-SOG < −5.5 (knots)). The results show that a
majority of data points, located in region P, appears under
starboard beam relative wind conditions (i.e. moderate rela-
tive wind speeds). This is an unusual situation, therefore that
is categorized as a sensor fault situation, where the ship speed
sensor is reading some erroneous values due to specific wind
conditions. One should note that such wind conditions can
also relate to specific wave conditions and that may have cre-
ated such sensor fault situations. Therefore, this data region
(i.e. window P) is considered as an erroneous data condition
and removed from the selected data set. This erroneous region
is ignored from the general speed power calculations, i.e. a
reasonable approximation. 

The respective top view (i.e. contour plot) for the same
distribution with relative wind speeds is presented in Fig. 11 .
The top view of the same plot as a modified data set (i.e.
without data anomaly region, window P) with relative wind
speeds is presented in Fig. 12 . As presented in the figure, the
unusual data region (i.e. data window P) is disappeared from
this data set. Both plots consist with relative wind speeds.
The results show that vessel speeds decrease due to high rel-
ative wind speeds for the same ME power levels, i.e. due
to the increased ship resistance in rough sea conditions. The
same figure with a higher grid scale for STW and ME power
values is presented in Fig. 13 . A smooth data surface is ob-
served in this figure compared to Fig. 9 due to the removal of
data anomaly regions. Therefore, this wind profile along the
voyage can be used to identify engine power requirements
and evaluate the performance of the vessel. This is based
on appropriate data visualization approaches, where the re-
spective ship performance and navigation parameters can be
observed with respective the relative wind conditions. Fur-
thermore, such wind conditions can be a good representation
for the respective weather conditions encountered by vessels.
Furthermore, favorable weather conditions along ship routes
can be selected in voyage planning type applications by con-
sidering the same information. 

A comparison between STW and SOG values is consid-
ered in Fig. 14 . A combined histogram for STW and SOG
alues is presented in the bottom plot. The respective con-
our plot and the same with ME power are presented in the
op left and right plots of the same figure. Data window P is
lso noted in these plots and one should note that higher ME
ower values are associated with the same region. Similarly,
his data region (i.e. data window P) is associated with lower
TW values for higher SOG values. Therefore, this data re-
ion is observed as a sensor fault situation, i.e. data anomaly
egionand it is further confirmed since the same region is
ssociated with higher fuel consumption. An approximately
inear relationship between STW and SOG values is noted
ntil 12 (knots) of STW values in the same figure. An ap-
roximately constant SOG values for STW from 12 (knots) to
4 (knots) is also observed in the same plot. Another approx-
mately linear relationship between STW and SOG values is
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Fig. 12. Ship speed power profile with relative wind speed |STW –
SOG| < 5.5 (knots). 
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oted from 14 (knots) to 20 (knots) of STW values. The SOG
alues are lower than the respective STW values in these re-
ions, where the vessel is navigating against ocean and tidal
urrent conditions with higher engine power. One should note
hat higher STW/SOG values are associated with higher ME
ower values for this vessel (see top right plot of the same
gure). These SOG and STW discreate linear relationships
re marked as line segments in the top left plot of the same
gure and that can be a representation of the respective pa-
ameter correlations. Such parameter correlations can be used
 w  

Fig. 13. Modified Spee
o develop an appropriate mathematical model for ship per-
ormance monitoring, as discussed before [41] . 

Finally, the modified data set (i.e. erroneous data intervals
data anomalies) are removed) of ship performance and nav-
gation parameters is presented in Fig. 15 . The total number
f data points is divided into four plots to improve data vi-
ualization, where adequate information on ship performance
nd navigation conditions can be observed and the same ob-
ervations, i.e. parameter relationships, can be used to de-
elop appropriate mathematical models. The figure consists
f the following ship speed power parameters: STW, SOG,
el. wind speed and ME power (i.e. scaled). One should note
hat less data scattering situations are observed in these plots
ue to the proposed data anomaly identification and isolation,
.e. data cleaning, approaches. Therefore, a better overview
f ship speed-power performance can be visualized in these
esults. The vessel is maintaining constant ME power values
or these voyage segments resulted in constant STW values.
ence, the vessel is also maintaining constant SOG values
ue to the same reason in some navigation situations. The
esults show possible relationships among the respective pa-
ameters at the selected data windows (A, B, C, and D) and
uch relationships are further elaborated in the following sec-
ion. 

The first part of data window A represents a constant ME
ower situation with respect to STW and SOG values under
ow relative wind speeds. Hence, the STW values are lower
han the SOG values in this situation due to calm weather
onditions. The second part of the same data window has
elatively low ME power values, where reduced STW and
OG values are noted. However, the STW and SOG values
or the same ME power level are reduced considerably in the
ast part of the same data window due to high wind speeds,
.e. rough weather conditions. The first part of data window
 represents an approximately constant high ME power level
ith respect to the STW and SOG values under high relative
ind speeds. Reduced relative wind speeds are noted in the

ast part of the same window, where the respective STW and
OG values are also improved, considerably due to calm
eather conditions. A considerable increase in relative wind
d power profile. 
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Fig. 14. SOG and STW profiles. 

Fig. 15. Ship performance data. 
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speeds is observed in data window C, therefore the respective
STW and SOG values are decreased due to the related rough
weather conditions. However, the ME power level has also
been increased by the vessel in this situation to improve
ship speeds. Similarly, data window D represents a situation,
where the relative wind speed values are changed from low
o high values, therefore the respective STW and SOG values
re also decreased. Hence, the figure summarizes the parame-
er relationships among STW, SOG, rel. wind speed and ME
ower values and the results can be used to develop appropri-
te mathematical models. Such model will eventually support
eather routing type applications, where the wind profiles
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long ship routes can be used to identify the engine power
equirements and evaluate the performance of the vessel [42] .

. Conclusions 

In general, the parameter of ME power is proportional to
he cube of the ship speed, i.e. STW and SOG values. The
TW and SOG values decrease, significantly for the same
E power under high relative wind speeds and that may fur-

her complicate ship speed-power relationships as visualized
n the results. Such complex relationships among ship perfor-
ance and navigation parameters (i.e. STW, SOG, ME power

nd relative wind speeds) are observed in this data analysis.
urthermore, data anomaly detection and isolation, i.e. sen-
or fault detection and data cleaning, have also been imple-
ented during the same analysis to improve the information

isibility. Therefore, those approaches can be considered as
he main contribution of this study. Even though various data
nalyses are presented in the literature with respective to ship
avigation under ocean wind and wave conditions [43] , the
ombined approach (i.e. statistical data analysis and sensor
ault identification) has not been illustrated in those studies,
dequately. It is also believed that such a combined approach
an be used to detect the respective anomaly conditions, spe-
ially. 

This study has investigated the relationships among vessel
erformance and navigation parameter and the relative wind
rofile by assuming relative wind conditions represent the sea
tate in the respective ship navigation area. Relative wind
peed influences on the ship speed power requirement and
uch relationships can be used to develop appropriate math-
matical models, as mentioned previously, to evaluate vessel
erformance. Furthermore, associated data anomalies can also
e identified and removed from the respective ship perfor-
ance and navigation data sets and that can further improve

he respective mathematical models [44] . Such models can be
sed in weather routing type applications [45,46] and that may
implify the computational complexity in the optimization al-
orithms. One should note that the vessel wind profile along
he respective ship route can be used to estimate required ship
TW, SOG and ME power values, approximately in weather
outing type approach. Similarly, the same results can also be
sed to determine optimal ship routes, orientations, and suit-
ble engine power configurations by considering ship design
haracteristics under forecasted and actual weather conditions
n the same applications [47,48] . 
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