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Abstract

This paper addresses the possible drainage and collapse of closed flexible
cages in sea-based fish farming. A closed flexible cage is a floating bag struc-
ture containing water that is enclosed from the ambient water. Possible
density stratification in typical fjord locations can cause buoyancy driven dis-
charge from the containment if damages occur under special operational con-
ditions. The discharge may in turn cause drainage and collapse of the closed
flexible cage. A combined structural and hydrodynamic model was developed
to study the process of drainage and collapse of a floating closed flexible bag
structure. Scaled physical model experiments with buoyancy-driven drainage
of a hemispherical bag structure was conducted and compared with results
from numerical simulations. Good comparison was observed for the flexible
deformations and the drainage time. Main characteristics of the drainage
process and performance of the numerical model are discussed. Implications
from the present results on the design of closed flexible cages are suggested.
To the best of the authors’ knowledge, the present study is the first to con-
sider the drainage and collapse of a floating flexible bag containment structure
through both numerical and experimental methods.

Keywords: Hydroelasticity, Finite Element Method, Fluid-structure
interaction, Closed cages, Discharge, Drainage

1. Introduction

Floating closed containment structures for fish farming, referred to as
closed cages, are structures containing a water volume for fish production
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that is enclosed from the ambient water. From a marine technology perspec-
tive, closed cages are novel structures where the contained water accounts for
the major part of the structures displacement. Closed cages are gaining new
attraction as an alternative to open net-based structures for sea-based farm-
ing of Atlantic salmon in Norway. There are several reasons for this. One
motivation for use of closed cages in farming of Atlantic salmon is to improve
the fish health and welfare and thus the farming efficiency by having better
control of water quality of the contained water, by means of water temper-
ature, amount of dissolved oxygen, acidity and more. A controllable water
exchange system is then needed, compared to traditional net-based fish-farm
structures where water exchange is governed by natural convection through
the net. The risk of parasite infections (sea-lice) in closed cages is reduced
relative to open net-cages by pumping inlet water from water depths of about
20 meters or more. Further, farming in closed cages makes is possible to col-
lect waste and deposits resulting from the production, such that the negative
impact on the local environment is reduced. Several types of closed cages
exist with various structural properties, ranging from rigid concrete struc-
tures to highly flexible bag structures made of fabric. When fabric is used as
construction material for marine applications, effects of hydroelasticity are
important to consider (Løland and Aarsnes (1994)). Hydroelasticity is the
mutual dependency between hydrodynamic loads and flexible deformations
of the structure. Hydroelastic theories for modeling of the global response of
marine structures were reviewed by Chen et al. (2006) and Korobkin et al.
(2011). Design aspects of flexible closed-cage structures were presented by
Solaas et al. (1993), discussing different scenarios with hydrostatic pressure
differences between the inside and the outside of the bag and how this af-
fects the shape and flexible properties of the structure. Hydrostatic pressure
differences can be due to the filling level in the containment, or due to dif-
ferences in water density between the contained water and the ambient. The
behaviour of closed flexible cages subjected to a steady current was studied
in scaled physical model experiments by Lader et al. (2015) and Strand et al.
(2016). Several filling ratios were tested, where the current induced defor-
mations and drag forces were found to increase largely for lower fill ratios.
Scaled physical model experiments were also conducted to investigate the
behavior of closed flexible cages in waves (Lader et al. (2017)). Complex de-
formations and dynamic motions of the bag structure were observed for lower
fill ratios. This is also supported by experiences in the field from operators
of closed flexible cages, and why an internal excess pressure is usually ap-
plied by over-filling of the cage. Difference in water level between the inside
and the outside is by operators reported to be up to the order 0.1 m. The
internal excess pressure will cause discharge of contained water if a damage
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with a hole in the bag occurs. Depending on the net volume in-flux from
the water exchange system of the cage, such discharge may cause drainage
of the bag structure. Drainage can be critical for closed flexible cages used
for fish farming. If a closed flexible cage begins to drain, reduction of the
cage volume will increase the effective stocking density inside the cage. If
the stocking density becomes too high, the fish health might be at risk due
to lack of oxygen or crushing at extreme cases. Development of numerical
methods and computational models for simulating the mutual interaction of
fluid flows and complex structural deformations (FSI) is a hot research topic
with many applications. Numerical models based on computational fluid dy-
namics (CFD) methods solving the equations of motion for the fluid flow can
be powerful tools with possibility to handle flows in complex geometries and
interaction with flexible structures (see e.g. Hart et al. (2003) and Griffith
et al. (2009)). A review of numerical methods for fluid structure interaction
was presented by Hou et al. (2012). Use of CFD methods require that the
volume occupied by the fluid and time interval of interest is discretized with
a computational grid in space-time, where the grid resolution must be suffi-
cient to resolve the physics of the flow. Turbulence models are often applied
to account for flow effects from unresolved (sub-grid) scales to keep the com-
putational cost at an acceptable level. However, the temporal and spatial
resolutions are interdependent through numerical stability criteria, which can
make the numerical solution to flow problems involving multiple scales chal-
lenging. Numerical methods for multi-scale and multi-resolution problems
is a developing research field with many applications (see e.g. Weinan and
Engquist (2003)).

This paper addresses the process of drainage and collapse of a floating
flexible bag structure caused by discharge of contained water when the den-
sity of the contained water is larger than the ambient water density. This
has relevance for closed flexible cages used for farming of Atlantic salmon at
fjord locations where density stratification can occur. A numerical simulation
model is developed to study the fluid-structure interaction problem, which
combines a dynamic model for the structure with simplified hydrodynamic
models. The drainage process is studied by means of scaled physical model
tests and numerical simulations with the numerical model presented. To the
best of the authors’ knowledge, the present study is the first to consider the
drainage and collapse of a floating flexible bag containment structure through
both numerical and experimental methods.
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2. Material and Methods

Numerical modeling and simulation of the drainage and collapse of a
floating flexible bag structure is challenging due to large differences in spatial
and temporal scales of the flow, combined with large and complex structural
deformations. Although advanced computational methods for modeling of
multi-scale problems and complex fluid-structure interactions might be ap-
plied to address the present problem (see section 1), we will here make use
of simplified rational models to obtain a dedicated simulation tool for the
study of drainage and collapse of floating closed flexible bags.

2.1. Numerical simulation framework

The time-domain simulation tool FhSim (see Reite et al. (2014)) is used
as the simulation framework for system assimilation, time integration and
visualization of the numerical model system. FhSim is mainly a software tool
for solving mathematical models based on Ordinary Differential Equations
(ODEs) in the time domain. Model development in FhSim is modular, where
complex systems are modeled as a collection of interconnected sub-models.
In the present study, a new sub-model is developed in FhSim to simulate
drainage of closed flexible cages, which includes a Finite Element (FE) based
structural model combined with simplified hydrodynamic models.

2.2. Structural model

A finite element model, based on the so-called rotation-free (RF) shell
elements, is developed for simulating structural deformation of closed flexible
cage. The RF shell element requires only translational degrees of freedom at
the mesh nodes, by which the complication of nonlinear formation of large
rotations can be avoided. This rotation-free formulation greatly saves on
computational cost due to the significant reduction in the number of degrees
of freedom, thereby it is well suited for the present study where we need
to handle large structural deformations and long-time simulations of fluid-
structure interaction.

The RF shell elements belong to the family of flat shell elements formed
by the superposition of a membrane element and a plate bending element.
The strain energy, U , is expressed as the superposition of the energies due
to the membrane and bending strains:

U = Um + Ub =

∫
1

2
εTmσmdV +

∫
1

2
εTb σbdV (1)

For linearly elastic materials, the relation between stresses, σ, and strains, ε,
is given by Hooke’s law:

σ = Eε (2)
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where the constitutive matrix for thins shells, using the assumption of plane
stress, is

E =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 (3)

where E is the Young’s modulus, is the Poisson’s ratio. The linear membrane
strains, εm, are

εm =


εx
εy
γxy

 =


∂u
∂x

∂v
∂y

∂u
∂y

+ ∂v
∂x

 (4)

where u and v are the in-plane displacements. Thin plates are described by
Kirchhoff’s plate theory, with bending strains

εb = zκ = z


κxx
κyy
κxy

 = z


−∂2w

∂x2

−∂2w
∂y2

−2 ∂2w
∂x∂y

 (5)

where w is the out-of-plane displacement and κ is a generalized curvature
field. In FE calculations, εm and κ are interpolated from the element degrees
of freedom (DOF), d, as

εm = Bmd (6)

κ = Bdd (7)

Compared to conventional shell formulations the RF shell elements do not
include any rotational DOF. Instead, constant curvatures are approximated
from the out-of-plane displacements of a patch of usually four triangular
elements. Figure 1 shows a patch of the three-node triangle elements. The
nodes 1, 2, and 3 in the main central triangle (M) are marked with circles
while the external nodes in the patch (nodes 4, 5 and 6) are marked with
squares. Mid-side points in the central triangle are also marked with smaller
squares. The curvature within the central triangle can be expressed in terms
of a constant assumed curvature field as:

κ =
1

AM

∮  −nx 0
0 −ny
−ny −nx

 ∂w
∂x

∂w
∂y

 dΓ = Bbw (8)

where AM is the area of the central triangle in Figure 1, Γ is the bound-
ary of the central triangle and n = (nx,ny) is the boundary normal, w =
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Figure 1: Patch of three-node triangular elements including the central triangle (M) and
three adjacent triangles (1, 2, 3) (Courtesy: Flores and Oate (2005)).

[w1,w2,w3,w4,w5,w6] are the out-of-plane displacements of the six nodes
of the four-element patch linked to the element M , the expression of the 3×6
Bb matrix can be found, for example, in Onate and Cervera (1993).

The plate bending moments are related to the curvatures by the standard
constitutive equations:

m =


Mxx

Myy

Mxy

 = Dbκ (9)

Db =
t3

12
E (10)

where t is the plate thickness.
Substituting the resulting expressions of stresses and strains into Eq. (1),

the element tangent stiffness matrix becomes

K = Km + Kb =

∫
tBT

mEBmdA+

∫
BT

bDbBbdA (11)

where Km and Kb are the contributions from the membrane part and the
plate bending part, respectively.

The main merits of the RF shell elements expressed above are the reduc-
tion in the number of DOF and, for nonlinear formulations, the absence of all
the difficulties related to large rotations. The total number of DOF necessary
to obtain a certain accuracy is found to be less than half for an RF element
compared to the corresponding elements that use rotational DOF, for many
benchmark examples (see e.g. Sabourin and Brunet (2006) and Flores and

6



Figure 2: Definition of model dimensions and parameters of the hydrodynamic discharge
model for the floating bag structure.

Oate (2007)). However, it is also found that the plate bending parts of most
RF shell formulations are sensitive to element shape distortion (Gärdsback
and Tibert (2007)). A consequence of this is that the accuracy of most RF
shell elements is unsatisfactory for unstructured meshes.

In the present numerical study, a RF shell formulation introduced by
Onate and Cervera (1993) and further developed by Flores and Oate (2005)
was implemented. Considering that the RF shell formulation is sensitive to
element shape distortion, structured meshes were used in all simulations.

2.3. Discharge hydrodynamic model

A hydrodynamic model for the discharge of contained water is developed
from potential flow theory. Due to a higher water density inside the con-
tainment compared to the outside, there is a hydrostatic pressure difference
between the inside and the outside of the closed containment. Typically,
there is also a higher water level δ inside the containment compared to the
outside. Parameters of the discharge model for the floating bag structure are
defined in Fig. 2. The hydrostatic pressure p0 and p1 for the external and
contained water, respectively, at a given vertical position z = h, is

p0(h) =

∫ h

0

ρ0(z)gdz , p1(h) =

∫ h

−δ
ρ1(z)gdz (12)

where g is the acceleration of gravity, ρ0(z) and ρ1(z) are the density profiles
of the ambient water and contained water, respectively. We consider the case
of a uniform density ρ1 inside and ρ0 outside the containment, where ρ1 > ρ0.
Then the hydrostatic pressure difference is

∆p(z) = p1(z)− p0(z) = (ρ1 − ρ0)gz + ρ1gδ (13)
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This pressure difference implies a force on the bag structure, but more im-
portant, it may cause discharge of water from the containment system in a
damage situation with a hole in the membrane structure. This can in turn
lead to drainage and collapse of the structure. Buoyancy driven flows are
characterized by the densimetric Froude number

Fn =
U√
ĝL

(14)

where U is characteristic velocity, ĝ = g((ρ1 − ρ0))/ρ1 is called the reduced
gravity and L is a characteristic length (Turner 1979). For the given problem,
the largest difference in hydrostatic pressure appears at the deepest point of
the containment, where a damage would be most critical in terms of drainage
speed. Hence, we will in the following consider the case of a circular opening
at the bottom pole of the hemispherical flexible bag.

In the following, an expression for the discharge velocity will be estab-
lished. The jump in hydrostatic pressure through the opening at the bot-
tom of the containment will cause discharge of water from the containment
into the surroundings. The flow exterior to the opening appear as a forced
plume. Forced plumes are driven both by discharge of momentum and buoy-
ancy, where the limiting cases are non-buoyant jets and pure plumes (Morton
(1959)). Observations of jets and plumes shows that there is an increasing
vertical flow with depth, which implies a mean inflow across the boundary of
the jet from the surroundings. In other words, fluid is entrained from the sur-
roundings to maintain the flow. The entrainment velocity ve is defined as the
transversal speed at the boundary of the plume/jet. According to Batchelor
(1954) the entrainment velocity for non-buoyant jets and pure plumes has a
linear relation to the plume/jet centre velocity wm expressed as ve = αwm,
where α is the entrainment constant. For a pure non-buoyant axisymmetric
jet, α = 0.031, while α = 0.041 for an axisymmetric plume (Blevins (2003)).

The external flow outside the jet can be described by the Bernoulli equa-
tion:

− ρ∂φ
∂t

+
1

2
ρ|V |2 + p− ρgz = c (15)

where c is an arbitrary constant. If we consider the steady flow after the
transient start-up of the drainage process, a quasi-static approach can be
used to find an expression for the external pressure at damage location.
Assume the damage is located at depth z = h. Steady flow means we can
neglect the first term on the left hand side of Eq. (15). Just outside the jet
the fluid velocity V is horizontal and equal to the entrainment velocity ve (cf.
Fig. 2). By setting the constant c = 0, we obtain the following expression
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for the total external pressure at the opening, just outside the jet:

p = −1

2
ρ0|ve|2 + ρ0gh (16)

where ρ0 is the reference density of the ambient water. Similarly, the internal
pressure at the opening is found as

p = −1

2
ρ1|w|2 + ρ1g(h+ δ) (17)

The outflow vertical velocity w0 can now be found if we assume that the
pressure at the centreline of the forced plume at the opening is equal to the
external pressure just outside the plume/jet. Hence,

w0 =

√
2gh(ρ1 − ρ0) + 2ρ1gδ

ρ1 − α2ρ0
(18)

The discharged volume flux Q through the opening, i.e. the drainage rate
when there is no supply of water into the containment, is then found as

Q = CAw0 (19)

where C is the discharge coefficient, A = πa2 is the area of the opening and w0

is the outflow speed assumed uniform over the opening area. The discharge
coefficient expresses the true volume flux relative to that from a uniform flow
velocity over the cross-section of the opening. There are several physical
effects influencing the discharge (Grose (1983)) and for the present case it
is reasonable to split the discharge coefficient in two independent factors,
namely the contraction coefficient Cc and the viscous correction coefficient
Cv such that

C = CcCv (20)

The flow out from an orifice into an ambient fluid accelerates through the
orifice due to the change in pressure from the reservoir to the ambient. The
point along the axis of the discharged flow where the pressure equals the
ambient pressure is located outside the orifice and is known as the vena
contracta (Lamb (1916)). This is where the cross-sectional area of the dis-
charged jet has its minimum and where the flow velocity is known from Eq.
(18). The cross-sectional area of the jet at the vena contracta relative to the
orifice area is given by the contraction coefficient, which can be found from
potential flow theory for inviscid flow. A classical result for 2D orifice flow in
an infinite plane is Cc = 0.611 (see e.g. Lamb (1916)), while for 3D axisym-
metric orifice flow the contraction coefficient takes the value Cc = 0.5858
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(Grose (1985)). The viscous correction coefficient depends on the discharge
Reynolds number Rnd = (w0d)/ν, where d is the opening diameter and ν is
the kinematic viscosity coefficient, and has the limiting value Cv = 1 when
Rnd →∞. Values of Cv for low and moderate Reynolds number orifice flows
obtained from numerical solutions of the Reynolds-averaged Navier-Stokes
equations were presented by Hollingshead et al. (2011), which shows that
Cv > 1 for Rnd > 14. Further, Cv has the maximum value close to 1.25
when Rnd ≈ 200. This is also consistent with numerical results by Dabiri
et al. (2008). In the present numerical study we consider axisymmetric dis-
charge flow in full scale conditions characterized by high Reynolds number
flow (Rn = O(106)), for which the viscous correction factor is found to be
Cv = 1.04 from Hollingshead et al. (2011). Then the discharge coefficient
used in the simulations becomes C = CcCv = 0.61.

A quasi static assumption is applied for the continuity of the contained
water, such that the difference between the available bag volume and the
instantaneous volume of contained water is balanced by Awpδ, where Awp(t)
is the instantaneous water-plane area inside the bag and δ(t) is the instan-
taneous internal water level.

2.4. Hydrodynamic load model

A simplified hydrodynamic load model is developed, based on potential
flow theory. When the cage start to drain, the structure will begin to shrink
due to mass conservation and pressure difference across the tarpaulin. The
shrinking also means that the external water is set into motion. We apply
potential flow theory to model this effect and assume accelerations of the
deformation are small compared to the gravity acceleration, such that no
waves are generated at the free surface. This means we can consider the
double body obtained by mirroring the hemispherical cage model across the
free surface. Hence, we obtain the hydrodynamic problem of the flow induced
by dilatation of a sphere in infinite fluid. Far away from the structure, the
flow induced by the shrinking, or dilatation, then appear as that induced by
a potential sink. We assume that potential flow theory applies in the external
fluid domain, where also the jet/plume region along the z-axis is excluded, to
study the hydrodynamic forces associated with dilatation of the sphere. We
place a potential (negative) source at the centre of the double body, which
has the velocity potential

φ =
m

4πr
(21)

where m is the source strength and r =
√
x2 + y2 + z2 is the vector from

the source at the origin to the field point (x, y, z). We define R(t) to be the
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instantaneous radius of the shrinking sphere. The source strength is found
from the body boundary condition

∂φ

∂r
|r=R = vR (22)

where vR is the radial velocity of the cage surface due to dilatation of the
cage. We have assumed that vR = dR/dt is uniform, i.e. only a function of
time. This yields

φ = vR
R2

r
(23)

The external hydrodynamic pressure on the cage is then found from Bernoulli’s
equation,

p = −ρ0
∂φ

∂t
+

1

2
ρ0

∣∣∣∣∂φ∂r
∣∣∣∣2 , r = R (24)

p = −ρ0RR̈− ρ0
3

2
Ṙ2, (25)

where we have used

∂φ

∂t
= R̈R + 2Ṙ2,

∂φ

∂r
= vR. (26)

This is similar to the dynamic pressure developed during collapse of a bubble,
as derived by Rayleigh (1917). The resulting hydrodynamic forces are found
by integration of the hydrodynamic pressure over the hemisphere with surface
area S = 2πR2, as

F = −ρ02πR3v̇R − ρ03πR2v2R (27)

This means the added mass Arr = ρ02πR
3 and quadratic damping Brr =

ρ03πR
2 from external pressure due to the dilatation. The added mass and

damping forces are distributed uniformly of the external bag surface area.
The internal pressure distribution is found from Eq. (12) based on the in-
stantaneous value of δ.

The hydrodynamic attraction force of the plume due to entrainment of
surrounding water and continuity fluid mass, can be modelled by a distri-
bution of two-dimensional (2D) potential sinks (negative potential sources)
along the centreline of the plume. The strength of the sink can be found
from a strip theory approach by requiring the induced radial velocity at the
boarder b of the plume is equal to the entrainment velocity ve = αwm. Hence,
2D external velocity potential is

φjet(ξ) = bαws ln ξ, ξ > a (28)
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The induced hydrodynamic pressure at the bottom of the cage is found from
Bernoulli’s equation

p(r) = −1

2
ρ0

∣∣∣∣∂φ∂ξ
∣∣∣∣2 = −1

2
ρ0

(
bαws
ξ

)2

(29)

The induced hydrodynamic pressure is at most 1 % of the hydrostatic pres-
sure difference across the bottom of the cage.

Similar as for the external flow, the flow through the orifice appear as a
sink located at the centre of the circular opening. However, the strength of
the sink is larger as that for the outside flow. As the outside flow external to
the jet is due to entrainment from the ambient fluid, the internal flow due to
the drainage is represented by a potential source (sink) at the centre of the
orifice with strength

Q0 = −2wsACv (30)

where ws is the outflow velocity, A = πa2 is the opening area of the orifice
and Cv is the contraction coefficient. Hence, with m = Q0 in Eq. (21) the
velocity potential of the source reads

φ = −a
2Cvws(t)

2r
(31)

The internal hydrodynamic pressure is then

p(r) = −ρ1
∂φ

∂t
− 1

2
ρ1

∣∣∣∣∂φ∂r
∣∣∣∣2 = −ρ1

a2Cvẇs
2r

− 1

8
ρ1 (Cvws)

2
(a
r

)4
(32)

2.5. Numerical simulation procedure

Figure 4 shows a flow chart of the numerical simulation procedure, in
which the above-mentioned structural, discharge and hydrodynamic load
models are implemented and the HHT-α method (Hughes (1983)) is used
for numerical integration. The HHT-α method adopts the finite difference
equations of the well-known Newmark-β method. The equations of motion
are modified, however, using a parameter α, which represents a numerical
lag in the damping, stiffness, nonlinear, and external forces. In a range of
specified parameters, the HHT-α method is at least second-order accurate
and unconditionally stable. It is useful in structural dynamics simulations
incorporating large degrees of freedom, and in which it is desirable to nu-
merically attenuate (or dampen-out) the response at high frequencies (Gavin
(2016)). To solve the fluid-structure interaction problem an iterative process
is adopted. At each simulation time step, the hydrodynamic pressure includ-
ing added mass and damping forces acting on the finite elements and the
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Figure 3: Numerical setup in FhSim.

nodal displacements are all taken as unknowns, considering that the internal
water level, outflow velocity and structural deformation are interdependent.
Iterations are performed until the relative deviations of nodal displacements
are below a tolerance value which is set to be 10−3 in the present simula-
tions. The calculated nodal displacements, volume change, internal water
level and outflow velocity can be written to an output file at each simulation
time step. Stress distributions among the finite elements can also be output
from the simulation, and some benchmark analyses have been carried out
with respect to the numerical accuracy and convergence behaviour of the FE
structural model. The present numerical setup as shown in Fig. 3 is accord-
ing to the physical experiments introduced below. The floating collar and the
mooring lines are modeled by dedicated simulation objects in FhSim. They
are connected to the flexible cage model with coupled dynamics. The bag
material in the simulations resembles that typically used for closed cages in
full scale, which is a PVC-coated fabric material. The material properties
were obtained by tensile testing. As the material properties are anisotropic
and dependent on the orientation of the reinforcement, different elasticity
is obtained for different directions. This anisotriopic effect is not included
in the numerical model, and directional averaged values of Young’s modulus
and the Poisson ratio is applied. The averaged Young’s modulus was found
to be 443 MPa, while Poisson’s ratio was 0.3.

2.6. Physical experiments

Scaled physical model tests of the drainage process of a floating closed
flexible cage was performed in a small tank filled with sea water. By adjusting
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Figure 4: Flowchart showing the numerical simulation procedure.
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the salinity of the water pumped into the cage model, different water densities
inside and outside the cage were obtained. Drainage was initiated from an
opening at the bottom of the cage. Three density differences were sought
tested that corresponds to small, intermediate and large density differences
for typical fjord locations.

A scaled physical model of a generic flexible closed cage structure was
created with model scale 1 : 37.5. The model geometry was a hemisphere
with diameter D = 0.76 m. The model depth h corresponded to the radius,
i.e. h = D/2, as presented in Fig. 2. Cage displacement at 100 % fill ratio
is then V = πD3/12 = 0.115 m3. The cage model was made of parachute
watertight fabric (0-P) and mounted to a flexible floating collar. The collar
was made of a PE plastic tube with outer pipe diameter c = 0.023 m, wrapped
into a torus with diameter D + c = 0.79 m, providing sufficient buoyancy to
balance the weight of the heavier water inside the cage at 100 % filling. Four
mooring lines were applied to keep the cage model centered in the tank. The
mooring lines were oriented with a small angle relative to the water plane
and attached to the floating collar with even separation. A circular opening
with diameter 2a = 0.02 m was made with center at the bottom pole of
the hemispherical cage model to study gravity driven drainage of the model.
The opening was covered with a removable sheet of fabric during filling of
the model, and the test was started by removing the sheet.

The tests were conducted at hydrostatic conditions in a tank with a di-
ameter of 2.3 m and 1 m depth containing seawater with temperature of
9◦ C and salinity of approximately 34 ppt. This yields a water density of
approximately 1026.4 kg/m3 according to the International one-atmosphere
equation of state of seawater (Millero and Poisson (1981)), also known as the
UNESCO equation of state. Water temperature and salinity in the tank were
controlled before each test. Salinity inside and outside the cage at different
depths were also measured during and at the end of the tests. After each
test, the water in the tank was replaced before a new test was started. The
sought mass density of the water inside the cage was obtained by mixing salt
(NaCl) with seawater in a separate container. When the sought salinity and
hence density was obtained, the water was pumped into the cage model with
a calibrated impeller pump to keep control of the amount of water pumped
into the model. Monitoring of the draining process was performed by adding
dye inside the containment system and videotaping the surrounding water.
The salinity of the internal water volume was monitored with conductivity
sensors to be able to identify leakage of brackish water from the outside.

The density inside and outside the cage were then obtained from UN-
ESCO equation of state with the measured salinity SA and water tempera-
ture T . The time to drain the model (Tdrain) was taken as the time interval
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from removal of the fabric sheet that covered the opening, until the time
where the drainage process stopped.

2.7. Image processing

Video recordings of the drainage process in the physical experiments were
processed to track the bag contours with time. OpenCV (Open Source Com-
puter Vision Library)2 were utilized through its python API for this purpose.
Images from the video streams were then analyzed, frame by frame. The im-
age processing procedure consisted of six steps. First, the image was cropped
to contain the bag only, while masking with filled rectangles was applied to
remove background edges and details. Second step was to convert the im-
age to gray-scale. Third step was to blur the image to smooth edges, which
makes contour detection more robust. This was done using the Gaussian
blur filter provided in the library. Fourth, the image was converted to binary
black and white, using a given threshold of the gray-scale. The threshold
value had to be tuned to properly separate the bag from the background.
The fifth step consisted of eroding and dilating the image to remove noise,
using the erode and dilate library functions. The sixth and final step was to
find the contours in the image with the findContours library function and
to identify the bag contour among all the returned contours of the image.
The bag contour was found as the returned contour with the largest enclosed
area. Collecting bag contours from each video frame, a time series of the
bag contour deformation was obtained. From the contours, a time-series of
the vertical motion of the bag’s bottom was extracted. Since no calibration
was performed in the experiment to relate pixel size to physical length at
the plane of interest, the obtained time-series of bag contours must be taken
as qualitative results. However, an attempt to relate pixel size to physical
length for the bag contours was made using the known size of the bottom
circular piece of the bag structure by measuring the horizontal distance be-
tween the seams at the bag’s bottom. It is assumed that the same calibration
also applies for the vertical direction in the middle region of the image.

3. Results

3.1. Scaled physical experiments

Scaled model tests with drainage of a closed flexible fish cage was con-
ducted as described in section 2.6. Measured initial water conditions in the
tank exterior to the cage and inside the cage and the resulting drainage time
for the different tests are presented in Table 1.

2http://www.opencv.org
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(a) Step 1: Mask (b) Step 2: Gray-scale (c) Step 3: Blur

(d) Step 4: Binary (e) Step 5: Dilate, erode (f) Step 6: Contour

Figure 5: Output from each step of the image processing procedure applied on video
recording from Test 8 of the model experiment.

Table 1: Measured salinity and temperature of water outside and inside the cage model
and resulting density difference and drainage time (model scale).

External water prop. Internal water prop.

Test no.
S
(ext.)
A T

(ext.)
0 ρ

(ext.)
0 S

(int.)
A T

(int.)
0 ρ

(int.)
1 V0 ∆ρ Tdrain

[ppt] [◦C] [kg/m3] [ppt] [◦C] [kg/m3] [m3] [kg/m3] [min]
8 33.97 8.8 1026.49 42.92 11.3 1032.98 0.115 6.49 66
9 34.07 8.8 1026.57 39.40 10.2 1030.42 0.112 3.85 88
10 33.91 8.8 1026.44 39.46 12.3 1030.09 0.111 3.64 93
12 34.30 8.8 1026.70 35.92 11.7 1027.52 0.111 0.824 280
13 34.19 9.0 1026.51 42.85 10.9 1033.12 0.111 6.61 68
14 34.23 8.9 1026.70 42.85 11.7 1032.93 0.111 6.23 67
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Figure 6: Snap-shot from test no. 8. Outflow appear as an axisymmetric turbulent jet. A
small inclination angle of the discharged plume relative to the vertical was observed.

Table 2: Estimated model scale flow parameters based on measured density differences of
the drainage experiments. At = (ρ1−ρ0)/(ρ1+ρ0) is the Atwood number, w0 is the initial
discharge velocity obtained from Eq. (18) with δ = 0 and h = D/2, Fn is densimetric
Froude number and Rn = 2aw0/ν is the discharge Reynolds number.

Test no. At w0 [m/s] Fn Rn
8 3.15E-03 0.22 1.41 4.3E+03
9 1.87E-03 0.17 1.41 3.3E+03
10 1.77E-03 0.16 1.41 3.3E+03
12 3.99E-04 0.08 1.41 1.5E+03
13 3.21E-03 0.22 1.41 4.4E+03
14 3.02E-03 0.21 1.41 4.2E+03

Immediately after removal of the fabric cover of the opening, the cage
model started to drain. The bag was then moving slightly due to impact
from the cover removal and by adjusting the bag position to the middle of
the tank. This induced lateral motions of the bag that affected the outflow
for the initial 3 minutes after start-up. After the transient start-up of the
flow the outflow appeared as an axisymmetric turbulent jet (Figure 6). The
tests were stopped when the discharge volume flux had a sudden decrease
and the shape of the cage model seemed to reach a steady state, although
the model did not drain completely and small leakage could still be observed.
Based on density differences deduced from the measured water properties in
Table 1, an estimate of the initial discharge velocity for the scaled model
was obtained from Eq. (18) for each test. Non-dimensional flow parameters
based on the measured densities and estimated initial outflow velocities are
given in Table 2.
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Figure 7: Bag contours from test 8 of the model experiment, plotted for every 3.5 min
(model scale). The location of the discharge opening is highlighted with red markers.

3.1.1. Bag contours

Bag contours for given time instances were obtained from image pro-
cessing of the video streams from the experiments, as outlined in Sec. 2.7.
Resulting contours from test 8 characterized by large density difference are
presented in Fig. 7. The time interval between each contour is 3.5 minutes in
model scale. The contours appear to include a minor part of the discharged
plume at some time instants. Similarly, bag contours obtained form test 9
are presented in Fig. 8. Some contours are missing due to drop-out of the
video stream for a time interval of approximately 15 minutes in model scale.

3.2. Numerical simulations

3.2.1. Mesh convergence study

A sensitivity study of the mesh was performed to find which mesh reso-
lution of the structural model that is sufficient to obtain convergence of the
simulated drainage time. The physical parameters used in the tests corre-
spond to the conditions of test 8 from the physical expersiments (Table 1).
Computed drainage time for six different mesh resolutions are presented in
Figure 9. Based on these results, the second finest mesh corresponding to the
snapshot in the middle of Figure 9 was used for the rest of the simulations.

3.2.2. Case 1: Large density difference

The numerical model was applied to simulate drainage for large density
difference in full scale, with conditions from Test 8 of the experiments given
in Table 1 converted to full-scale by means of Froude scaling. An initial stage
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Figure 8: Bag contours from test 9 of the model experiment, plotted for every 3.5 min
(model scale). The location of the discharge opening is highlighted with red markers.

Figure 9: Convergence study of simulated drainage time relative to mesh resolution of the
structural model. Conditions from test 8 of the physical experiments were applied.
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of duration 30 min (simulated time in full scale) was included in the time
simulation to find the equilibrium state of the cage, floater and mooring lines
before the discharge was started. The drainage time was taken as the time
duration from initiation of the discharge to the time instant when the outflow
velocity reached zero. Time-histories of the vertical position of the cage top
and bottom obtained from numerical simulation are presented in Fig. 10.
Vertical position of the cage bottom obtained from image processing is also
presented, with the initial vertical bottom position from the numerical model
as the starting point. This is because the image processing results are just
relative motions and not absolute values of position due to lack of a fixed
reference point. Time series of the computed water level inside the cage
relative to the ambient water level and the corresponding outflow velocity is
shown in Figure 11. The computed internal water level has a rapid decay
at the beginning of the drainage process, until about 2,4 hrs simulated time
which means 1,9 hrs after startup of the discharge. The discharge velocity
is also observed to decay rapidly just after drainage is initiated (Figure 11).
Figure 12 shows the simulated time-history of the contained water volume
and the cage volume during the discharge process. The cage model did not
drain completely in the simulation and when the drainage process stopped,
the remaining volume of water in the cage was about 9 % of the initial
volume. In Figure 13, time lapse of the cage deformation obtained from the
numerical simulation is compared with corresponding images of the video
recordings from Test 8 of the physical experiments.

3.2.3. Case 2: Moderate density difference

Simulation with test conditions characterized by intermediate density dif-
ference between the contained water and the ambient, corresponding to Test
9 of the experiments, was performed. The obtained motions of the top and
bottom point of the cage are presented in Figure 14, which show similar
trends as the results of Case 1 (Fig. 10). The simulated motions of the cage
bottom also show good agreement with the experimental results obtained
from image processing (for both Case 1 and Case 2). However, these com-
parisons can only be taken as in a qualitative manner. The computed time
series of the internal water level and discharge velocity (Figure 15) had also
similar shape as that for Case 1 (Test ID 8) with large density difference.
Time history of the contained water volume and cage volume are presented
in Figure 16.

3.2.4. Case 3: Low density difference

When simulation of the case with low density difference was performed
(test condition 12), the drainage process stopped when the cage volume was
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Figure 10: Time-history of the vertical position of the cage top and bottom obtained from
numerical simulation in full scale of test 8 (large density difference). Vertical position
of cage bottom obtained from image processing of video from the experiment test 8 is
also presented with the initial vertical bottom position from the numerical model as the
starting point, as the image processing only yielded relative motion.

Figure 11: Time-history of the evolution of internal water level and the full-scale discharge
velocity from numerical simulation of test 8 (large density difference).
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Figure 12: Computed time history of the cage volume and the contained water volume for
test 8 (large density difference).

Figure 13: Time lapse of cage deformation from experiment test 8 compared with results
from numerical simulation model. The simulation is performed with full scale dimensions.
Measured drainage time of 66 min from physical experiments corresponds to 6.7 hours in
full scale (Froude scaling).
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Figure 14: Time-history of the vertical position of the cage top and bottom from numerical
simulation in full scale of test 9 (intermediate density difference). Vertical position of
cage bottom obtained from image processing of video from the experiment test 9 is also
presented with the initial vertical bottom position from the numerical model as the starting
point, as the image processing only yielded relative motion.

Figure 15: Time-history of the evolution of internal water level and the full-scale discharge
velocity from numerical simulation of test 9 (intermediate density difference).
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Figure 16: Computed time history of the cage volume and the contained water volume for
test 9 (intermediate density difference).

reduced to about 91 % of the initial volume after about 3.3 hrs (Figure 17).

3.2.5. Case 4: Stratified density difference

Simulation of a case when there is a density difference inside and outside
the bag only for the upper half depth of the bag, while the densities inside
and outside the bag is equal for lower half depth. Hence, the density outside
the bag at the drainage opening is equal to the density inside the bag. Figure
19 shows that the computed time series of the outflow velocity follows the
evolution of the relative water level between the inside and the outside of the
structure until about 18 hrs of simulated time. Computed vertical motions
of the cage top and bottom are presented in Fig. 18, while computed time
series of the cage volume and volume of contained water are shown in Fig.
20.

4. Discussion

4.1. The drainage process

The drainage process of the bag, as observed in the physical experiments,
can be divided into three stages characterized by different physical effects
and deformed bag geometries (see Fig. 13). We define the first stage (S1)
to be the time interval from startup of the discharge to when the bag is
starting to lay flat in the free surface and hence influence the free surface
area inside the cage. This marks the start of the second stage (S2). The
third and final stage (S3) starts when the free surface area inside the cage
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Figure 17: Computed time history of the cage volume and the contained water volume for
test 12.

Figure 18: Time-history of the vertical position of the cage top and bottom from numerical
simulation in full scale for case with stratified density condition of the ambient water. The
lighter (brackish) water layer is from the free surface to half the depth of the cage.
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Figure 19: Time-history of the evolution of internal water level and the full-scale discharge
velocity from numerical simulation of case with stratified density condition of the ambient
water. The lighter (brackish) water layer is from the free surface to half the depth of the
cage.

Figure 20: Computed time history of the cage volume and the contained water volume for
case with stratified density condition of the ambient water. The lighter (brackish) water
layer is from the free surface to half the depth of the cage.
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narrow down and becomes smaller than the largest horizontal cross-section
area of the submerged bag structure. S3 ends when the discharge stops.

Consider simulation Case I (large density difference). The discharge is
started at time t = 0.5 hrs after the simulation model has reached initial
equilibrium. During S1, the internal free surface area is constant and defined
by the cage diameter. Further, discharge of the contained water makes the
water level δ inside the bag sink rapidly while the top rim of the bag is lifted
up due to the weight reduction and the buoyancy of the floating collar. The
discharge velocity shows a similar decay trend as the internal water level
during S1, which is reasonable as the hydrostatic pressure difference forcing
the discharge is reduced. At the end of S1, the internal water level δ (Delta)
reaches its minimum value (see e.g. Fig. 11). For case I, this occurs at time
t ≈ 2.4 hrs (1.9 hrs after start of the discharge) and when the contained
water volume has reached 70% of the initial value. Going from S1 to S2,
there is a change of trends of the top an bottom motions (Fig. 10) as well
as the internal water level and discharge velocity (Fig. 11). However, while
the discharge velocity continues to decay, the internal water level starts to
increase. As the contained water is still being discharged, the increasing
δ must be explained by increased deformations of the bag. The reduction
of internal water-plane area Awp during S2 makes the parameter δ more
sensitive to the bag deformations, as the difference between the contained
water volume and the instantaneous bag volume is balanced by Awpδ in
the applied quasi-static approach for the internal flow. This is a source
to numerical noise in the computed time-series in Figs. 10 and 11 during
complex deformations with buckling and folding of the bag structure. The
final stage of the process (S3) starts at t ≈ 5 hrs and is characterized by
collapse of the bag. This includes complex fluid-structure interaction as well
as contact and interaction between different parts of the bag structure, which
are not adequately modeled with the present numerical model. The numerical
noise is more pronounced in S3 where the bag undergoes large deformations
while the free surface area as well as the volume of contained water is small.
A sudden decay of the discharge velocity is seen at the end of S3, where
the discharge finally stops. This is due to the rapid vertical motion of cage
bottom at the end, which was also observed in the physical experiments.
The time history of the contained water volume and the cage volume show a
nearly linear decay with time during the whole process as shown in Fig. 12.
The slight convex curvature implies that the initial tangent of the volume
decay curve can be used to give a conservative estimate of the drainage time.

The main effect of increased density difference between the contained
water and the ambient, as observed in the experiments and supported by
numerical simulations, is decreased drainage time. This is reasonable as the
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Figure 21: Comparison of the drainage time obtained from scaled physical experiments
and from numerical simulations. Comparisons are made for Case 1 with large density
difference and Case 2 with intermediate density difference. Froude-scaling is applied to
convert drainage times from model scale to full scale values.

larger density difference implies an increased discharge velocity according to
Eq. (18). Hence, the drainage process in simulation Case II (intermediate
density difference) shows similar trends as in Case I (large density difference),
but at a slower time-scale. Figure 21 shows a comparison of drainage times
obtained from numerical simulation of Case I and II with measured drainage
times for the corresponding cases of the scaled physical experiments. Froude
scaling as defined in Eq. (14) is applied to convert measured drainage time
from the scaled experiments to full scale. Simulation of case III with small
density difference stopped when the water volume was reduced to 91 % of
the initial volume, while in the physical experiments the bag drained com-
pletely. Small density difference means small hydrostatic pressure difference
on either side of the tarpaulin such that the relative importance of the struc-
tural properties is larger compared to Cases I and II. Hence, the numerical
results are more sensitive to mesh resolution of the bag structure for this
case. However, a mesh convergence study is not performed for Case III as
this case is less important from a design point of view, while the simulation
time increases dramatically when the mesh is refined.

For the Cases I, II and III with uniform density of the ambient water, the
difference in hydrostatic pressure on either side of the membrane structure
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depends on the vertical position. Hence, the discharge velocity depends on
the vertical position of the opening. This represent a nonlinearity which
becomes increasingly important towards the end of the drainage process,
when the bottom point of the bag and hence the discharge opening has the
most rapid vertical motion (see Figs. 10 and 14).

The effects of density stratification of the ambient water was studied in
simulation case IV. The ambient water was characterized by an upper layer
of lighter water and a density jump at the depth equal to half the diameter
of the hemispherical bag such that the density of the ambient water at the
location of the discharge opening was equal to the contained water density.
According to Eq. (18) the discharge velocity in the numerical model will not
depend on the vertical position unless the opening moves into the region with
lighter ambient water. This is why the discharge velocity is closely correlated
to the internal water level δ (see Fig. 19), except for the final stage when the
bottom of the bag reaches the layer of lighter water.

There is a scale effect of the discharge rate given by Eq. (19) due to
Reynolds number dependence of the discharge coefficient through the vis-
cous correction factor Cv. Numerical results by Dabiri et al. (2008) and
Hollingshead et al. (2011) suggest that viscous effects are relevant for typical
Reynolds numbers of the present model scale experiments (given in Tab. 2),
while in full scale conditions this is small. This means that the drainage rate
might be slightly larger in the scaled model tests than in full scale. Further,
for the case of draining of a real closed flexible cage in the field, it is obvious
that exposure to current and waves will influence the drainage process.

4.2. The numerical model

Based on a qualitative comparison, the numerical simulation model pre-
sented seems to reproduce the observed bag deformations from the experi-
ments reasonably well. Quantitative comparisons made for the drainage time
obtained with the numerical model with that measured in the scaled physi-
cal experiments shows good agreement. The initial equilibrium condition is
not known a priori, but has to be obtained by iterations with the numerical
model. This includes the static equilibrium shape of the flexible bag and
hence the draft of the bag, as well as the initial internal water level relative
to the external free surface. These are parameters governing the discharge
velocity (Eq. (18)), which hence is not known in advance. The drainage rates
related to the cage volume time histories shown in Figs. 12 and 16 appear
to be close to constant with time, causing a nearly linear decay with time of
the cage volume. This motivates attempts of simple hand-calculations. Con-
servative estimates of drainage times (about 67 - 68 % of measured values
for tests 8 and 9) are obtained using the discharge velocity from Eq. (18)
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with the ideal presumed initial conditions of zero internal surface elevation
(δ = 0) and hemispherical bag shape (h = 0.5D). The a priori unknown
initial equilibrium conditions were found to be important for the resulting
drainage times. The approximate representation of added mass and damping
forces due to the bag deformation (Eq. (27)) that were deduced from dilata-
tion of a sphere in infinite fluid, is quite crude but assumed to be adequate
for the stages S1 and S2, while for S3 the deformed shape of the bag deviates
significantly from a hemisphere which makes the approximation question-
able. The added mass term is found to have minor effect on the drainage
time, but it is relevant for the instantaneous responses and deformations of
the structure. The structural model does not include contact detection, such
that effects of contact between different parts of the bag structure that is
likely to occur for large deformations (in particular during S3) is not mod-
eled. This lack of physical constraints on the structural deformations due to
contact can have effect on the simulated drainage process through erroneous
estimates of bag volume, which in turn affects the estimates of internal water
level and discharge velocity. The numerical model is still not considered to
be fully validated. In particular, the time history of the internal free surface
elevation obtained with the present numerical model needs to be validated.
In the model presented, the internal free surface elevation has a direct im-
pact on the discharge velocity and hence on the drainage time. On the other
hand, the numerically obtained drainage times compare well with those mea-
sured in the experiments (cf. Fig. 21). Other uncertainties are related to the
mooring lines, which tension were not measured in the experiments. Tension
in the mooring lines could have had an impact on the global vertical motion
of the bag, but this effect is assumed to be minor as the mooring lines were
only lightly tightened and had a close to horizontal orientation..

4.3. Implications for design

From an operational point of view, it is important to detect drainage at
an early stage such that countermeasures can be initiated. One solution can
be to adjust the water exchange system to compensate for the leakage until
a repair is possible. In light of the present numerical results, measurement
of the internal water level or tension in the bag attachments to the floating
collar would be the most sensible way do detect drainage (see Figs. 11 and
15). On the contrary, monitoring of the vertical position to the bottom of the
cage, e.g. by an external pressure sensor, will not be efficient as the bottom
does not move during the first stage of draining (S1, see Figs. 10 and 14). As
drainage becomes critical for the fish before an eventually complete collapse
of the cage, it is relevant to talk about the time to reach e.g. 50 % volume
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reduction as a design criterion. Then, the present simulation model can be
a relevant numerical tool in design of closed flexible cages.

5. Conclusion

Drainage of a water-filled floating flexible bag structure was studied by
scaled physical experiments and numerical simulations. The drainage pro-
cess was driven by gravity due to density difference between the contained
water and the ambient, through a circular opening at the bottom of the
hemispherical shaped bag. The problem has relevance for sea-based fish
farming of Atlantic salmon in closed flexible containments at fjord locations,
where density stratification may occur. Scaled physical experiments of the
drainage process were conducted, where drainage time for several relevant
density differences were measured. A new numerical simulation model was
developed, coupling a FEM-based model for the structure with a simplified
hydrodynamic load model based on potential flow theory combined with a
dynamic model for the discharge of heavy water from the bag into the ambi-
ent. Qualitative comparison of the bag deformations are performed between
images from video recordings of the experiments and snap-shots from nu-
merical simulations, which shows satisfactory agreement. Good agreement is
also found between the full scale equivalents of the measured drainage times
from the scaled physical experiments and the drainage times obtained with
the numerical model presented. Suggestions are made for early detection of
drainage for closed flexible cages.
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