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Abstract
This paper describes the implementation of three different simplified
ocean models on a GPU (graphics processing unit) using Python and
PyOpenCL. The three models are all based on the solving the shallow
water equations on Cartesian grids, and our work is motivated by the
aim of running very large ensembles of forecast models for fully nonlinear
data assimilation. The models are the linearized shallow water equations,
the non-linear shallow water equations, and the two-layer non-linear
shallow water equations, respectively, and they contain progressively
more physical properties of the ocean dynamics. We show how these
models are discretized to run efficiently on a GPU, discuss how to
implement them, and show some simulation results. The implementation
is available online under an open source license, and may serve as a
starting point for others to implement similar oceanographic models.

1 Introduction
Operational oceanographic forecasts are today based on numerical models that
capture many aspects of the complex physics of the ocean. Whilst these models
can be accurate in a statistical sense, they often have large errors when it comes to
short term ocean currents. This is due to large uncertainties in initial conditions and
forcing, as we have very few observations of the ocean compared to the atmosphere.

By disregarding the long-term driving forces of the ocean currents (such as
temperature and salinity gradients), we can construct models that are valid for short-
term dynamics. Such simplified models were in fact used operationally in the early
days of computational oceanography. Our motivation in this work is to construct,
implement, and run a very large ensemble of simplified ocean models. With a
simplified model, we will be able to run a much larger number of model evaluations
in the same time frame. A second benefit of these models is that they are highly
suited for socalled GPU computing [1], and GPUs have been shown to outperform
the traditional CPU by 5-50 times for a variety of algorithms [2]. By designing a
simplified model that fits the GPU well, we may benefit from its potentially large
speed increase, which again may bring us closer to the goal of using fully non-linear
data assimilation techniques such as particle filters that may maximize our use of
observations. The end goal is a more accurate model initialization, and hence a
more accurate short-term current forecast.

Mapping the shallow water equations to the GPU has been done by several
authors previously(see for example [1] and the references therein). The novelty
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of this work lies in the use of traditional oceanographic ocean models, and the
availability of the source code as Jupyter notebooks under an open source license.

2 Simplified Ocean Models
To construct simplified ocean models we make the assumption that the ocean
current is predominantly horizontal and that we can represent it with a vertical
average. Whilst we know this assumption to be false, it nonetheless represents a
useful simplification that can be used to model the ocean dynamics under certain
circumstances. To increase the realism we can model the ocean as a stratified media
with several vertically averaged layers.

In this work, we have implemented two one-layer shallow water models, and one
two-layer model. For the one-layer model, we assume a uniform density throughout
the water column, and for the two-layer we have a top layer with a density smaller
than the bottom layer. The one-layer model is discretized first using a linearization
around a mean depth, and then using a non-linear numerical scheme. For the two-
layer model, we use a non-linear discretization with interlayer momentum transfer
through a friction term. A detailed derivation of the numerical schemes can be found
in Røed [3], and a Fortran reference of the linearlized numerical scheme together with
several reference benchmark cases and computational results is also available [4].

The shallow water equations can be written in many ways, and it is customary
to include bed shear stress and Coriolis source terms in oceanography [3]:
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Here, η is the water surface deviation (measured from the mean sea level), H is
the depth at mean sea level so that h = H + η is the water depth, hu and hv the
mass transports along the abscissa and ordinate, g the gravitational constant, R
represents linear bed shear stress, f represents the Coriolis force, and A represents
eddy viscosity (see also Figure 1).

Linearized one-layer numerical scheme
By assuming that η is small and that we are in Geostophic balance (second
order terms in velocity become negligible), we can neglect several of the terms in
Equations (2) and (3), and arrive at
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These equations can be discretized using an explicit forward-backward linear
(Dufort-Frankel leap-frog) scheme on an Arakawa C-type staggered grid. The
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Figure 1: Sketch of the variables in the one-layer model (a) and the two-layer
model (b). The two-layer model has a bottom layer with a slightly more dense
fluid than the top layer (ρ2 > ρ1).
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Figure 2: Reconstruction of physical quantities at other grid locations. The
reconstruction of the horizontal velocity hu at (i + 1

2
, j) internal nodes (a) and

boundary nodes for closed boundaries (b). The reconstruction of hu is similar.

discrete conservation of mass formulation then becomes
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We need to reconstruct our conserved quantities at certain points because of the
staggering. We use bilinear interpolation, and for cells on the domain boundary,
this reduces to linear interpolation when using wall boundary conditions (see also
Figure 2). For example, to reconstruct the momentum along the x-axis, we use
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and equivalently for the momentum along the y-axis. The reconstructed mean sea
level depth at (i, j+1/2) is computed using H̄i,j+1/2 = 1/2(Hi−1/2,j+1/2+Hi+1/2,j+1/2),
and equivalently along the y-axis.

With this in mind, we can now write up the discretized conservation of
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Figure 3: Computational stencils used to compute (a) ηn+1
i+1/2,j+1/2 and (b) hun+1

i,j+1/2

for the linearized shallow water equations. (c) shows the stencil for hun+1
i,j+1/2 using

the nonlinear numerical scheme. The stencils for hv is similar.

momentum.
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in which Bi+1/2,j = 1 + ∆tR/H̄i,j+1/2 is our implicitly handled friction term. The
observant reader will note that the discrete momentum terms are taken to be at
time step n + 1 in Equation (7). In a similar fashion, we compute hvn+1 using
the updated hun+1 values. Apart from that, our second momentum equation is
discretized equivalently to the first. These stencils are visualized in Figure 3, showing
that η is evolved in time using a five point stencil, and hu and hv using a seven
point stencil for the linear scheme.

Nonlinear one-layer numerical scheme
To capture the inherent nonlinearities of the equations, we need to keep the non-
linear terms and discretize them accordingly. The discretization of these equations
is somewhat lengthy, and the reader is referred to Røed [3] for a detailed derivation.
The discretized mass conservation is similar to the linearized scheme,
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whilst the discretized conservation of momentum is more complex
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Here, C is the friction term, N are the nonlinear terms, P are the pressure terms,
and E is the eddy viscosity:

Ci,j+1/2 = 1 +
2A∆t

H̄i,j+1/2

+
2A∆t(∆x2 + ∆y2)

(∆x2 + ∆y2)
(11)

Ni,j+1/2 =
1

4

[
(huni+1,j+1/2 + huni,j+1/2)

2

hni+1/2,j+1/2

−
(huni,j+1/2 + huni−1,j+1/2)

2

hni−1/2,j+1/2

]

+
1

4

∆x

∆y

[
(huni,j+3/2 + huni,j+1/2)(hv

n
i+1/2,j+1 + hvni−1/2,j+1)

h̄ni,j

]

+
1

4

∆x

∆y

[
(huni,j+1/2 + huni,j−1/2)(hv

n
i+1/2,j + hvni−1/2,j)

h̄ni−1,j

] (12)

Pi,j+1/2 = gH̄i,j+1/2

(
ηni+1/2,j+1/2 − ηni−1/2,j+1/2

)
+

1

2

(
(ηni+1/2,j+1/2)

2 − (ηni−1/2,j+1/2)
2
) (13)

Ei,j+1/2 =
1

∆x2

(
huni+1,j+1/2 − hun−1

i,j+1/2 + huni−1,j+1/2

)
+

1

∆y2

(
huni,j+3/2 − hun−1

i,j+1/2 + huni,j−1/2

) (14)

The discretization for hv follows that of hu, and ends up with very similar
expressions. The stencil of this numerical scheme can be seen in Figure 3.

3 Two-layer Shallow Water model
Our two-layer shallow water model consists of two shallow water systems (with a
lighter ocean layer on top of a more dense deep ocean layer) which are coupled
through inter-layer friction terms on the momentum equations. We also have a
slightly altered pressure term for the bottom layer to account for the fluid on top:
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Here τI is the interlayer friction coefficient, and ρ2 is the density of the bottom layer.
The bottom layer can equivalently be written as in which the term g(ρ2 − ρ1)/ρ2
typically is referred to as the reduced gravity. The discretization of the two-layer
system follows that of the nonlinear one-layer equations presented above, except
that the momentum transfer through the friction coefficient τI is taken explicitly.

4 GPU Implementation
The numerical schemes outlined in the previous sections can be written as stencil
computations, which means that the value of cell (i, j) at the next timestep can be
computed independently of all other cells using only local information. This means
that we can evolve all cells in parallel, and these algorithms typically map very well
to architectures such as the GPU.

We have used OpenCL [5] to develop our GPU code, which is an open standard
for massively parallel computations. OpenCL is supported on platforms including
CPUs from Intel and AMD, and GPUs from NVIDIA and AMD. This contrasts
the very similar NVIDIA CUDA programming language, which only works on
NVIDIA hardware. In the following, we discuss how the numerical schemes outlined
above can be implemented efficiently on GPU hardware, and the implementation
is available online on Github1. In this text, however, we do not dive into the low-
level optimizations which are often required to achieve peak performance. Readers
interested in these optimization strategies are referred to [6, 1, 7, 8].

Numerical schemes on the GPU
The linear numerical scheme is the simplest of the above presented ocean models,
and is relatively simple to implement on the GPU. For this scheme, we first evolve
hu in time and then use the updated values to evolve hv. Finally, we use the updated
values of hu and hv to evolve η, and we have completed one single timestep. Because
this numerical method imposes a strict order for how to update our conserved
variables, we have to create three different kernels that compute hu, hv, and η,
respectively. A kernel is a function that executes on the GPU, meaning that each
of these kernels run after each other sequentially. Within each kernel, however, we
are able to exploit the inherent parallelism of the different stencil computations.

One of these kernels is outlined in Listing 1, and shows some of the steps required
to compute Equation (8). This kernel is essentially just like a regular CPU function,
only that it is executed in parallel, operates on data that is located on the GPU,
and stores the results also on the GPU. We start by specifying how many parallel
threads we want to execute for this function. These threads are organized as a grid
of blocks. Each block consists of m × n threads, and the grid will consist of o × p
blocks so that we in total have a computational grid of mo×np threads. In our case,
we have (somewhat arbitrarily) chosen our block size to be 8 × 8 threads. Finding
a good block size will often be a key ingredient to achieve high performance, and
a power of two is often a good choice. In general, the optimal block size will vary
between different GPUs and different kernels, and the size should typically neither
be too small nor too large.

The only way to distinguish between two threads in the computational grid is
through the variables ti and tj . They specify the logical position of the thread, and

1https://github.com/babrodtk/gpu-ocean/tree/master/doc/reference_python
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Listing 1: GPU kernel that computes hu at the next timestep. kernel means that
this is a GPU function, and global means that this memory is located in GPU
main memory. The source code has been edited and simplified for readability.

1 //GPU Kernel that evo lve s U in time
2 k e r n e l void computeUKernel (
3 i n t nx , i n t ny ,
4 g l o b a l f l o a t ∗ H ptr , i n t H pitch ,
5 g l o b a l f l o a t ∗ U ptr , i n t U pitch ,
6 g l o b a l f l o a t ∗ V ptr , i n t V pitch ,
7 g l o b a l f l o a t ∗ e t a p t r , i n t e t a p i t c h ) {
8
9 // Index o f c e l l with in domain
10 const i n t t i = g e t g l o b a l i d ( 0 ) ;
11 const i n t t j = g e t g l o b a l i d ( 1 ) ;
12
13 //Compute address o f row t j
14 g l o b a l f l o a t ∗ const U row =
15 ( g l o b a l f l o a t ∗) ( ( g l o b a l char ∗) U ptr + U pitch ∗ t j ) ;
16
17 //Read input data , t e s t out o f bounds , e t c .
18 . . .
19
20 //Compute r e s u l t and s t o r e to main GPU memory
21 U row [ t i ] = (1 . 0/B)∗ ( U current + . dt ∗( f ∗V m + g∗H∗dEtadx ) ) ;
22 }

can then be used to look up the correct data values for that location. An example
of this is shown in lines 14, 15, and 21 of Listing 1. Here, we first find the memory
location of row tj in hu (using the width of each line in bytes, U pitch ), and then
finally write to element ti.

Both the nonlinear model, and the two-layer ocean model follow the same
implementation strategy, but are increasingly complex. For example, since our
discretized nonlinear model requires both hun and hun−1 (see Equation (14)), we
need to have both these values in our kernel. For the two-layer model, we evolve
η1 and η2 in the same kernel, and similarly for the momentum equations, resulting
in three kernels here as well. In total, the kernels which evolve hu1 and hu2 each
become around 300 lines long.

Launching kernels and memory management
We use Python and PyOpenCL2 to execute the different OpenCL kernels on
the GPU. Python is a high-level language which enables rapid experimentation,
prototyping, and development of code. Using PyOpenCL, we can easily transfer
data back and forth between the GPU and the CPU, and coupled with Matplotlib,
we are able to easily plot our solution and check if it is reasonable.

Listing 2 shows how we can launch the kernel which computes hu at the next time
step from Python. The first thing to note in this example is that we actually have

2https://mathema.tician.de/software/pyopencl/

https://mathema.tician.de/software/pyopencl/


Listing 2: Python code required to compile and launch a kernel on the GPU, and
to transfer data between the CPU and the GPU.

1 import pyopencl
2
3 #Access the GPU OpenCL dr i v e r and compile the ke rne l
4 c l c t x = pyopencl . c r ea t e some contex t ( )
5 c l queue = pyopencl .CommandQueue( c l c t x )
6 e t a k e r n e l s t r i n g = . . . # Read from f i l e here
7 U kerne l = pyopencl . Program( c l c t x , e t a k e r n e l s t r i n g ) . bu i ld ( )
8
9 #Create CPU ve r s i on o f data
10 host data = np . ones ( ( ny , nx ) , dtype=np . f l oa t32 , order=’C ’ ) ;
11
12 #Al l o ca t e data on the GPU, and upload
13 H. data = pyopencl . Bu f f e r ( c l c t x , \
14 mf .READWRITE | mf .COPY HOST PTR, \
15 hostbuf=host data )
16 H. p i t ch = host data . i t ems i z e ∗nx
17 . . . #S im i l a r f o r hu , hv , and eta .
18
19 #Launch the ke rne l
20 l o c a l s i z e = (8 , 8)
21 g l o b a l s i z e = ( c e i l ( nx /8 . 0 ) , c e i l ( ny /8 . 0 ) )
22 U kerne l . computeUKernel ( c l queue , g l o b a l s i z e , l o c a l s i z e , \
23 nx , ny , \
24 H. data , H. pitch , \
25 hu . data , hu . pitch , \
26 hv . data , hv . pitch , \
27 eta . data , eta . p i t ch )
28
29 #Download data from the GPU
30 r e s u l t = np . empty ( ( ny , nx ) , dtype=np . f l oa t32 , order=’C’ )
31 pyopencl . enqueue copy ( c l queue , r e su l t , e ta )

two different memory spaces: variables that live on the CPU (such as host data)
cannot be accessed from the GPU, and vice versa. Therefore, we need to allocate and
upload data to the GPU to be able to use it. Both uploading and downloading data
is a slow process, and should only be performed when required. We will therefore
achieve the highest performance if we perform many timesteps on the GPU before
downloading the result back to the CPU again. In lines 21–26, we see that launching
a kernel is much like calling a regular Python function, except that arrays passed as
arguments must first be copied to the GPU.

5 Simulation results
We have previously shown that the linear ocean model discussed here can reproduce
the results of a reference Fortran implementation [9], and we have checked our
current OpenCL implementation against this reference as well.

We have used a synthetic circular dam break as our benchmark case. The



(a) Linear scheme

(b) Nonlinear scheme
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Figure 4: Simulation of a circular dam break after 400 seconds. The top row shows
η, hu, and hv, respectively, for the linear scheme. The middle row shows results
computed with the nonlinear formulation, whilst the bottom row shows the solution
using the two-layer scheme (top layer). Qualitatively, all the schemes give similar
solutions.
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Figure 5: Simulation of a circular dam break after 400 seconds. The top row shows
a radial plot illustrating the radial symmetry of η (left), cross sections along the x
and y axis (center), and finally diagonal cross sections with a positive and negative
slope (right). The second row shows the equivalent results for the nonlinear scheme,
and the two bottom rows show results of the different layers of the the two-layer
scheme.



Figure 6: Simulation of an internal (bottom layer) circular dam break after 1900
seconds using the two-layer nonlinear model. The top row shows a radial plot
illustrating the radial symmetry of the upper layer η1 (left), cross sections along the
x and y axis (center), and finally diagonal cross sections with a positive and negative
slope (right). The lower row similarly shows the symmetry of the bottom layer, η2.

computational domain consists of 100 × 200 cells, with ∆x = ∆y = 200. Our
timestep is ∆t = 1, the gravitational coefficient is set to g = 9.81, the Coriolis
coefficient is f = 0, and the bottom friction coefficient is set to R = 0.001. For our
nonlinear models, we have used an eddy viscosity parameter of A = 1.0, and for our
two-layer model, we have used an upper layer density of ρ1 = 1025 and a lower layer
density of ρ2 = 1030. We start with an initial Gaussian bell in the middle of our
domain, (x0, y0), for the water surface:

η =

{
e(x

2+y2)/c0 , if
√
x2 + y2 < c0

0.0 else

x = i∆x− x0, y = j∆y − y0, c0 = 100000.

For our two-layer model, this disturbance is applied to the top layer. Our bathymetry
depth is set to H = 60 (for the two layer model we use H1 = 10 and H2 = 50),
and we simulate for 400 seconds. At this time the disturbance has just reached the
global boundaries (which in our case are set to be reflective).

Figure 5a shows the result with the linear model. This model has previously been
been verified against an existing reference Fortran implementation [9], and shown
to give equal results (to within floating point precision). We see that the solution
is quite symmetric, but with very slight grid effects since the computed wave is not
completely circular. This shows up in the radial plot as a widening of the wave
just around 8500 meters from the center. If we look at the axis symmetry, we see



that the solutions along the x axis and y axis are equal, and equivalently, that the
diagonals also are equal.

If we now move to the nonlinear model in Figure 5b, we see that the solution
is visually identical to that of the linear scheme, and displays the same solution
characteristics. For the two-layer model, shown in Figure 5c, we see that the upper
layer disturbance and total momenta are again visually identical to the linear scheme.
If we then look at the upper and lower layer separately, we see that the fast upper
layer wave travels as expected in the linear model, but that we additionally get a
slow moving internal wave in the bottom layer.

Figure 6 shows a variation of this benchmark case, in which we disturb the lower
layer instead of the top layer. This leads to an internal dam break with a slow
moving wave in the lower layer. This case also gives rise to some very slight top
layer ripples which are no longer visible in the solution after 1900 seconds.

6 Summary
We have implemented a GPU version of a linear one-layer shallow water model, a
non-linear one-layer model, and a two-layer model. The implementations have been
made using Python and PyOpenCL for rapid prototyping and development, and is
available on Github under an open source license. The results are promising for
running a large number of scenarios on the GPU to increase the accuracy of ocean
current predictions through the use of nonlinear data assimilation.
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