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Abstract: We put forth a robust reduced-order modeling approach for near real-time prediction of
mesoscale flows. In our hybrid-modeling framework, we combine physics-based projection methods
with neural network closures to account for truncated modes. We introduce a weighting parameter
between the Galerkin projection and extreme learning machine models and explore its effectiveness,
accuracy and generalizability. To illustrate the success of the proposed modeling paradigm, we predict
both the mean flow pattern and the time series response of a single-layer quasi-geostrophic ocean
model, which is a simplified prototype for wind-driven general circulation models. We demonstrate
that our approach yields significant improvements over both the standard Galerkin projection and
fully non-intrusive neural network methods with a negligible computational overhead.

Keywords: quasi-geostrophic ocean model; hybrid modeling; extreme learning machine; proper
orthogonal decomposition; Galerkin projection

1. Introduction

The growing advancements in computational power, technological breakthrough, algorithmic
innovation, and the availability of data resources have started shaping the way we model physical
problems now and for years to come. Many of these physical phenomena, whether it be in natural
sciences and engineering disciplines or social sciences, are described by a set of ordinary differential
equations (ODEs) or partial differential equations (PDEs) which is referred as the mathematical model
of a physical system. Thus far, many computational approaches are based on solving these sets of
equations of a mathematical model after applying suitable discretization schemes and numerical tools
which may be referred to as a physics-based solution approach. Despite the advances in software
engineering and processor technologies, the computational burden of high-fidelity simulation is
still a limiting factor for many practical problems in different areas of research, specifically for the
large-scale physical problems with high spatiotemporal variabilities such as turbulence modeling of
geophysical flows, weather forecasting, and climate modeling. Indeed, low-fidelity models such as
large eddy simulation (LES) [1] and Reynolds-averaged Navier–Stokes (RANS) [2] are introduced
with additional approximations to neglect some of the physical aspects for closure modeling, and, as a
result, the computational cost is reduced. However, these techniques require parameter calibration
to approximate the true solution to any degree of confidence and may thus increase costs related to
model validation and benchmark data generation.

As a first attempt to perform efficient physics-based surrogate modeling, projection based
implementations of model order reduction strategies have proven to be successful in reducing
computational cost significantly with little compromise in physical accuracy, and have been extensively
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utilized in the literature to address challenging fluid flow problems. In contrast to the physics-based
modeling technique, the non-intrusive, data-driven modeling has recently become extremely popular
in turbulence modeling because of the abundance of data resources from both high-fidelity simulations
and experiments [3,4]. Until recently, fully non-intrusive artificial intelligence and machine learning
algorithms have been considered one of the most promising fields to benefit greatly from existing
datasets. Because of their black box nature in predicting the solution, the data-driven techniques
are yet to be fully accepted in the community. This has led to the development of a new and fast
emerging hybrid modeling approach (i.e., hybrid analytics) that combines a physics-based modeling
strategy with a data-driven model to develop a robust scheme with significantly enhanced potential
for performance than the component models alone. In this paper, we propose a hybrid framework
to develop a robust and improved reduced-order model by combining a standard projection based
reduced-order modeling with a simple artificial neural network architecture. This approach is applied
to a single-layer quasi-geostrophic ocean model.

The study of ocean circulation, specifically the wind-driven circulation, is one of the most
demanding areas of research from engineering and scientific points of view because of the energy
potential in the motions of water masses within oceans in the form of heat and strong currents as
well as the connection between ocean currents and climate dynamics [5–7]. Since ocean circulation
is a significant part of climate systems, it is extremely important to study and understand the
underlying physics to get the benefits from the rich potential of oceans. There have been many
efforts put on developing models for ocean dynamics in the last few decades [8–13]. However, it is
computationally challenging to model the ocean dynamics because of its large range of spatiotemporal
scales and sporadic random transitions between coexisting eddies and vortices [14,15]. In our study,
we use a two-dimensional single layer quasi-geostrophic ocean model as a test case for our proposed
reduced-order model and consider the barotropic vorticity equation (BVE) with dissipative and forcing
terms which is one of the most commonly used models for the double-gyre wind-driven geophysical
flows. The BVE model is a simplified version of the full-fledged geophysical flow equations by
considering the hydrostatic balance, geostrophic balance, the β-plane approximation, and horizontal
eddy viscosity parameterizations. However, the computational cost of simulation and analysis of the
BVE model is high which makes this model a suitable test case to investigate an improved and robust
reduced-order model.

Reduced-order modeling (ROM) techniques have been commonly introduced to reduce the
computational cost of obtaining high-fidelity simulation results by generating a lower dimensional
system with a similar range of accuracy through a variety of mathematical operations. Based on the
approach, there have been a considerable number of promising reduced-order modeling techniques
introduced, such as proper orthogonal decomposition (POD), Koopman mode decomposition (KMD),
dynamic mode decomposition (DMD), reduced bases, etc. A detailed overview of such techniques
and recent developments can be found in Refs. [16,17]. To predict the flow behavior in reduced-order
space, we utilize the POD framework to generate the POD basis function and then use the Galerkin
projection to find a set of ODEs that yield a low dimensional dynamical system [18]. Even though the
Galerkin projection based ROMs have been successfully used in various areas of work [19–22], they
are limited by modeling errors and numerical instabilities due to the truncation of POD modes for
complex systems, such as the ocean circulation system considered in this study. See Refs. [23–28] to
find some recent developments made to improve physics-based ROM techniques by stabilizing the
numerical instabilities and taking into account the truncated mode contributions. Furthermore, Table 1
summarizes our descriptions for classifying several ROM approaches.
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Table 1. A classification of reduced-order modeling approaches.

Approaches Comments

Fully non-intrusive models Data-based modeling; data could be generated by experimental
measurements (observational data) or high-fidelity numerical
simulations (synthetic data); no need to know the underlying
physical system or model (no need to have access to a full order
model generating data).

Semi non-intrusive models It is a mixed approach with offline intrusive and online non-intrusive
models; in addition to snapshot data, we should have access to the
high-fidelity model to generate our surrogate model (ROM); after
built, ROM stays on a reduced subspace, and we do not need to
have access to a high-fidelity model during ROM computations; we
often use a projection approach (with truncation) to obtain a dense
low-order system.

Intrusive models We need to have access to some parts (or whole) of a high-fidelity
model during online ROM computations; sparse sampling or
interpolation approaches might be incorporated; multilevel,
multigrid, adaptive mesh refinement and dynamic time stepping
approaches to accelerate high-fidelity simulations can be considered
in this category.

Coarse-grained models It is a special case of intrusive modeling; reduction approach might
utilize a similar high-fidelity model with a reduced computational
complexity (i.e., fewer grid points in LES or RANS approaches); they
often need a closure model to compensate the effects of truncated
scales; closure effects can be embedded into numerics as well.

In the present study, we utilize an artificial neural network (ANN) to develop our ROM
framework. Neural networks, one of many machine learning (ML) strategies, have become an area
of interest for researchers from diverse fields of study because of their self-adaptive and flexible
nature, while approximating complex functions of any physical process with a high degree of accuracy.
Even though ML tools such as ANN have been utilized in flow control community for the last couple
of decades [29,30], the data-driven idea has recently been popular in computational fluid dynamics
community for modeling and solving complex fluid flow problems [31–36]. These data-driven models
can be developed either in a black box fashion or in combination with existing models. We utilize a
simple single hidden layer feedforward network (SLFN), known as extreme learning machine (ELM),
in this paper for both fully data-driven model and hybrid model. The resolved reduced-order model
coefficients and full order simulation data are used to train the ELM architecture. The descriptive idea
on ELM and its implementations can be found in Refs. [37–39].

The purpose of this paper is to develop a robust and efficient ROM framework using a hybrid
approach, and test the performance of the proposed model with respect to the component models,
i.e., physics-based and data-driven models. Recently, several promising works have been conducted to
develop more efficient and improved reduced-order model frameworks using the hybridization of
traditional projection based ROMs and data-driven ROMs [40–42]. The proposed hybrid framework is
developed by combining two component models, the standard projection based ROM and an ANN
framework. Our main motivation of this study comes from addressing the strengths and weaknesses
of the component models to find a bridge between both models to benefit from the strength of both
approaches. Combining an imperfect physics-based model with a data-driven technique to get a
hybrid scheme is not an entirely new idea in scientific research [43,44]. Even though the hybridization
approach varies with respect to the physical problem, selection of ML architecture, approach to find
the solution, and the associated physics-based models, the main idea remains similar for most of
the works. We then choose a challenging test problem for model order reduction for validation and
comparison purpose, and perform a number of statistical analyses on the hybrid model as well as on
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the component models. The results of our tests suggest that the proposed model is robust and can be
extremely useful for complex flow problems.

The rest of this manuscript is outlined as follows: in Section 2, we review the underlying governing
equation of the physical problem considered in this study to generate data bank in full order space
for POD basis construction and training the ANN architecture as well as the numerical schemes used
for full order simulation. We briefly discuss the standard Galerkin projection based ROM approach
and fully non-intrusive data-driven ROM approach in Sections 3 and 4, respectively. In Section 5,
we introduce our proposed hybrid ROM framework. In Section 6, we perform a variety of analyses
to assess the performance and viability of the proposed model with respect to the performance of its
physics-based component or data-driven component alone. We also include the full order simulation
results as reference. Finally, we summarize our findings in Section 7.

2. Full Order Model (FOM)

In FOM, we solve the underlying governing equations using a suitable numerical model and
generate the data bank of snapshots for ROM. In this section, we introduce the quasi-geostrophic ocean
model as a test case and provide a brief description of the numerical schemes employed in this study.

2.1. Quasi-Geostrophic (QG) Ocean Model

Since it is well established that much of the world’s ocean circulation is wind-driven in large-scale,
and oceanic mesoscale processes are also extremely prevalent in the large-scale oceanic circulations,
studies of wind-driven circulation using an idealized double gyre wind forcing have become
increasingly important in understanding various aspects of ocean and climate dynamics, such as
the role of mesoscale eddies and their effect on mean circulation [15,45–48]. However, the numerical
simulation of oceanic and atmospheric flows, up to this point, still requires approximations and
simplifications of the full model to resolve some of the enormous range of spatial and temporal scales
of the full form of the general circulation models. Even though remarkable advances in developing
simplified models have been made during the last few decades in producing increasingly accurate
results [8,49], an additional computational challenge is in being able to implement them in long
time integration such as those required by the climate modeling [14,50]. Therefore, with this in
mind, we consider the simple single-layer QG model, also known as barotropic vorticity equation
(BVE) that can capture the random inter-decade and inter-annual transitions in large-scale ocean
basins [51]. This mathematical model shares many analogies with the two-dimensional Euler equation
and Navier–Stokes equation [52] and has been extensively used over the years to describe various
aspects of the largest scales of turbulent geophysical fluid dynamics [53–55]. The dimensionless BVE
for QG single-layer ocean model can be written as [34,56]

∂ω

∂t
+ J(ω, ψ) =

1
Ro

∂ψ

∂x
+

1
Re
∇2ω +

1
Ro

sin(πy), (1)

where the left hand side terms account for local acceleration and nonlinear advection, respectively,
and the right hand side terms represent the rotational, dissipative, and forcing effects, respectively,
in the governing equation. Here, ω is the kinematic vorticity, expressed as

ω = ∇× u, (2)

where u is the velocity vector. For two-dimensional flow in the x-y plane, the kinematic vorticity becomes

ω =
∂v
∂x
− ∂u

∂y
. (3)
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Here, the flow velocity components can be found from the stream function, ψ, using the
following definition:

u = ∇× ψk̂. (4)

In Cartesian co-ordinates,

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (5)

The kinematic equation connecting the vorticity and stream function can be found by substituting
the velocity components in terms of stream function in Equation (3), which forms the following
divergence-free constraint satisfying Poisson equation:

∇2ψ = −ω, (6)

where ∇2 is the standard two-dimensional Laplacian operator. The dimensionless formulation of BVE
in Equation (1) contains Reynolds number (Re) and Rossby number (Ro), two dimensionless numbers
which are related to the physical parameters and non-dimensional variables in the following way:

Re =
VL
ν

, Ro =
V

βL2 , (7)

where ν is the horizontal eddy viscosity coefficient for ocean basin and β is the Rossby parameter.
It should be noted that the BVE model presented here uses the beta-plane approximation, valid for
most mid-latitude simplified ocean basins, i.e., the Coriolis parameter to account for Earth’s rotational
effect is approximated by f = f0 + βy, where f0 is the constant mean Coriolis parameter and β is the
gradient of the Coriolis parameter at the basin center. The characteristic horizontal length scale, L (for
the non-dimensional purpose) is the basin dimension in x-direction in this study and the reference
Sverdrup velocity scale, V, is given by

V =
τ0

ρH
π

βL
, (8)

where τ0 is the maximum amplitude of the sinusoidal double-gyre wind stress, and ρ and H are
the reference fluid density and depth of the ocean basin, respectively. In our study, we consider the
benchmark four-gyre circulation problem where the time average of the statistically steady equilibrium
state exhibits a four-gyre circulation pattern for relatively high Re instead of the symmetric double-gyre
standard structure [10,56,57]. Based on reference literature [10,58–61], we use slip boundary condition
for the velocity, which translates into homogeneous Dirichlet boundary condition for the vorticity
ω|Γ = 0 and corresponding ψ|Γ = 0, where Γ symbolizes all the Cartesian boundaries. We initiate
our computations from a quiescent state (i.e., ω = 0 and ψ = 0) and integrate Equation (1) until a
statistically steady state is obtained.

2.2. Numerical Schemes

Since for most of the physically relevant ocean circulation models, such as the QG models,
the solutions remain in a quasi-stationary state as time goes to infinity [62], schemes designed for
the numerical integration of such phenomena should be suited for quasi-stationary behavior of the
solutions as well as for the long time integration. In our study, we use the second-order central
finite difference schemes in linear terms. For the modeling of nonlinear term, we use second-order
skew-symmetric, energy- and enstrophy-conserving Arakawa scheme [63] to avoid computational
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instabilities arising from nonlinear interactions for the Jacobian term, J(ωi,j, ψi,j) in Equation (1),
defined as

J(ωi,j, ψi,j) =
1
3
(J1(ωi,j, ψi,j) + J2(ωi,j, ψi,j) + J3(ωi,j, ψi,j)), (9)

where

J1(ωi,j, ψi,j) =
1

4∆x∆y
[(ωi+1,j −ωi−1,j)(ψi,j+1 − ψi,j−1)

− (ωi,j+1 −ωi,j−1)(ψi+1,j − ψi−1,j)], (10)

J2(ωi,j, ψi,j) =
1

4∆x∆y
[ωi+1,j(ψi+1,j+1 − ψi+1,j−1)−ωi−1,j(ψi−1,j+1 − ψi−1,j−1)

−ωi,j+1(ψi+1,j+1 − ψi−1,j+1)−ωi,j−1(ψi+1,j−1 − ψi−1,j−1)], (11)

J3(ωi,j, ψi,j) =
1

4∆x∆y
[ωi+1,j+1(ψi,j+1 − ψi+1,j)−ωi−1,j−1(ψi−1,j − ψi,j−1)

−ωi−1,j+1(ψi,j+1 − ψi−1,j)−ωi+1,j−1(ψi+1,j − ψi,j−1)]. (12)

Here, ∆x and ∆y are the step size in x- and y-directions, respectively. The detailed derivation of
higher-order Arakawa schemes can be found in Ref. [23]. To implement the Runge–Kutta scheme,
we use the method of lines to cast our system in the following form:

dωi,j

dt
= £(ωi,j). (13)

Here, subscripts i and j represent the discrete spatial indices in x and y directions, respectively.
£(.) denotes the discrete spatial derivative operators. For our time advancement scheme, we use the
optimal third order accurate total variation diminishing Runge–Kutta (TVDRK3) scheme given as [64]:

ω
(1)
i,j = ω

(n)
i,j + £(ω(n)

i,j )∆t,

ω
(2)
i,j =

3ω
(n)
i,j + ω

(1)
i,j + £(ω(1)

i,j )∆t

4
,

ω
(n+1)
i,j =

ω
(n)
i,j + 2ω

(2)
i,j + 2£(ω(2)

i,j )∆t

3
,


(14)

where ∆t is the adaptive time step, which can be computed at the end of each time step satisfying the
stability criteria through the Courant–Freidrichs–Lewy (CFL) number. Finally, taking advantage of the
simple Cartesian domain, an efficient fast Fourier transform (FFT) method is utilized for the solution of
the elliptic Poisson equation which is the most computationally expensive part of the QG models [12].
Details of the aforementioned numerical methods used for this study can be found in Refs. [10,58].

3. Galerkin Projection Based Reduced-Order Model (ROM-GP)

Similar to the area of interest in the present study, many areas of physical science and
engineering often require iterative computations, data assimilation, and finer scale simulation for
large dynamical systems to resolve the underlying physical phenomena [65–68]. The efficiency of
these large-scale simulations decreases with increasing computational complexity of the full order
models due to the accumulation of the less significant intermediate results. Hence, the reduced-order
models (ROMs) have come into wide use in large-scale simulations to replace large dynamical
systems with lower dimensional systems having a similar range of validity and input/output
characteristics. Proper orthogonal decomposition (POD), also referred as Karhunen–Loève transform
(KLT), principal component analysis (PCA) or singular value decomposition (SVD), is a widely applied
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snapshot-based ROM technique in science and engineering applications with large dimensional
systems of nonlinear ODEs or PDEs [69–71]. In this section, we develop a standard projection
methodology for Equation (1) where a POD-GP ROM framework is developed from the field variables,
ω and ψ on the flow domain, and Ω based on the method of snapshots [72]. The snapshots are obtained
from the stored sample solution of FOM. The main procedure of ROM in the current study consists of
generating low-dimensional orthogonal basis functions from snapshots and next, performing Galerkin
projection to obtain the ROM. For POD basis construction, we first obtain N number of snapshots
and denote the vorticity field, ω(x, y) as ω(x, y, tn) for n = 1, 2, ..., N at pseudo-time t = tn. Then,
we decompose the solution field by following way into a time-invariant mean, ω̄(x, y) and a fluctuating
part, ω′(x, y, t) to represent the full field with only fluctuating part [73]:

ω(x, y, t) = ω̄(x, y) + ω′(x, y, t), (15)

for x, y ∈ Ω where Ω stands for the two-dimensional domain and the mean of the snapshot is

ω̄(x, y) =
1
N

N

∑
n=1

ω(x, y, tn). (16)

The following algorithm describes the POD-GP procedure:

1. POD basis construction:

* Construct a data correlation matrix of the fluctuating part, A = [αij] from the snapshots
where αij =

∫
Ω ω′(x, y, ti)ω

′(x, y, tj)dxdy. Here, i and j refer to the snapshot indices.
* Compute the optimal POD basis functions by solving AΓ = ΓΛ, where Λ = diag[λ1, ...., λQ]

is the diagonal eigenvalue matrix and Γ = [γ1, ...., γN ] refers to right eigenvector matrix
whose columns are eigenvectors of A. In general, most of the subroutines for solving above
eigenvalue equation give Γ with all of the eigenvectors normalized to unity.

* Using the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λN stored in a descending order in the diagonal
matrix, Λ, define the orthogonal POD basis functions for the vorticity field as

φk(x, y) =
1√
λk

N

∑
n=1

γk
nω′(x, y, tn), (17)

where λk is the kth eigenvalue, γk
n is the nth component of the kth eigenvector, and φk(x, y)

is the kth POD mode. We must mention that the eigenvectors must be normalized in such a
way that the basis functions satisfy the orthogonality condition.

* Obtain the kth mode for the stream function, ϕk(x, y), utilizing the linear dependence
between stream function and vorticity given by Equation (6): ∇2 ϕk = −φk.

* Span the fluctuating component of the field variables into the POD modes by doing the
separation of variable as

ω′(x, y, t) =
N

∑
k=1

ak(t)φk(x, y), (18)

ψ′(x, y, t) =
N

∑
k=1

ak(t)ϕk(x, y), (19)

where ak(t) is the time-dependent modal coefficients and φk(x, y) and ϕk(x, y) refer to the
POD modes. It should be noted that the same ak(t) accounts for both stream function and
vorticity based on the kinematic relation given by Equation (6).
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* Retain R modes where R << N, such that these R largest energy containing modes
correspond to the largest eigenvalues (λ1, λ2, ..., λR). The resulting full expression for the
field variables can be written as

ω(x, y, t) = ω̄(x, y) +
R

∑
k=1

ak(t)φk(x, y), (20)

ψ(x, y, t) = ψ̄(x, y) +
R

∑
k=1

ak(t)ϕk(x, y). (21)

2. Galerkin projection to obtain ROM:

* Perform an orthogonal Galerkin projection by multiplying the governing equation with the
POD basis functions and integrating over the domain Ω [74], which yields the following
dynamical system for ak:

dak
dt

= ζk +
R

∑
i=1

ηi
kai +

R

∑
i=1

R

∑
j=1

χ
ij
k aiaj, (22)

where

ζk = 〈
1

Re
∇2ω̄ +

1
Ro

sin(πy) +
1

Ro
∂ψ̄

∂x
− J(ω̄, ψ̄), φk〉,

ηi
k = 〈

1
Re
∇2φi +

1
Ro

∂ϕi
∂x
− J(ω̄, ϕi)− J(φi, ψ̄), φk〉,

χ
ij
k = 〈−J(φi, ϕj), φk〉.

We can define the right hand side of Equation (22) as rGP
k to express the equation in the

following form:

dak
dt

= rGP
k . (23)

The system given by above algorithm consists of R coupled ODEs for modal coefficients, ak which
can be solved numerically by any suitable time integration scheme. Additionally, the POD basis
functions and ROM coefficients can be precomputed from the data, which makes the system more
efficient. Defining the vorticity field, ω(x, y, t0) at time t0, a complete specification of the dynamical
system given by Equation (22) can be calculated by the following projection of the initial condition:

ak(t0) = 〈ω(x, y, t0)− ω̄(x, y), φk〉. (24)

It is worth mentioning that there are occasions in our POD-GP ROM framework where we
compute the inner product of two functions f = f (x, y) and g = g(x, y) as

〈 f , g〉 =
∫

Ω
f (x, y)g(x, y)dxdy. (25)

In the present study, we compute the inner products by taking the integral of the product over the
domain, Ω using the dual integration method for Simpson’s 1/3rd rule. We refer to Ref. [75] for the
details of the integration technique.

4. Artificial Neural Network Based Non-Intrusive Reduced-Order Model (ROM-ANN)

The study of artificial neural networks (ANN) was introduced in the 1990s as a multilayered
perceptron based on the idea of mimicking the functions of neurons in human brain [76]. ANNs consist
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of layers possessing a predefined number of unit cells called neurons and connections between the
neurons called weights to establish a map between an input layer and an output layer. Other than
the input and output layers, an ANN architecture also contains at least one hidden layer which is
independent of the training data. The learning can be supervised or unsupervised. In unsupervised
learning, the network extracts data features without knowing the target output and input label [77].
On the other hand, we have used a supervised learning network named single-hidden layer feedforward
neural networks (SLFNs) based on the precomputed inputs from ROM-GP model which discovers
the mapping between inputs and outputs from provided labeled sample. Mathematically, the input
layer distributes input signals xp : p = 1, 2, ..., P ∈ RP to the Q dimensional hidden layer feature space
(i.e., Q is the number of hidden neurons). Let yj : j = 1, 2, ..., J ∈ RJ represent the outputs from J number
of output neurons. cp

q ∈ RQ×P are the weights connecting the neurons in input and hidden layers,
β

q
j ∈ RJ×Q are the output weights between the hidden and output layers, and εq ∈ RQ and ξ j ∈ RJ are

the random biases operating as thresholds for the hidden and output layers. Then, the feed-forward
operation can be written as:

yj = G

[
ξ j +

Q

∑
q=1

β
q
j F

(
P

∑
p=1

cp
q xp + εq

)]
, (26)

where differentiable functions F and G are the transfer or activation functions [78,79] which can be
log-sigmoid, hyperbolic tangent sigmoid, or linear transfer function. The training process of ANN
is adjusting the weights to reproduce the desired outputs when the given inputs are fed forward.
In the present study, we use Extreme Learning Machine (ELM) architecture which randomly chooses
weights for the hidden nodes and bias terms and analytically determines the output weights of
SLFNs [80]. Huang et al. [37] first introduced ELM with a goal to achieve a learning speed thousands
time faster than the traditional feedforward network learning algorithm while producing a better
generalization performance. Later, several extensions of general ELM method are developed in
different works [38,81,82]. In our study, the ANN architecture is trained by utilizing an ELM approach
which requires no biases in the output layer (ξ = 0) as well as the weights (cp

q ) and biases (εq)
are initialized randomly from a uniform distribution between −1 and +1 and no longer modified.
Therefore, β

q
j weights are only unknown to be determined in this case. We note that we utilized the

tan-sigmoid activation function for the hidden layer neurons given by

F(x) =
1− exp(−2x)
1 + exp(+2x)

, (27)

and a linear activation function for the output layer neurons which is G(x) = x. Finally,
from Equation (26), the output of ELM can be written as for N sample training data examples,

yn
j =

Q

∑
q=1

β
q
j F

(
P

∑
p=1

cp
q xn

p + εq

)
, (28)

where xn
p ∈ RP×N and yn

j ∈ RJ×N refer to training input–output data pairs. To illustrate further,
we can show our problem in following matrix form:

y1
1 . . . . yN

1
. . . . . .
. . . . . .

y1
J . . . . yN

J


(J×N)

=


β1

1 . . βQ
1

. . . .

. . . .
β1

J . . βQ
J


(J×Q)


(H1

1)
T . . . . (HN

1 )T

. . . . . .

. . . . . .
(H1

Q)
T . . . . (HN

Q )T


(Q×N)

, (29)
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where the superscript “T” refers to “Transpose”. In our study, the value of J is always 1 since there is
only one output neuron. HT ∈ RQ×N on the right hand side of the above equation is given by

HT
(Q×N) = F




ε1 . . . . ε1

. . . . . .

. . . . . .
εQ . . . . εQ


(Q×N)

+


C1

1 . CP
1

. . .

. . .
C1

Q . CP
Q


(Q×P)

x1
1 . . . . xN

1
. . . . . .

x1
P . . . . xN

P


(P×N)

 . (30)

By taking the transpose of Equation (29), the solution for the weights can be computed by


β1

1 . . βJ
1

. . . .

. . . .
β1

Q . . βJ
Q


(Q×J)

= H†
(Q×N)



(y1
1)

T . . (yJ
1)

T

. . . .

. . . .

. . . .

. . . .
(y1

N)
T . . (yJ

N)
T


(N×J)

. (31)

Here, H† ∈ RQ×N is the pseudo-inverse of H ∈ RN×Q and “†” refers to “pseudo-inverse”.
Since N ≥ Q for H matrix, we can apply following single value decomposition (SVD) to H to compute
the pseudo-inverse,

H1
1 . HQ

1
. . .
. . .

H1
N . HQ

N


(N×Q)

=


U1

1 . UQ
1

. . .

. . .
U1

N . UQ
N


(N×Q)

Σ1
1 . 0

. . .
0 . ΣQ

Q


(Q×Q)

(V1
1 )

T . (VQ
1 )T

. . .
(V1

Q)
T . (VQ

Q )T


(Q×Q)

, (32)


(H1

1 )
† . (HN

1 )†

. . .

(H1
Q)

† . (HN
Q )†


(Q×N)

=


V1

1 . VQ
1

. . .

V1
Q . VQ

Q


(Q×Q)


(Σ1

1)
† . 0

. . .

0 . (ΣQ
Q)

†


(Q×Q)


(U1

1 )
T . (UN

1 )T

. . .

(U1
Q)

T . (UN
Q )T


(Q×N)

, (33)

where U and V are column-orthogonal and orthogonal matrices, and Σ is a diagonal matrix whose
elements (i.e., Σq

q where q = 1, 2, . . . , Q) are non-negative and called singular values. To minimize the
numerical instability introduced while calculating the inverse of Σ by taking the reciprocal of each
non-zero element, a well-known Tikhonov-type regularization [83] is used as

(Σq
q)

† =
Σq

q

(Σq
q)2 + τ

. (34)

We choose τ = 10−12 for the present study which indicates the trade-off between the least-squares
error and the penalty term for regularization [84]. The unknown weights can be calculated by using
Equation (31).

In the present study, our ELM layers and architecture are devised with five inputs (P = 5) and
a single output (J = 1) mechanism, as shown in Figure 1. Here, “LT” refers to “linear term”, “NT”
refers to “nonlinear term”, and “TP” refers to “true projection” in the figure. The inputs are resolved
ROM-GP variables in each time integration step which can be denoted from Equation (22) as
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ak = 〈ω− ω̄, φk〉, (35)

rLT
k =

R

∑
i=1

ηi
kai, (36)

rNT
k =

R

∑
i=1

R

∑
j=1

χ
ij
k aiaj, (37)

rGP
k = ζk + rLT

k + rNT
k , (38)

and the single true solution output for training set can be expressed as

rTP
k =

〈
−J(ω, ψ) +

1
Ro

∂ψ

∂x
+

1
Re
∇2ω +

1
Ro

sin(πy), φk

〉
, (39)

which is the Galerkin projection to the FOM given by Equation (1). We denote the ANN predicted
solution output as rANN

k for the rest of this paper. Using the ANN prediction, rANN
k , we can compute

the modal coefficients, ak, for fully non-intrusive ROM using the following equation similar to
Equation (23):

dak
dt

= rANN
k , (40)

where rANN
k is computed using Equation (28) in our neural network model deployment. We use

the trained weights from the model to get the outputs (denoted as Y, i.e., y1 = rANN
k in our study)

for corresponding inputs of each time integration steps. We note that we normalize the computed
ROM variables before using them as inputs for ELM training set to stabilize the system from any
kind of numerical errors or biases, and to ensure that all the input variables are at a similar range.
The normalized input sets in our study can be expressed as

X =

[
k,

ak
||a|| ,

rLT
k
||rLT|| ,

rNT
k
||rNT|| ,

rGP
k
||rGP||

]
, (41)

where

||g|| =

√√√√ 1
R

R

∑
k=1

(gk)2, where g = a, rLT, rNT, rGP. (42)

Finally, we normalize our training set input and output in (max, min) ∈ [+1,−1] limit as

X̃ =
2X− (Xmax + Xmin)

(Xmax − Xmin)
, (43)

Ỹ =
2Y− (Ymax + Ymin)

(Ymax − Ymin)
. (44)

The physical output, Y is then recovered from the ANN predicted output, Ỹ, by following
unnormalization method for the normalized data:

Y =
Ỹ(Ymax − Ymin) + (Ymax + Ymin)

2
. (45)

This normalization ensures that the input variables lie in the data range of the tan-sigmoid
activation function, i.e., −1 to +1 [85,86].
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y1 = rTPk

x1 = k

x2 = ak

x3 = rLTk

x4 = rNTk

x5 = rGP
k

1

2

3

...

Q

Input layer

(P dimensional)

Hidden layer

(Q dimensional)

Output layer

(J dimensional)

βq
jcpq

Random weights Trained weights

Figure 1. Schematic representation of the extreme learning machine (ELM) neural network architecture
utilized for the data-driven reduced-order modeling framework in this study.

5. Hybrid Modeling (ROM-GP + ROM-ANN) Based Reduced-Order Model (ROM-H)

Hybrid modeling, as a combination of physics-based and data-driven modeling, is a fast emerging
modeling approach in fluids community since both of these distinct modeling approaches are
well-established in the community at this point. As illustrated in the left part of Figure 2, the traditional
physics-based modeling approach can be described as understanding a part of the full physics (full
physics is represented by the black colored region whereas the orange colored region displays the
understood physics), developing a mathematical understanding through equations (green colored
region in the figure), and finally resolving some part of the true physics (represented by the blue
colored region) by using further assumptions and computational constraints. On the other hand,
data-driven modeling works as a black box where we make an estimation of the true solution by
using available observed data snapshots without having any knowledge of the governing physics.
For model order reduction, the physics-based approach is widely applied as mentioned in previous
sections, and nowadays, with the rapid growth of the availability of data, data-driven approach has
become a popular route for reduced-order modeling. A comparative representation of these two
approaches has been outlined in Table 2. Considering the pros and cons of both sides, our hybrid
reduced-order modeling (ROM-H) comes up with the idea to address the negative aspects of both
approaches, whereas the positive aspects can be leveraged simultaneously. Similar to any kind of hybrid
approach, the primary goal of this paper is to establish a robust hybrid ROM framework which aims at
making the model more efficient as compared to either the physics-based or data-driven ROM models.

(a) (b)

Figure 2. A schematic representation of the two distinct modeling approaches: (a) physics-based
modeling approach; and (b) data-driven modeling approach.
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Table 2. Physics-based ROM vs. data-driven ROM.

Physics-Based Modeling (ROM-GP) Data-Driven Modeling (ROM-ANN)

+ Solid foundation based on physics, first principles
and reasoning (high interpretability)

− Thus far, most of the algorithms have worked as
black boxes (low interpretability)

− Difficult to assimilate very long-term historical/
archival data into the computational models

+ Takes into account long-term historical/archival
data and experiences

− Sensitive and susceptible to numerical instability
due to a range of reasons (boundary conditions,
uncertainties in the input parameters and meshing)

+ Once the model is trained, it is very stable for
making predictions

+ Errors/uncertainties can be bounded and estimated − Not quite possible to bound errors/uncertainties

+ Less biases − Bias in data is reflected in the prediction

+ Generalizes well to new problems with
similar physics

− Poor generalization on unseen problems

We build our ROM-H framework by introducing a free parameter to dynamically account for
the contribution of the physics-based ROM and data-driven ROM. The ROM-H methodology can be
summarized by following key steps:

Step 1 (offline): Generate a set of basis functions φk for k = 1, 2, 3, ...., R from the snapshot data
obtained from FOM.

Step 2 (offline): Apply Galerkin projection to compute the coefficients required for ROM-GP.
Step 3 (offline): Train the ELM network using the resolved ROM-GP coefficients and true

projections datasets.
Step 4 (online): Compute ak by solving the following ordinary differential equations in

reduced-order space:

dak
dt

= (1− η)rGP
k + ηrANN

k , (46)

where we define η as a free weighting parameter in a range of 0 ≤ η ≤ 1 to establish a relationship
between the standard ROM-GP and non-intrusive ROM-ANN models. If η = 0, we recover
Equation (23), whereas, for η = 1, Equation (40) can be obtained.

Step 5 (offline): Obtain the full order solution by transferring data from reduced-order space by using
Equation (20) as a post-processing task if needed.

The hybridization between the physics-based and data-driven based ROM happens in Step 4,
where, in each time step, rGP

k is calculated using Equation (23), and rANN
k is obtained from Equation (40).

The parameter η gives us a freedom to benefit from both modeling techniques mentioned above rather
than fully depending on a single modeling technique, and, as we show in Section 6, the hybrid model
with optimal contribution from both modeling approaches gives a better prediction of the true solution
than the individual modeling approaches. The limiting values of η will result in the standard ROM-GP
and ROM-ANN model solutions, respectively, and any value between the limits of 0 to 1 will give a
solution with contribution from both ROM-GP and ROM-ANN models. Based on the working physical
problem, we assume that either more physics-based model contribution or more data-driven model
contribution can produce a better estimation of the truth. Keeping this in mind, instead of forcing an
arbitrary value to specify η for hybridization, we apply the following dynamic optimization strategy
based on the values of rGP

k and rANN
k in each time integration steps:

η =

∣∣∣∣tanh
(
||rGP|| − ||rANN||
||rANN||

)∣∣∣∣ . (47)

Here, we utilize the absolute value of hyperbolic tangent function, which always produces a
value for η between 0 and 1. If the values of rGP

k and rANN
k are closely related (||rGP|| ∼= ||rANN||),
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the value of η parameter will be 0, i.e., it indicates the use of ANN prediction for that particular case
will be redundant. Similarly, if the values are far away, the ANN prediction contribution will be more
dominant. However, we emphasize that the estimation technique we utilized here for η calculation
is on an ad-hoc basis for the present study. On this hybrid framework, the process of finding the
optimal η can be a potential topic for another research direction where optimization techniques such
as trust-region method, conjugate gradient methods, or quasi-Newton methods can be used [87,88].

6. Numerical Results

For validation purpose, our reduced-order model resulting from the hybridization of the standard
ROM-GP approach and fully non-intrusive ROM-ANN approach has been used to model a four-gyre
barotropic ocean circulation problem. In this section, we present the numerical results and analyses
demonstrating the computation and prediction performance of our proposed hybrid framework as well
as the component models (ROM-GP and ROM-ANN) and FOM simulation for comparisons. We select
this particular test problem (as many other studies do [10,56,61,89,90]) because of its complexity
induced by the symmetric double-gyre wind forcing developing a four-gyre circulation pattern which
makes this problem challenging enough to assess the viability of proposed models. Based on the
following results, it is apparent that the ROM-H model provides a better estimation of the true
solution as compared to the individual component model solutions. Indeed, it was shown before that
adding a stabilization to the standard ROM-GP improves the model prediction and resolve more mean
dynamics [23]. However, our proposed hybrid model idea is data-driven without taking any additional
phenomenological arguments (e.g., eddy viscosity) to stabilize the model, and can be applied to most
of the flow phenomena. On the other hand, we would like to note that the ROM-GP model can be
cured with nonlinear modal eddy viscosities, i.e., with an energy-flow correction [91] or other closure
approaches [92,93].

6.1. Case Setup Specifications for FOM Simulations

In the present work, we consider the dimensionless form of the BVE describing the QG problem
in the Cartesian domain (x, y) ∈ [0, 1]× [−1,+1] as a reference. The FOM simulation is conducted
starting from t = 0 to t = 60 using a fixed time step of ∆t = 1× 10−4 on a Munk layer resolving
128× 256 grid resolution. We collect 900 data snapshot from time t = 15 to t = 60 to avoid collecting
data from initial transition period for POD basis generation and ELM training, i.e., the sampling time
∆s is 5× 10−2. We use dimensionless parameters Re = 25, 100, 400 and constant Ro = 3.6× 10−3 for
all the simulations throughout the paper.

6.2. Analysis of the Standard ROM-GP Method

We first construct the POD data correlation matrix using the snapshots data from FOM simulation
to generate the POD basis function for all the ROM approach in this paper. Hence, it is important to
observe the characteristics and distribution of the eigenvalues with respect to modal index as presented
in Figure 3. To estimate the total kinetic energy accumulation of the system, we compute the percentage
of each eigenvalue by

P(λk) =

∑k
j=1 λj

∑Ns
j=1 λj

× 100, (48)

where Ns = 900 is the total number of snapshots. Since higher Re incorporates more stratification or,
to be specific, as more energy is added to the system, more modes are required to capture majority
percentage of the energies in the system. Figure 3 shows that, while only around 10 modes is enough
to capture most of the system’s kinetic energy for Re = 25, a large percentage of energies (close to 85%
and 75%) are accumulated in the first 30 and 40 modes for Re = 100 and Re = 400 cases, respectively.
However, the percentage of captured energy is lower in higher Re cases which indicates the challenges
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associated with model order reduction of this test case in higher Re. These findings are supported
by Figure 4 where we present the first few POD basis functions, the most important ones regarding
the captured information, for Re = 100. We can identify the increase in the equal number of smaller
structures (maxima and minima) which correspond to higher POD indices. Using more POD bases
will result in better approximation until the corresponding eigenvalue stagnation point reaches. Based
on the POD analysis, we develop the rest of our studies using POD modes up to 40 to incorporate
most of the physics within the system.

(a) (b)

Figure 3. Proper orthogonal decomposition (POD) analysis by using 900 equally distributed snapshots
for Re = 25, 100, 400: (a) Eigenvalue spectrum of the correlation matrix, A; and (b) Eigenvalue
percentage energy accumulation with respect to modal index.

(a) (b) (c) (d) (e)

Figure 4. Contour plots of some illustrative examples of POD basis functions for Re = 100 generated
by the method of snapshots: (a) ϕ1(x, y); (b) ϕ10(x, y); (c) ϕ20(x, y); (d) ϕ30(x, y); and (e) ϕ40(x, y).

Figures 5–7 show the mean stream function field evolution with respect to increasing modes,
R using standard ROM-GP approach for Re = 25, 100, 400, respectively. It is apparent in Figure 5 that,
for Re = 25 case, even R = 10 shows a good prediction of the FOM solution. We can also notice in the
figure that the mean stream function plot shows a consistent result for R = 20 with respect to R = 10
result, but we get a worse result for R = 30. This can be explained as an over-fitting, as we have seen
in Figure 3 that, for Re = 25, R = 20 modes contain more than 99% of the system’s total kinetic energy.
It has also been noted in [94] that adding more modes might yield worse solutions due to the noise
in the system. The inaccurate result for R = 30 is understandable in a sense that the previous modes
contain most of the energies (more than 99%) of the system which is considered a sufficient total kinetic
energy for the optimal number of modes in most of the POD studies [83]. Even though R = 40 modes
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shows a very good estimation of FOM result, it is recommended not to use more than the optimal
number of POD modes to avoid instabilities in the solution field. This occurrence can also be seen in
Figures 8 and 9 for Re = 25. On the other hand, for Re = 100 case, R = 10 shows a nonphysical two-gyre
circulation pattern in Figure 6 similar to the plots of coarse truncated modes (R = 10 and R = 20)
for Re = 400 case in Figure 7. We further illustrate the effect of R and Re for ROM-GP approach
in the prediction of true solution in Figures 8 and 9. For the purpose of comparison, we include
the FOM data projection to reduced-order space using corresponding POD basis functions for Re
= 25, 100, 400. In Figure 8, we show the non-dimensional time evolution of the first modal coefficient,
a1(t) in reduced-order space for different Re and R. The plot supports the conclusions drawn from
the POD analysis and the mean stream function plots that for Re = 100, 10 POD modes provide an
unphysical result. For even higher Re = 400, 20 POD modes show the numerical instabilities as we
can see a sudden burst of random oscillations in much higher scales. To put extra emphasis on our
findings, we present the results for tenth modal coefficient in Figure 9 where we can observe the same
scenario as Figure 8 on a different scale. We can notice that the scales for tenth modal coefficient are
much smaller than the first modal coefficient time series which is expected for higher modes, but the
performance of the ROM-GP model is consistent.

(a) (b) (c) (d) (e)

Figure 5. Mean stream function contour plots between t = 15 and t = 60 obtained by reference FOM
and standard ROM-GP simulations for Re = 25: (a) ψFOM at a resolution of 128× 256; (b) ψROM-GP with
R = 10 modes; (c) ψROM-GP with R = 20 modes; (d) ψROM-GP with R = 30 modes; and (e) ψROM-GP with
R = 40 modes. Note that a stable and well-estimated solution can be found using R = 10 modes and
adding more modes might yield worse solutions due to a possible over-fitting as occurred in R = 30 case.

(a) (b) (c) (d) (e)

Figure 6. Mean stream function contour plots between t = 15 and t = 60 obtained by reference FOM
and standard ROM-GP simulations for Re = 100: (a) ψFOM at a resolution of 128× 256; (b) ψROM-GP

with R = 10 modes; (c) ψROM-GP with R = 20 modes; (d) ψROM-GP with R = 30 modes; and (e)
ψROM-GP with R = 40 modes. Note that a stable and well-estimated solution can be found within
R = 30 or 40 modes for this case.
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(a) (b) (c) (d) (e)

Figure 7. Mean stream function contour plots between t = 15 and t = 60 obtained by reference FOM
and standard ROM-GP simulations for Re = 400: (a) ψFOM at a resolution of 128× 256; (b) ψROM-GP

with R = 10 modes; (c) ψROM-GP with R = 20 modes; (d) ψROM-GP with R = 30 modes; and (e) ψROM-GP

with R = 40 modes. Note that a stable and well-estimated solution can be found within R = 40 modes
for this case.

Figure 8. Time series evolution of the first modal coefficient, a1(t) between t = 15 and t = 60
for FOM projection and standard ROM-GP with varying Re (Re = 25, 100, 400) and POD modes
(R = 10, 20, 30, 40). R = 20 modes for Re = 100, and R = 30 modes for Re = 400.
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Figure 9. Time series evolution of the tenth modal coefficient, a10(t) between t = 15 and t = 60
for FOM projection and standard ROM-GP with varying Re (Re = 25, 100, 400) and POD modes
(R = 10, 20, 30, 40).

6.3. Assessments of the Prediction Performance of ROM-GP, ROM-ANN, ROM-H

We observed the inability of the standard ROM-GP model to estimate the correct physics using
coarse truncated modes (R = 10 or 20) for Re = 400 in Section 6.2. For this reason, we consider R = 10
modes only for the rest of the analyses to assess the predictive performances of the models. As we can
see in Figure 10 for Re = 25, all models capture the two-gyre pattern, which is consistent with the true
solution as well as previous observations. Similar to Section 6.2, the ROM-GP model fails to capture
four-gyre pattern for Re = 100 and R = 10 combination, as shown in Figure 11, but the ROM-ANN
and ROM-H models exhibit a successful prediction. Nevertheless, Figure 12 demonstrates the most
promising findings that the ROM-H model successfully predicts the four-gyre pattern while the other
two basic ROM approaches fail for Re = 400 and R = 10 combination. To support this finding, we
again plot the time series evolution for both a1 and a10, as presented in Figures 13 and 14, to find that
the ROM-H model shows an impressive prediction of the FOM projected time series for even higher
Re. The prediction of ROM-ANN model is better than the ROM-GP model using same values for the
parameters, but not as accurate as the ROM-H model for Re = 400. As we can see, the ROM-H model
is capable of capturing the physics utilizing only 10 modes, which leads to an excellent development of
a more efficient ROM than the standard ROM-GP, which requires higher modes to capture the physics
for Re = 400. A summary of computational overhead is presented in Table 3.
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(a) (b) (c) (d)

Figure 10. Mean stream function contour plots between t = 15 and t = 60 obtained by reference
FOM and different ROM simulations for Re = 25 and R = 10 modes: (a) ψFOM at a resolution of
128× 256; (b) ψROM-GP; (c) ψROM-ANN; and (d) ψROM-H. This figure clearly illustrates that all models
have captured the two-gyre circulation pattern successfully.

(a) (b) (c) (d)

Figure 11. Mean stream function contour plots between t = 15 and t = 60 obtained by reference FOM
and different ROM simulations for Re = 100 and R = 10 modes: (a) ψFOM at a resolution of 128× 256;
(b) ψROM-GP; (c) ψROM-ANN; and (d) ψROM-H. The figure shows that ROM-ANN and ROM-H have
captured the four-gyre circulation pattern similar to the FOM solution while ROM-GP has shown an
unphysical two-gyre pattern.

(a) (b) (c) (d)

Figure 12. Mean stream function contour plots between t = 15 and t = 60 obtained by reference
FOM and different ROM simulations for Re = 400 and R = 10 modes: (a) ψFOM at a resolution of
128× 256; (b) ψROM-GP; (c) ψROM-ANN; and (d) ψROM-H. Note that only the proposed ROM-H model
has successfully captured the four-gyre circulation.
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Figure 13. Time series evolution of the first modal coefficient, a1(t), between t = 15 and t = 60 for
FOM projection and different ROM approaches (ROM-GP, ROM-ANN, and ROM-H) with varying Re
(Re = 25, 100, 400) and POD modes (R = 10, 20, 30, 40).

Figure 14. Time series evolution of the tenth modal coefficient, a10(t), between t = 15 and t = 60 for
FOM projection and different ROM approaches (ROM-GP, ROM-ANN, and ROM-H) with varying Re
(Re = 25, 100, 400) and POD modes (R = 10, 20, 30, 40).

Table 3. The computational CPU time in seconds required for ROM simulations between t = 15 and
t = 60. Note that the FOM simulation is 4.82 h and offline POD basis generation takes about 23.38 min.
The offline training time for ANN is less than one second due to the extremely fast ELM approach.

R = 10 R = 20 R = 30 R = 40

Pre-computing time for the inner products 1.06 4.37 11.10 22.93
ROM-GP simulation time 5.56 41.51 153.68 380.54
ROM-ANN simulation time 16.41 96.73 209.16 428.51
ROM-H simulation time 21.29 92.67 273.70 496.32
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6.4. Sensitivity Analysis with Respect to ELM Neurons

Based on the results in Section 6.3, we can state that the prediction performance of our proposed
ROM-H model is better than the ROM-ANN model for this test case. However, sensitivity analysis
of the ANN architecture should be performed before reaching any conclusion to verify whether the
network output alters with the change in the total number of neurons in hidden layer, Q [95]. Because
of the black box nature of ANN, we perform a sensitivity analysis with respect to Q = 20, 40, 80
neurons for both ROM-ANN and ROM-H models. It can be clearly seen in Figure 15 of mean stream
function results that the ROM-ANN model is showing similar performance improvements for all
different number of neurons for R = 10 and Re = 100 cases. Furthermore, in Figure 16, the ROM-H
model is showing an excellent agreement with FOM solution for all different number of neurons.
On the other hand, the time series of modal coefficient plots for ROM-ANN model in Figures 17 and
18 exhibit some noticeably unusual traits in a number of cases, for example, a1 (Q = 40, Re = 25),
a1 (Q = 20, Re = 100), a10 (Q = 40, Re = 25). In addition, the ROM-H model displays satisfactory
consistency in its predictive behavior with respect to the variation of Q, as shown in Figures 19 and 20.
This suggests that the ROM-H model is robust with respect to the change in total number of neurons
included in the hidden layer.

(a) (b) (c) (d) (e)

Figure 15. Sensitivity analysis with respect to the number of neurons in ELM of fully non-intrusive
ROM-ANN approach using mean stream function contour plots (R = 10 and Re = 100): (a) ψFOM;
(b) ψROM-GP; (c) ψROM-ANN with Q = 20 neurons; (d) ψROM-ANN with Q = 40 neurons; and
(e) ψROM-ANN with Q = 80 neurons.

(a) (b) (c) (d) (e)

Figure 16. Sensitivity analysis with respect to the number of neurons in ELM of ROM-H approach
using mean stream function contour plots (R = 10 and Re = 100): (a) ψFOM; (b) ψROM-GP; (c) ψROM-H

with Q = 20 neurons; (d) ψROM-H with Q = 40 neurons; and (e) ψROM-H with Q = 80 neurons.
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Figure 17. Sensitivity analysis with respect to the number of ELM neurons of fully non-intrusive
ROM-ANN approach using time series of the first modal coefficient, a1(t) for Re = 25, 100, 400 and
Q = 20, 40, 80.

Figure 18. Sensitivity analysis with respect to the number of ELM neurons of fully non-intrusive
ROM-ANN approach using time series of the tenth modal coefficient, a10(t) for Re = 25, 100, 400 and
Q = 20, 40, 80.
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Figure 19. Sensitivity analysis with respect to the number of ELM neurons of ROM-H approach using
time series of the first modal coefficient, a1(t) for Re = 25, 100, 400 and Q = 20, 40, 80.

Figure 20. Sensitivity analysis with respect to the number of ELM neurons of ROM-H approach using
time series of the tenth modal coefficient, a10(t) for Re = 25, 100, 400 and Q = 20, 40, 80.
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6.5. Time Series Evolution and Out-of-Sample Forecasting

To further illustrate the robustness and enhanced potential of the proposed model, here we present a
couple more analyses on the ROM-GP, ROM-ANN, and ROM-H approaches. In Figure 21, we present
the temporal evolution of a1 obtained by ROM-GP, ROM-ANN and ROM-H model along with FOM
projection for Re = 25. The figure displays the forecasting capability of ROM models for a long period of
time up to t = 180 even though the data snapshots were taken between t = 15 and t = 60. For Re = 100
and 400 in Figures 22 and 23, respectively, the ROM-ANN and ROM-H models still show a stable time
series results, whereas the ROM-GP prediction becomes unphysical. The long time forecasting can be
a very useful property of the ROM-H model to reduce the computational cost, and can be applied for
practical applications related to forecasting. An out-of-sample a posteriori analysis is also performed
where the snapshot data and training dataset are prepared at a particular physical condition to predict the
performance of the models at different physical condition. In this study, we conduct two out-of-sample
analyses: in one case, we generate the snapshots and training data at Re = 100 (lower value than the target
prediction state) to predict the performance at Re = 200 and, in the other case, we generate the snapshots
and training data at Re = 400 (higher value than the target prediction state) to predict the performance
at Re = 200. As displayed in Figure 24 for the time series of a1, the ROM-GP again fails to capture the
underlying physics for R = 10. The ROM-ANN prediction seems not so random but still does not represent
the true statistics. However, the ROM-H prediction series matches the scales of the time series of FOM
data projection. We can get a clear idea of this quantitative analysis by observing the visual representation
of the mean stream function field in Figure 25. It is apparent that only the ROM-H prediction matches
the FOM result since the underlying four-gyre dynamics is captured. Finally, we analyze the prediction
performance at Re = 200 by using the data collected at Re = 400. The time series plot in Figure 26 reveals
that neither ROM-GP nor ROM-ANN can capture the true scales while once again, the ROM-H model
shows an impressive prediction of the true physics at Re = 200 using Re = 400 data. Figure 27 shows the
mean field representation which indicates the ROM-H model is capable of out-of-sample forecasting using
data from higher Re. These analyses of longer time forecasting and out-of-sample validation puts more
strength on the conclusion drawn above that the proposed ROM-H method is more robust in predicting
the underlying full order physics than the fully non-intrusive ROM-ANN and standard ROM-GP methods.

Figure 21. Forecasting of temporal mode evolution of a1(t) for Re = 25. Note that ROMs are trained
by the data snapshots obtained between t = 15 and t = 60.
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Figure 22. Forecasting of temporal mode evolution of a1(t) for Re = 100. Note that all ROMs are trained
by the data snapshots obtained between t = 15 and t = 60. Although the ROM-GP approach provides
reasonable (physical) results at the beginning (i.e., t < 18), the error then is amplified exponentially.

Figure 23. Forecasting of temporal mode evolution of a1(t) for Re = 400. Note that all ROMs are trained
by the data snapshots obtained between t = 15 and t = 60. Although the ROM-GP approach provides
reasonable (physical) results at the beginning (i.e., t < 18), the error is then amplified exponentially.
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Figure 24. Time series evolution of the first temporal coefficient a1(t) for the out-of-sample forecast by
FOM and different ROM approaches (ROM-GP, ROM-ANN, and ROM-H) using R = 10 POD modes.
Predictive performance is shown for Re = 200 while the training has been performed using the data
generated at Re = 100.

(a) (b) (c) (d)

Figure 25. Out-of-sample forecast of mean stream function by: (a) FOM; (b) ROM-GP; (c) ROM-ANN;
and (d) ROM-H using R = 10 POD modes. Predictive performance is shown for Re = 200 while the
training has been performed using the data generated at Re = 100. This figure clearly illustrates that
the ROM-H model has successfully predicted the FOM solution while the ROM-GP model prediction
is unphysical and the ROM-ANN prediction is not as accurate as the ROM-H prediction.
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Figure 26. Time series evolution of the first temporal coefficient a1(t) for the out-of-sample forecast by
FOM and different ROM approaches (ROM-GP, ROM-ANN, and ROM-H) using R = 10 POD modes.
Predictive performance is shown for Re = 200 while the training has been performed using the data
generated at Re = 400.

(a) (b) (c) (d)

Figure 27. Out-of-sample forecast of mean stream function by: (a) FOM; (b) ROM-GP; (c) ROM-ANN;
and (d) ROM-H using R = 10 POD modes. Predictive performance is shown for Re = 200 while the
training has been performed using the data generated at Re = 400. Similar to the previous results,
this figure also shows that the ROM-H prediction is better than the other two model predictions.

7. Summary

In this work, we propose a reliable and robust reduced-order modeling technique using a hybrid
framework. The hybridization is done by combining the standard Galerkin projection based ROM and
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ELM neural network architecture. We consider an ocean circulation problem governed by a single-layer
quasi-geostrophic model as a test platform to analyze the prediction performance and robustness of
the model compared to the physics-based and data-driven models. The training and snapshots data
for POD basis construction are generated using a FOM simulation. The resolved ROM coefficients are
utilized as inputs for the simple feedforward ELM network. We then introduce a weighting parameter
to dynamically account for contributions from the physics-based and data-driven models. In other
words, we propose a hybrid reduced-order model (ROM) comprising a first principle Galerkin model
and a data driven ANN model for the dynamics based on POD mode amplitudes. Therefore, the key
novelty of this hybrid ROM is a simple weighting between first-principle and data-driven model.
Furthermore, we show an ad-hoc dynamical approach to estimate this weighting parameter which
provides a freedom in the hybridization procedure to come up with a good possible combination of
component model contributions.

To assess the performance of our proposed model, we perform a number of analyses based on the
mean stream function field variable and time series evolution statistics. Our study reveals that the
proposed hybrid ROM model can successfully capture the underlying physics using a small number
of modes which means the hybrid model is capable of performing a robust model order reduction
process than the standard projection based ROM and data-driven ROM approaches. To validate the
fidelity of the results obtained by the hybrid framework, we conduct a sensitivity analysis which
reveals that the hybrid model is consistent with respect to the total number of hidden layer neurons
of the ELM network. To show the robustness of the model, we also perform a long time forecasting
and out-of-sample validation analysis. The hybrid model successfully captures the flow dynamics
for these cases, while the other two component models fail to predict the true physics for higher Re
and lower number of modes. Overall, our primary goal of leveraging the advantages of two basic
reduced-order modeling techniques is fulfilled by the proposed hybrid ROM model in a sense that
the model is data-driven and can be generalized for complex fluid flow problems, the model is robust
and capable of reducing the total computational cost significantly, and the model neither requires any
extra stabilization modification to account for numerical instabilities nor is it fully dependent on black
box predictions.
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