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Abstract: Over the past few years maritime sector has witnessed an increasing interest in
use of autonomous ships and in particular Autonomous Surface Vehicles (ASV) in complex
applications with high associated risks. There is an uprising interest in the development of
advanced path planning algorithms for marine vehicles in congested waterways. Availability of
an efficient path planning technique that considers the dynamic capabilities of the vehicle is of
paramount importance in the implementation of these algorithms. This article reports an early
work which aims to contribute to the development of a new generation of path planning that
incorporates in its formulation the dynamics of the vehicles and extra data made available by
on board sensors about obstacles and other vehicles in vicinity. To this end, Bézier Curves are
exploited as the basis for generating a rich set of paths. Then, differential flatness property of
the vehicle is used to assign a cost function to each path that reflects the dynamic capabilities of
the vehicle on that path. The efficacy of the proposed algorithm is shown by help of numerical
simulations.
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1. INTRODUCTION

One of the earliest path planning algorithms goes back
to the early 1950s, where Claude Shannon and his wife,
Betty Shannon, built a three wheel magnetic mouse that
could find its path through an electro-mechanical maze
(MIT Museum, 1952). Theseus maze was a visual display
of path planing in dial telephone systems. It showed how
information would travel to find the right target telephone
to ring when a phone call is made. The problem of
connecting two points on the map in presence of obstacles
and forbidden zones found many industrial applications.
Different techniques were developed to address the path
planning problem. The literature on path planning is
vast and interested reader is referred to (Laumond, 1998;
McLain and Beard, 2000; LaValle, 2006; Kaminer et al.,
2006; Dadkhah and Mettler, 2012; Bhushan Mahajan,
2013; Lekkas, 2014) and references therein. Furthermore,
assessing the efficacy of path planning algorithms for
different applications is a challenging task and out of the
scope of this article; see (Dadkhah and Mettler, 2012;
Lekkas, 2014) for some guideline on evaluating different
path planning algorithms.

(Hausler et al., 2009) gives an introductory application
example where a group of autonomous marine vehicles,
spread at arbitrary positions and headings, are to per-
form a cooperative mission at sea that requires adopting
� This work was supported by Centre for autonomous marine
operations and systems (AMOS); the Norwegian Research Council
is acknowledged as the main sponsor of AMOS.
1 Corresponding author, (e-mail: Vahid.Hassani@ntnu.no).

a predefined geometrical formation pattern. The vehicles
should sail from their initial position and arrive at the
final formation pattern at the same time. They call this
as ”Go-To-Formation” maneuver which, due to existence
of obstacles, restricted areas, and required safety distance
from other vehicles, needs an advanced path planning al-
gorithm. The different challenges that should be addresses
in course of solving Go-To-Formation problem are listed
in (Hausler et al., 2009) and later in (Häusler et al., 2010).

Path planing for marine vehicles inherits an increasingly
complexity and challenging requirements. Development of
autonomous ships and increasing applications for multiple
vehicle coordination have created a widespread interest
in the development of advanced path planning algorithms
for marine vehicles in congested waterways (LaValle, 2006;
Hausler et al., 2009; Häusler et al., 2009, 2010).

(Hausler et al., 2009; Ghabcheloo et al., 2009), borrowing
the tools introduced by (Yakimenko, 2000; Kaminer et al.,
2006), used a group of 5th order polynomial paths as basis
for their path generation algorithm. The coefficient of the
polynomials were computed such that the boundary con-
ditions such as initial and final position and heading were
met. Their methodology generates paths that completely
govern spatial profile of the vehicles. A second temporal
problem is solved to address the de-confliction in time
to reduce the risk of collision between vehicles and speed
assignment for simultaneous arrival of all the vehicles to
their final formation pattern.

11th IFAC Conference on Control Applications in
Marine Systems, Robotics, and Vehicles
Opatija, Croatia, September 10-12, 2018

Copyright © 2018 IFAC 305

Path Planning for Marine Vehicles using
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Motivated by the above considerations, this article reports
results of an early work which aims to contribute to the
development of a new generation of path planning that
incorporates in its formulation the dynamics of the vehicles
and extra data made available by on board sensors about
obstacles and other vehicles in vicinity. In this paper,
Bézier Curves are used as the basis for generating a rich set
of paths that determines spatial and temporal profile of the
vehicles. Using differential flatness property of the vehicle,
we are able to reconstruct all the states of the vehicles
during the maneuver. The calculated states are then used
to assign a cost function to each path that reflects the
dynamic capabilities of the vehicle on that path.

The rest of the article is organized as follows. Section 2
presents a brief introduction to Bézier curves. Section 3
describes the key idea behind the proposed path genera-
tion technique. It also provides a summary of differential
flatness theory and studies how one can assign a cost to
each path such that it reflects the dynamic behaviour
of the vehicle. In section 4, a short description of the
optimization algorithm is presented. Numerical simulation
results of the proposed technique are presented in Section
5. Conclusions and suggestions for future research are
summarized in Section 6.

2. BÉZIER CURVE

The mathematical basis for the Bézier curve are the Bern-
stein polynomials, named after the Russian mathemati-
cian Sergei Natanovich Bernstein (Farin, 2014). In 1912
the Bernstein polynomials were first introduced and pub-
lished as a means to constructively prove the Weierstrass
theorem. In other words, as the ability of polynomials
to approximate any continuous function, to any desired
accuracy over a given interval. The slow convergence rate
and the technological challenges in the construction of the
polynomials at the time of publication, led to the Bernstein
polynomial basis being seldom used for several decades to
come. Around the 1960s, independently, two French auto-
mobile engineers of different companies, started searching
for ways of representing complex shapes, such as auto-
mobile bodies using digital computers. The motivation
for finding a new way to represent free-form shapes at
the time, was due to the expensive process of sculpting
such shapes, which was done using clay. The first engineer
concerned with this matter was Paul de Faget de Casteljau
working for Citroën, who did his research in 1959. His
findings lead to what is known as de Casteljau’s algorithm,
a numerically stable method to evaluate Bézier curves. De
Casteljau’s work were only recorded in Citroën’s internal
documents, and remained unknown to the rest of the world
for a long time. His findings are however today, a great
tool for handling Bézier curves (Farin, 2014). The person
who lends his name to the Bézier curves, and is princi-
pally responsible for making the curves so well known,
is the engineer Pierre Ètienne Bézier. Bézier worked at
Renault, and published his ideas extensively during the
1960s and 1970s. Both Bézier’s and de Casteljau’s original
formulations did not explicitly invoke the Bernstein basis,
however the key features are unmistakably linked to it and
today the Bernstein basis is a key part in the formulation
(Farouki, 2012).

A Bézier curve is defined by a set of control points P i

(i = 0 . . . n) for which n denotes the degree of the curve.
The number of control points for a curve of degree n is
n + 1, and the first and last control points will always be
the end points of the curve. The intermediate points does
not necessarily lay on the curve itself. The Bézier curve
can be express on a general form as

P (t) =
n∑

i=0

Bn
i (t)P i t ∈ [0, 1] (1)

here t defines a normalized time variable andBn
i (t) denotes

the blending functions of the Bézier curve, which are
Bernstein polynomials defined as

Bn
i =

(
n

i

)
(1− t)n−iti, i = 0, 1, 2..., n (2)

2.1 Derivatives

The derivative of any Bézier curve of degree n is a Bézier
curve of degree n − 1. As the control points are constant
and independent of the curve parameter t, the derivative is
found by computing the derivative of the Bernstein poly-
nomials. The first derivative for the Bernstein polynomials
given by Eq.(2) are

Ḃn
i (t) = n(Bn−1

i−1 (t)−Bn−1
i (t)). (3)

The derivative of the Bézier curve then takes the following
form

Ṗ (t) = n

n−1∑
i=0

Bn−1
i (t)(P i+1 − P i) t ∈ [0, 1]. (4)

To further simplify this expression we can define the
control points of the first derivative as Qi = P i+1 − P i,
the expression then takes the following form

Ṗ (t) = n
n−1∑
i=0

Bn−1
i (t)Qi t ∈ [0, 1]. (5)

Higher order derivatives can be found by repeated use of
the relation described in Eq.(3) and Eq.(5).

2.2 Curvature

The curvature of a Bézier curve, given by P (t) =
(x(t), y(t)), can be expressed in the following form

κ(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(ẋ(t)2 + ẏ(t)2)
3
2

. (6)

This expression is known as the signed curvature as it
takes both positive and negative values. The sign of the
curvature will indicate the direction in which the unit
tangent vector rotates, as a function of the parameter t
along the curve.
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3. DIFFERENTIAL FLATNESS

In this section, using the description of differential flatness
presented in (Van Nieuwstadt and Murray, 1998), an
informal definition of differential flatness will be presented.
A system is said to be differentially flat if one can find
a set of outputs, equal in number to the number of
inputs, such that one can express all states and inputs
as functions of these outputs and their derivatives. This
can be formulated mathematically for a nonlinear system,
as follows. Consider a nonlinear system

ẋ = f(x, u) x ∈ Rn, u ∈ Rm (7)

y = h(x) y ∈ Rm, (8)

where x denotes the state vector, u denotes the control
input vector and y denotes the tracking output vector.

Such a system is said to be differentially flat if there exist
a vector z ∈ Rm, known as the flat output, of the form

z = ζ(x, u, u̇, ..., u(r)), (9)

such that

x = φ(y, ẏ, ..., y(q)) (10)

u = α(y, ẏ, ..., y(q)), (11)

where ζ, φ and α are smooth functions.

3.1 Model of Surface Vessel

The mathematical model of the surface vessel motion is
described by the kinematics and the dynamics as (Fossen,
2011)

η̇ = R(ψ)ν

Mν̇+C(ν)ν +Dν = τ , (12)

where η = [x, y, ψ]T denotes the position and orientation
in the earth fixed coordinates, ν = [u, v, r]T denotes the
generalized velocity given in the body-fixed frame and
τ = [τ1, 0, τ3] represents the control forces. Further, R(ψ)
is the rotation matrix, M is constant positive-definite
matrix representing the inertia of the vessel, and C(ν) is
the Coriolis and centripetal matrix. The termD represents
the linear damping matrix. Specifically, these matrices are
given as

R(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
, (13)

C(ν) =

[
0 0 −m22v
0 0 m11u

m22v −m11u 0

]
, (14)

M = diag{m11,m22,m33}, (15)

D = diag{d11, d22, d33}. (16)

This paper will consider a simplified version of the under-
actuated ship model, by enforcing the following simplifi-
cations

m11 = m22, β1 =
d11
m11

, β2 =
d22
m22

,

β3 =
d33
m33

, τu =
τ1
m11

, τr =
τ3
m33

.

Rearranging the vehicle dynamics in (12), the state space
representation of the underactuated surface vessel follows
the following form

ẋ = u cos(ψ)− v sin(ψ) (17)

ẏ = u sin(ψ) + v cos(ψ) (18)

ψ̇ = r (19)

u̇ = vr − β1u+ τu (20)

v̇ = −ur − β2v (21)

ṙ = −β3r + τr. (22)

In what follows, we show that the model described above
is differentially flat. we furthermore, calculate the flat
outputs of the system.

Choosing the flat outputs for the system model as the
coordinates of the vessel in the North-East plane, we show
that all the states can be found using the selected flat
outputs.

z = [z1, z2] = [x, y]. (23)

In order to prove flatness for the system, we will first
express the derivatives of Eq. (17) and Eq. (18) as

ẍ = (u̇− vψ̇) cos(ψ)− (v̇ + uψ̇) sin(ψ) (24)

ÿ = (v̇ + uψ̇) cos(ψ) + (u̇− vψ̇) sin(ψ). (25)

Furthermore, by the use of Eq. (20) and Eq. (21), we can
prove that the following holds

ẍ+ β2ẋ = (βuu+ τu) cos(ψ) (26)

ÿ + β2ẏ = (βuu+ τu) sin(ψ), (27)

where βu := β2 − β1. By using these two expressions, we
obtain the following relation

ψ = tan−1

(
ÿ + β2ẏ

ẍ+ β2ẋ

)
. (28)

Thus, Eq. (28) proves that ψ can be written as a function
of the flat output and its derivatives.

From Eq. (17) and Eq. (18), we obtain

u = ẋ cos(ψ) + ẏ sin(ψ) (29)

v = ẏ cos(ψ)− ẋ sin(ψ). (30)

Using the above equations, and Eq. (28) we obtain

u =
ẋ(ẍ+ β2ẋ) + ẏ(ÿ + β2ẏ)√
(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

(31)

and
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v = ẏ cos(ψ)− ẋ sin(ψ). (30)

Using the above equations, and Eq. (28) we obtain

u =
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v =
ẏẍ− ẋÿ√

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2
. (32)

Using Eq. (22) and Eq. (28) it can be shown that the
following holds

r =
(y(3) + β2ÿ)(ẍ+ β2ẋ)− (x(3) + β2ẍ)(ÿ + β2ẏ)

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2
. (33)

Thus proving that all the states can be written as functions
of the flat output. The task of proving that the control
inputs can be written as functions of the flat output
becomes trivial, as they can be expressed as functions of
the states and the derivatives of the states. Through the
use of Eq. (20) and Eq. (22), and the expressions for the
states we obtain

τu =
(ẍ+ β1ẋ)(ẍ+ β2ẋ) + (ÿ + β1ẏ)(ÿ + β2ẏ)√

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2
(34)

and

τr = ṙ + β3r (35)

where r is given by Eq.(33) and ṙ is given as

ṙ =
(y(4) + β2y

(3))(ẍ+ β2ẋ)− (x(4) + β2x
(3))(ÿ + β2ẏ)

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

−
2
(
(y(3) + β2ÿ)(ẍ+ β2ẋ)− (x(3) + β2ẍ)(ÿ + β2ẏ)

)

((ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2)
2

(
(ẍ

+ β2ẋ)(x
(3) + β2ẍ) + (ÿ + β2ẏ)(y

(3) + β2ÿ)
)

(36)

Before taking the next step in formulating our path plan-
ning algorithm, let us take the discussion stage further.
Showing the differentially flatness property of the vehicle,
allows us by using any Bézier curve and flatness property
of the system, assign a cost function to each path using
the calculated states of the system along the path. Our
formulation at the current stage assumes that there is no
side-slip along the path.

4. OPTIMIZATION

In what follows, we formulate our path planning algo-
rithm in an optimization framework. The proposed path
planning technique, utilizes optimization in order to gen-
erate a feasible path, that accounts for both physical- and
workspace constraints. The workspace constraints refers
to obstacle and forbidden zones that ship should not sail
through. Furthermore, the ship dynamics are accounted
for by the use of differential flatness and assigning a cost
function to each path based on the computed states of the
system along the path.

The path planning program generates a path between
two predetermined waypoints, by stitching a set of Bézier
curves together such that the heading and curvature along
the path remains continuous. Ultimately, this means that
the path that is generated is C2 continuous. Further, we

account for workspace constraints, by including a set of
static obstacles in the optimization.

In order to successfully generate a reference path for the
vehicle we have used 5th-order Bézier curves. This is due to
the fact that lower order curves are not able to offer all the
properties that we desire such as C2 continuity.One should
note that increasing the degree of the Bézier curves, could
also lead to numerical instability (Skrjanc and Klancar,
2007).

The proposed path planing technique uses the control
points of the Bézier curves as design variables, and allows
one to specify the number of Bézier curves segments m
that is to be stitched together in order to generate the
path.

4.1 Optimization Constraints

In what follows we briefly describe the set of constraints
that are imposed in the optimization problem.

Continuity constraints: In order to obtain continuity in
position, heading and curvature the following constraints
will be imposed on the path

P 5,i = P 0,i+1, i ∈ [1, m− 1] (37)

P 1,i+1 + P 4,i = 2P 5,i, i ∈ [1, m− 1] (38)

P 2,i+1 − 2P 1,i+1+ = P 3,i − 2P 4,i, i ∈ [1, m− 1] (39)

where the numerals denote the control points and i denotes
the curve segment number.

Initial and final conditions: The initial and final condi-
tions for the position can be formulated as constraints as
follows

P 0,1 = WP0, P 5,m = WP1, (40)

whereWP0 andWP1 denotes the position of the endpoints
in the north-east plane. The constraint for the initial and
final conditions for the heading in these endpoints can be
formulated as follows

l0

[
sin(ψ0)
cos(ψ0)

]
= 5(P 1,1 − P 0,1), (41)

l1

[
sin(ψ1)
cos(ψ1)

]
= 5(P 5,m − P 4,m), (42)

where ψ0 and ψ1 denotes the heading angle in the first
waypoint and the second waypoint, respectively. Further-
more, l0, l1 ∈ R+ are some positive constants, determining
the length of the vector in the two waypoints, respec-
tively. Note that these equations will only constrain the
direction of the heading vector in the endpoints, and not
the magnitude of the vector. These constraint requires the
introduction of l0 and l1 as design variables.

Turning radius: To ensure that the path has no turns
smaller than the minimum turning radius of the ship, we
will impose a constraint on the curvature along the path.
This could be formulated as
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|κ(t)|< κmax =
1

Rmin
, (43)

where κ(t) is the curvature of the path, Rmin is the
minimum turning radius and κmax is the corresponding
maximum curvature.

Static obstacles: Environmental constraints will be in-
cluded in the optimization as static obstacles. Each obsta-
cle will be represented by a circle with radius r and center
in (x, y) in the North-East plane. These constraints will
take on the following form

r ≤
√
(x(t)− x)2 + (y(t)− y)2, (44)

where x(t) and y(t) denote the coordinates of the path.

4.2 Objective function:

Using the differential flatness property, we will define an
objective function that minimizes the energy associated
with each of the path segments. This is formulated as

J =
m∑
i=1

[∫ 1

0

u̇i(t)dt

]
(45)

where i denotes the curve segment number and u̇ is found
by differentiating Eq.(31). Since we are using the the
flatness property of the system, this objective function will
include the ship dynamics.

We would like to highlight that in this article the main
contribution is formulating the path generation problem
in an optimization framework and not solving the problem
itself. Throughout this article, the overall optimization
problem is solved using a general nonlinear programming
solver in MATLAB R©.

5. SIMULATION RESULTS

In what follows we present a series of numerical simulation
to evaluate the efficacy of the proposed algorithm.

First scenario:
Fig. 1 shows the results of the generated path for the
following problem:

Initial condition (x0, y0, ψ0) = (0, 0, 40); Final condition
(x1, y1, ψ1) = (1800, 2600, 15); Nr. Obstacles = 65; Mini-
mum Radius= 50 (m) and Maximum Radius 80 (m); Min
turning radius= 100 (m); Nr. Bézier curves= 8.
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Fig. 1. Graphical representation of the generated path and
obstacles in the first scenario

Second scenario:
Fig. 2 shows the results of the generated path for the
following problem:

Initial condition (x0, y0, ψ0) = (0, 0, 35); Final condition
(x1, y1, ψ1) = (2000, 2300, 55); Nr. Obstacles = 25; Mini-
mum Radius= 70 (m) and Maximum Radius 100 (m); Min
turning radius= 100 (m); Nr. Bézier curves= 8.
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Fig. 2. Graphical representation of the generated path and
obstacles in the second scenario

Third scenario:
Fig. 3 shows the results of the generated path for the
following problem:

Initial condition (x0, y0, ψ0) = (0, 0, 90); Final condition
(x1, y1, ψ1) = (2000, 2600, 15); Nr. Obstacles = 25; Mini-
mum Radius= 70 (m) and Maximum Radius 100 (m); Min
turning radius= 100 (m); Nr. Bézier curves= 8.
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Fig. 3. Graphical representation of the generated path and
obstacles in the third scenario

The numerical simulations shows effectiveness of the pro-
posed path planning technique.

6. CONCLUSION

. The problem of path generation for a marine vehicle
was addressed in a systematic way. To this end, a class of
Bézier curves was used to provide a rich class of potential
paths. Using the flatness property of ship, all the states
and inputs of the ship along the path was computed
from which a cost value was assigned to each candidate
path. Finally, an optimization problem was formulated
that would give birth to a path that would satisfy all
the required properties. The presented work is in its
early stage and far from being complete. Future work
will include the application of the method developed to
multiple vehicles case and development of an efficient
optimization technique tailored for the above mentioned
problem.
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