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A B S T R A C T

Seaweeds are increasingly used in European cuisines due to their nutritional value. Many algal constituents, such
as polyphenols, are important antioxidants and thus considered beneficial to humans. However, many seaweed
species can accumulate heavy metals and exhibit potential health risks upon ingestion. We investigated temporal
and spatial variations in polyphenol and heavy metal (As, Cd, Hg, Pb) concentrations of three edible seaweed
species. The brown algae Saccharina latissima and Alaria esculenta, and the red alga Palmaria palmata were
sourced from natural populations and aquaculture in the NE Atlantic and processed as bulk biomass mimicking
industrial scales. The mean polyphenol content was species-specific (Alaria > Saccharina > Palmaria), and
highest in winter (for Alaria and Saccharina) and spring (for Palmaria); inter-annual and spatial variations were
marginal. Heavy metal concentrations varied between species and depended on collection site, but seasonal
variations were minimal. Our data suggest that all three species are good sources of antioxidants, and the heavy
metal concentrations are below the upper limits set by the French recommendation and the EU Commission
Regulation on contaminants in foodstuffs. A health risk assessment indicated that consumption of these seaweed
species poses a low risk for humans with regard to heavy metals. However, an EU-wide regulation on maximal
concentration of heavy metals in seaweeds should be established.

1. Introduction

The consumption of seaweeds has been a long tradition in many
Asian countries and in some maritime communities across Europe and
North America (McHugh, 2003; Mouritsen et al., 2013). Coastal
dwellers in, e.g., Indonesia, Malaysia and the Philippines use different
species of fresh seaweeds as ingredients in salads and soups. In Ireland
and Brittany, seaweeds are commonly used to enrich foods, i.e. to add
flavor and to benefit from algal constituents such as natural minerals
(Guiry & Blunden, 1991; Holdt & Kraan, 2011). In Norway, consump-
tion and trading of the red alga Palmaria palmata has been recorded
since the Viking age (Delaney, Frangoudes, & Ii, 2016). Presently, many
seaweed species are used as food and supplements due to their

nutritional benefits (Holdt & Kraan, 2011). In general, the application
of algae as food and nutraceutical ranges from traditional Asian dishes
to functional foods in haute cuisine. The increasing interest in seaweeds
as nutraceuticals has led to a strong movement to introduce various
species into European cuisine (Chapman, Stevant, & Larssen, 2015;
Marfaing, 2017; Rioux, Beaulieu, & Turgeon, 2017). Thus, for many
maritime communities, seaweeds are not only a valuable source of food
for daily consumption but also source of natural products of commercial
importance.

Many seaweed species are rich in fibres, minerals, trace elements,
proteins, lipids, and certain vitamins (Holdt & Kraan, 2011). Some of
these algal constituents possess bioactivities beneficial to humans. For
example, algal polysaccharides and polyphenols are of interest not only
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for their antibacterial, antifungal, and antiviral properties but also for
their potential to prevent several chronic diseases such as cancer, car-
diovascular diseases, obesity, and diabetes (Déléris, Nazih, & Bard,
2016).

Seaweeds thrive in habitats where environmental conditions vary
greatly due to the influence of tides. Depending on water level, sea-
weeds can be subjected to high solar radiation (including UV), pro-
nounced temperature fluctuation and desiccation. A prolonged ex-
posure to environmental stressors may lead to the formation of free
radicals and other oxidizing agents in algal specimen. In turn, seaweeds
have evolved different strategies to minimize oxidative damage and
maintain cellular integrity against these adverse conditions; this ability
is often related to the presence of effective antioxidant systems. These
systems reduce an accumulation of reactive oxygen species (ROS) and
other free radicals and thus prevent an irreversible damage to proteins,
amino acids, lipids and DNA. Polyphenols, such as phlorotannins, and
sulfated polysaccharides are among the most powerful antioxidant
compounds found in different seaweed species (e.g. Balboa, Conde,
Moure, Falqué, & Domínguez, 2013; Di et al., 2017; Valentão et al.,
2010). Seaweeds rich in polyphenols could serve as a functional in-
gredient in the human diet, probably preventing chronic diseases. In
addition, antioxidant-rich seaweeds may improve food shelf life by
reducing a ROS-promoted degradation of oils and fats and improve both
nutritional quality and food security, and enhance health-related ben-
eficial properties (Miranda et al., 2016, 2018; Roohinejad et al., 2017).

On the other hand, many algal compounds that are beneficial to
humans, also possess one or multiple metal binding sites (Güven,
Akyüz, & Yurdun, 1995; Kuyucak & Volesky, 1989; Reddy & Prasad,
1990). For example, the cell wall polysaccharides of brown algae, such
as kelps, can have a high affinity to absorb and retain metals from
surrounding seawater. In general, algal polysaccharides bind heavy
metals to various degrees and their binding affinity is ranked as: algi-
nates (brown algae) > carrageenans (red algae) > agar (red algae)
(Güven et al., 1995). In addition, Gekeler, Grill, Winnacker, and Zenk
(1988) showed that algal peptides, including those from the brown
seaweed Sargassum muticum, bind to heavy metal via chelation.

Heavy metals are naturally occurring elements of the earth's crust.
They have a high atomic weight and a density at least five times greater
than that of water. Human activities in mining and smelting operations,
metal producing industries, and in agriculture have drastically altered
their geochemical cycles and biochemical balance (Singh, Gautam,
Mishra, & Gupta, 2011). The pollution of marine environments by an-
thropogenic activities (Wang, Xu, Sun, Liu, & Li, 2013) has led concerns
about health risks associated with seaweed consumption (Chen, Pan,
Huang, & Han, 2018). However, the toxicity of heavy metals depends
on multiple factors including chemical speciation and chelation, dose,
exposure route, as well as age, gender, and nutritional status of exposed
individuals. Arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg)
are considered highly toxic even at trace levels and rank among the
priority metals that are of public health significance (CONTAM Panel,
2010; CONTAM Panel, 2011; EFSA, 2014; EFSA Scientific Committee,
2015; Tchounwou, Yedjou, Patlolla, & Sutton, 2012). They can affect
the nervous system and accumulate in human adipose tissue and in-
ternal organs, potentially increasing the risk for cancer.

Seaweed consumption across Europe has steadily increased and
many raw and processed seaweed products are available for purchase as
food or health product. A few studies addressed the potential risk as-
sociated with heavy metal contents in edible seaweeds (e.g. Almela,
Clemente, Vélez, & Montoro, 2006; Besada, Andrade, Schultze, &
González, 2009; Rubio et al., 2017). To date, there is no general
agreement on maximum allowable quantities of metals and metalloids
in seaweeds. In this regard, there is a call for a national (e.g. Spanish,
Norwegian, etc.) or preferably, a pan European regulation on the
maximum amount of pollutants in edible seaweeds (Besada et al.,
2009). Considering the French recommendation (Afssa, 2007; CSHPF,
1990), the heavy metal concentrations of seaweeds commercialized for

human consumption studied by Besada et al. (2009) scored as follows:
Hg and Pb are below the limits i.e. a defined threshold concentration,
Cd in most samples exceeded the limit, and the total and inorganic
arsenic in one species, Hizikia fusiforme (= Sargassum fusiforme), is very
high (total As= 103–147mg kg−1 dry weight; inorganic
As=32–70mg kg−1 dry weight), which would preclude its consump-
tion by humans (Besada et al., 2009). Most studies on economically-
important seaweeds primarily addressed As concentration (e.g. Díaz
et al., 2012; Ichikawa, Nozawa, Hanaoka, & Kaise, 2010; Khan et al.,
2015; Ronan et al., 2017; Rose et al., 2007; Yokoi & Konomi, 2012),
even though As may be present in an organic form such as arsenosugars
(Taylor et al., 2017), which exhibit a lower toxicity than inorganic As
(Almela et al., 2002). In addition, seaweed processing such as washing,
soaking and cooking may reduce the total arsenic concentration by as
much as 60% (Hanaoka et al., 2001).

In Europe, 95% of marketed algae are intended either for direct
(food) or for indirect (phycocolloid, liquid extract as biostimulant)
applications. Often, these algae are harvested from natural resources
and wild populations (e.g Ulva spp., Palmaria palmata, Laminaria digi-
tata, Laminaria hyperborea, and Ascophyllum nodosum). To meet an in-
creasing demand for biomass and relieve harvesting pressure on the
wild stocks, alternative approaches have been applied and species such
as the kelps Saccharina latissima and Alaria esculenta are grown in
aquaculture across various sites in Europe; this cultivation supports an
emerging blue bioeconomy (Skjermo et al., 2014).

An increased utilization of seaweeds as nutra- and pharmaceuticals
(Déléris et al., 2016; Fleurence, 2016; Kang et al., 2016; Liu et al., 2015;
Vonthron-Sénécheau, 2016) at industrial scales has led to a surge in
quantifying natural variability of algal compounds. Of particular in-
terests are temporal and spatial variations not only of high-value
compounds (e.g. polyphenols) but also of contaminants such as heavy
metals. A concomitant assessment of beneficial and harmful algal
constituents informs stakeholders and industries about optimal har-
vesting periods and locations. It further helps to identify the value of
seaweed species from various biomass sources (wild or cultivated) and
provides information about species selection for industrial applications.
This study aimed at quantifying temporal (both seasonal and inter-an-
nual) and spatial (i.e. biogeographic) variations in polyphenols and
heavy metal concentrations (As, Cd, Hg, and Pb) of three commercially
important and edible seaweed species: the kelps Saccharina latissima
and Alaria esculenta (both Laminariales, Phaeophyceae, Ochrophyta)
and the red alga Palmaria palmata (Palmariales, Florideophyceae,
Rhodophyta). These species were sourced from wild populations and/or
from aquaculture in the NE Atlantic of Norway, Iceland and France. Our
experimental approach resembled industrial scale processing of sea-
weed bulk biomass by investigating large quantities of dried and milled
(homogenised) algal material. The data presented here provide valu-
able baseline information on seaweed raw biomass intended for con-
sumption or in applications as nutra- and pharmaceuticals.

2. Materials and methods

2.1. Seaweed biomass collection and processing

The harvest of seaweed biomass considered the following in-
dependent variables:

a. Species: The brown seaweed Alaria esculenta and Saccharina la-
tissima, collectively known as kelps, and the red seaweed Palmaria
palmata, locally called Dulse or Søl; hereafter, Alaria, Saccharina and
Palmaria, respectively.

b. Location: two sites in Norway (Bodø and Trondheim), one site each
in Iceland and one site in France.

c. Source: wild-harvest (‘wild’) and cultivated bulk biomass. Wild
biomass was collected in Norway: Trondheimsfjord (Vanvikan),
Trondheim (63.551°N, 10.217°E), Skjerstadfjorden, Bodø (67.276
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°N, 14.570 °E) and Iceland: Stykkisholmur, Breidafjördur (65.109
°N, 22.772 °W). The two kelps Alaria and Saccharina were sourced
from both wild populations and from aquaculture. Farming sites of
kelps are located in Norway: Frøya, Trondheim (63.702°N, 8.872°E)
and Morsdalsfjorden, Sund, Gildeskål (67.069 °N, 14.076 °E) and
France: CEVA Seafarm, Pleubian (48.847 °N, 3.047 °W). Cultivation
were either monoculture (France and Norway) or integrated multi-
trophic aquaculture (IMTA) system (Norway only). Palmaria was
sourced only from wild populations in Norway and Iceland.

d. Season: spring (April and/or May), summer (June and/or August)
and autumn (September and/or October).

e. Year: 2015 and 2016.

A standardized protocol for biomass collection, handling and pro-
cessing was used by the various project partners involved in this study.
Collected bulk seaweed biomass included whole algal specimens com-
posed of blades, stipes, holdfasts and sporophylls (specific to Alaria).
Biomass of entire Palmaria specimens was a mixture of male gameto-
phytes and sporophytes; kelp biomass consisted only of sporophytes.
Vegetative and reproductive materials were not separated. Large-scale
harvesting of cultivated kelps from ropes may lead to partial loss of
holdfasts. At least 1 kg of wet biomass per species was harvested: this
biomass was comprised of at least 5–10 adult or 50–100 juvenile kelp
sporophytes, and at least 300 individuals of Palmaria. Following har-
vest, samples were kept moist, cool and in darkness during transport. In
the laboratory, algal biomass was maintained in flowing natural sea-
water at an ambient temperature (season dependent) until processing.
Within 2 h after collection, algal thalli were thoroughly cleaned in a
seawater bath by removing visible epibiota and calcareous particles.
Subsequently, cleaned biomass was swiftly washed in (sea)water with
incrementally decreasing salinities (100%, 50%, 0%), drained of excess
water, packed and frozen at −80 °C. Thereafter, samples were freeze-
dried and ground to a fine powder (120 μm grain size). The pooled
homogenised biomass was analysed in duplicates or triplicates for
phlorotannins and heavy metals as outlined below.

2.2. Polyphenolic analysis

The polyphenolic content of algal extracts was determined color-
imetrically using the Folin–Ciocalteu reagent according to the method
of Ragan and Glombitza (1986). The extraction was performed using
250mg of ground seaweed biomass in 10mL of 80/20 (v/v) acetone/
water. The mixture was incubated for 1 h in the dark at room tem-
perature. The supernatant was recovered and the pellet was re-ex-
tracted a second time under the same conditions. Supernatants from the
first and the second extraction were pooled and filtered (0.45 μm).
200 μL of the filtrate were mixed with 1300 μL of dionised water
(18.2 MΩ cm) and 100 μL Folin-Ciocalteu reagent (VWR, Germany)
followed by the addition of 400 μL of 29% (w/w) Na2CO3. After in-
cubation at 45 °C for 30min in the dark, the absorbance was measured
at 760 nm using a UVIKON-XL spectrophotometer (Bio-Tek Instru-
ments, USA); with phloroglucinol as standard reference (99%, Sigma-
Aldrich, Steinheim, Germany) for Saccharina and Alaria, and gallic acid
(97.5%, Sigma-Aldrich, Steinheim, Germany) for Palmaria. Phlor-
oglucinol is the constitutive secondary metabolite of phlorotannins in
brown algae (Ragan & Glombitza, 1986); gallic acid has been identified
as constitutive metabolite of phlorotannins in red algae (Souza et al.,
2011). Standard curves with concentrations ranging from 0 to
100 μgmL−1 of phloroglucinol and gallic acid, respectively, were used
for quantification. Phlorotannin contents were expressed as mg phlor-
oglucinol equivalents (PGE) g dw−1 for kelps and as mg gallic acid
equivalent (GAE) g dw−1 for the red seaweed.

2.3. Heavy metal analysis

Total As, Cd, Hg and Pb in dried algal powder from bulk biomass

were determined by ICP-MS after mineralization in a closed acid di-
gestion vessel. Briefly, in a 50mL digestion vessel, 200mg of freeze-
dried sample was mixed with 3mL of HNO3 and 1.5mL of H2O2 and
digested in a Mars5 microwave oven (CEM, North Carolina, USA), ac-
cording to method SV-25-02-SN described in Matis Quality manual
based on NMKL 186 (2007). The digested sample solution was trans-
ferred to 50mL polypropylene tube, the vessel sparingly rinsed with
small amount of deionised water (18.2 MΩ cm) several times. The ali-
quots were pooled and diluted to 30mL using deionised water
(18.2 MΩ cm). The concentrations of As, Cd, Hg and Pb were de-
termined by ICP-MS (Agilent 7500ce, Waldbronn, Germany). The in-
dium nuclide (115In) was used as an internal standard. Certified re-
ference materials are routinely treated and analysed in the same
manner as the samples. For quality assurance, the trace analytical la-
boratory at the Matís undergoes annual proficiency test with QUASI-
MEME (Quality Assurance of Information for Marine Environmental
Monitoring in Europe) and RIKILT-Institute of Food Safety. Matís is a
National Reference Laboratory for heavy metals in food and feed, and
takes part in proficiency trainings organized by EU-RL (European Union
Reference Laboratory).

2.4. Data analysis

Samples of algal biomass were analysed for polyphenols and heavy
metals in duplicates or triplicates, representing technical replicates. The
arithmetic mean of these duplicate or triplicate measurements was
considered an independent replicate sample (n). Since our analyses
were conducted on bulk biomass, which is highly homogenised material
comprised of multiple algal specimens, the data were summarized as
means and the uncertainty, i.e. the standard errors of means (S.E.).

In this observational study, the explanatory (independent) variables
were ‘species’ (levels: “Palmaria”, “Alaria”, “Saccharina”), ‘year’ (levels:
“2015”, “2016”), ‘season’ (levels: “spring”, “summer”, “autumn”), col-
lection ‘site’ (levels: “Bodø”, “Trondheim”, “Iceland” for Palmaria;
“Bodø”, “Trondheim”, “France” for Alaria and Saccharina), and biomass
‘source’ (levels: “wild”, “IMTA”, “monoculture”; biomass source was
investigated only for Alaria and Saccharina). The response (dependent)
variables were concentrations of ‘polyphenols’, ‘As’, ‘Cd’, ‘Hg’ and ‘’Pb’.
To estimate the biological variance in the response variables for a
specific explanatory variable, data were arrayed across all other ex-
planatory variables; for example, the variance of ‘polyphenols’ for each
level of ‘year’ was obtained by considering the values for ‘season’, ‘site’
and, if applicable, ‘source’. This approach allowed the application of
formal statistical tests to evaluate effects of each explanatory variable
(Roleda et al., 2018).

The effect of ‘species’ was analysed by non-parametric Kruskal-
Wallis H tests (ANOVA assumptions were violated), Mann-Whitney U
tests with adjusted P values (Bonferroni procedure) were used for pair-
wise comparisons. The effect of ‘year’ was computed by t tests or Welch's
t-test if unequal variances were detected. Effects of ‘season’, ‘site’ and
‘source’ were analysed by one-way ANOVAs, followed by Tukey's HSD
post hoc tests for pair-wise comparisons, or, if ANOVA assumptions were
violated, by Kruskal-Wallis H tests (followed by Mann-Whitney U tests
with adjusted P values) as outlined above for ‘species’. For all tests, the
significance level α was 0.05. Specifics about each statistical analysis
conducted are outlined in the statistical summary tables (Tables 1–4),
including test statistics, P values and results of pair-wise comparisons.
Statistical analyses were performed using IBM® SPSS® Statistics version
24; data were plotted with SigmaPlot® version 14.

2.5. Biomass quality and health risk assessment

Heavy metal concentrations were compared to those provided by
the French recommendation (Afssa, 2007; CSHPF, 1990) to assess the
quality of unprocessed seaweed biomass (Table 5). An assessment of
potential health risks associated with the consumption of unprocessed
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seaweed biomass was conducted according to Chen et al. (2018) by
estimating exposure doses (for women and men), the targeted hazard
quotient (THQ), and the hazard index.

Exposure doses for each heavy metal were estimated as:

=
×Exposure dose c d
bw

i dw
(1)

where ci is the concentration of the element i in dry seaweed biomass
(mg (kg dw)−1), ddw is the quantity of dry seaweed biomass ingested
daily (5.2 g), and bw is the average body weight for Western European
women (69.3 kg) and men (86.4 kg), respectively. There are no data
regarding seaweed consumption by Western Europeans available; thus,
we used average ingestion data from the FAO available for China (5.2 g;
Chen et al., 2018). Bodyweight data were obtained from www.
worlddata.info (Worlddata.info, 2018).

Here, As was measured as total As, which comprised organic and
inorganic As. Adverse effects to human health have been largely asso-
ciated with inorganic As (Almela et al., 2002). Thus, the proportion (%)
of inorganic As (i-As) in total As (tAs) was computed from empirical
data (t-As and i-As) presented in Almela et al. (2006) and Díaz et al.
(2012): i-As was 4.15% of tAs in Palmaria spp. and i-As was 1.72% of t-
As in different kelp species (Laminariales).

The THQi for each element i was determined as:

=THQ
Exposure dose

RfDi
i

i (2)

where the RfDi is the recommended reference dose for element i as
provided by the National Center for Environmental Assessment, EPA of
the United States (USA EPA, 2007).

The sum of THQi for all heavy metals investigated represents the
overall hazard index (HI) for the consumption of unprocessed biomass.
At HI < 1 the expected health risks are likely to be minimal; at HI > 1
moderate to high health risks may be expected (Chen et al., 2018). This
approach of health risk assessment is rather conservative since (1)
many Western Europeans likely consume seaweed quantities lower than
5.2 g per day, (2) RfD values are more conservative (Table 6: USA EPA,
2007) than those provided by the Joint FAO/WHO Expert Committee
on Food Additives (JECFA) as provisional tolerable weekly intake
(PTWI). For example, JECFA's current recommendation on some of the
heavy metals' TWIs are as follows: cadmium 2.5 μg (kg week)−1 (EFSA
CONTAM Panel, 2011), arsenic between 0.3 and 8 μg (kg day)−1 (EFSA
CONTAM Panel, 2009), methyl mercury 1.3 μg (kg week)−1 and total
mercury 4 μg (kg week)−1 (EFSA CONTAM Panel, 2012), and (3) pro-
cessing of seaweed biomass likely reduces heavy metal concentrations
(e.g. Hanaoka et al., 2001).

3. Result

Mean polyphenol content was species-specific
(Alaria > Saccharina > Palmaria; P < 0.001; Fig. 1, Table 1). Con-
tents ranged from 14 to 61mg (g dw)−1, 5–15mg (g dw)−1, and
2–6mg (g dw)−1 for Alaria, Saccharina and Palmaria, respectively
(Supplementary Table 1).

For each species, polyphenols varied seasonally (Fig. 2), but no
intra-annual variation was observed. In Palmaria, polyphenols were
significantly higher in spring than during summer and autumn (Fig. 2a,
Table 2). For the two kelp species, polyphenols were highest in autumn
and lowest in spring (Tables 3 and 4). For Alaria, polyphenol contents
were similarly high in summer and autumn (Fig. 2c); and for Sac-
charina, polyphenol concentrations were similarly low in spring and
summer (Fig. 2e). There was no statistically significant difference in
polyphenol content detected across the sites investigated (Fig. 2b, d, f).

Mean heavy metal concentration also varied among species. Total
As was significantly higher in kelps than in the Palmaria
(Saccharina > Alaria > Palmaria; Fig. 3a). Both the Cd and Pb con-
centrations were significantly highest for Alaria, and similarly low for
Saccharina and Palmaria (Fig. 3b, d). The Hg concentrations did not
statistically differ among species (Fig. 3c). All data, i.e. means and
ranges (min-max), are shown in the Supplementary Table 2.

Most heavy metals in different species did not exhibit pronounced
seasonality; this is probably associated with the high variability ob-
served (Fig. 4a-l). For example, the Cd content in Alaria was slightly,
although non-significantly, higher in autumn compared to spring and
summer samples (P=0.051; Fig. 4f). Only the Hg content in Saccharina
varied seasonally peaking during autumn (autumn >
summer= spring; Table 4). All data, i.e. means and ranges (min-max),

Table 1
Summary of results of statistical analyses. Polyphenols and heavy metal contents in bulk biomass of three edible macroalgal species (Saccharina latissima, Alaria
esculenta, Palmaria palmata) were compared by Kruskal-Wallis H tests (ANOVA assumptions were violated) followed by Mann-Whitney U tests for multiple pair-wise
comparisons; the significance level was adjusted according to Bonferroni. Shown are test statistics (χ2), degrees of freedom (subscript) and P values (bold if
significant).

test statistic P value Direct comparison

Species Polyphenols χ2
2 = 46.053 < 0.001 Alaria > Saccharina > Palmaria

As χ2
2 = 30.474 < 0.001 Saccharina > Alaria > Palmaria

Cd χ2
2 = 23.673 < 0.001 Alaria > Palmaria= Saccharina

Hg χ2
2 = 0.221 0.895

Pb χ2
2 = 7.466 0.024 Alaria > Palmaria= Saccharina

Table 2
Summary of results of statistical analyses. Polyphenols and heavy metal con-
tents in bulk biomass of Palmaria palmata were determined between sampling
years (2015, 2016), season (spring, summer, autumn), and site (Bodø,
Trondheim, France). Statistically significant effects were identified using ap-
propriate tests: independent-sample t tests for “year” and “site” (Trondheim was
removed from the analysis due to n=1), and 1-way ANOVAs followed by
Tukey's posthoc tests for “season”. If the test assumption of homogeneous var-
iances was violated, appropriate alternative tests were applied: Welch's t-test or
Kruskal-Wallis H tests. Presented are respective test statistics (t, F or χ2), de-
grees of freedom (subscript) and P values (bold if significant).

test statistic P value Direct comparison

Year Polyphenols t9=−0.142 0.890
As t9=−0.601 0.563
Cd t9=−0.386 0.708
Hg t9= 2.133 0.062
Pb t4.18=−0.934∗ 0.401

Season Polyphenols F2,8= 14.549 0.002 spring > summer= fall
As χ2

2= 0.167∗∗ 0.920
Cd F2,8= 0.578 0.583
Hg F2,8= 0.405 0.680
Pb χ2

2= 4.750∗∗ 0.093

Site Polyphenols t8= 0.186 0.857
As t5.04= 3.494∗ 0.017 Bodø > Iceland
Cd t3.11=−10.558∗ 0.002 Iceland > Bodø
Hg t8= 0.846 0.422
Pb t3.10=−0.996∗ 0.390

∗ Welch's t-test.
∗∗ Kruskal-Wallis H test.
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are shown in the Supplementary Tables 3 and 4
For each species, heavy metal concentrations varied between col-

lection sites (Fig. 5; Tables 2–4). In Palmaria, As was significantly

higher in Bodø compared to Iceland (Fig. 5a), and Cd contents were
significantly higher for Iceland than for Bodø (Fig. 5b). In Alaria, Cd
([Bodø > Trondheim]= France; Fig. 5f) and Pb concentrations

Table 3
Summary of results of statistical analyses. Polyphenols and heavy metal contents in bulk biomass of Alaria esculenta were determined between sampling years (2015,
2016), season (spring, summer, autumn), site (Bodø, Trondheim, France), and source (wild, monoculture, IMTA). Statistically significant effects were identified using
appropriate tests: independent-sample t tests for “year” and 1-way ANOVAs followed by Tukey's posthoc tests for “season”, “site” and “source”. If the test assumption
of homogeneous variances was violated, appropriate alternative tests were applied: Welch's t-test or Kruskal-Wallis H tests. Presented are respective test statistics (t, F
or χ2), degrees of freedom (subscript) and P values (bold if significant).

test statistic P value Direct comparison

Year Polyphenols t20= 0.564 0.579
As t20= 1.559 0.135
Cd t20= 0.527 0.604
Hg t9.27= 4.422∗ 0.002 2015 > 2016
Pb t20= 0.158 0.876

Season Polyphenols F2,19= 4.420 0.027 spring < summer= fall
As F2,19= 3.364 0.056
Cd F2,19= 3.507 0.051
Hg F2,19= 0.059 0.943
Pb χ2

2= 5.523∗∗ 0.063

Site Polyphenols F2,19= 1.451 0.259
As F2,19= 1.123 0.346
Cd F2,19= 9.003 0.002 (Bodøb > Trondheima)= Franceab

Hg χ2
2= 1.479∗∗ 0.477

Pb F2,19= 18.153 < 0.001 France > Bodø=Trondheim

Source Polyphenols F2,19= 0.512 0.607
As F2,19= 0.683 0.517
Cd χ2

2= 4.997∗∗ 0.082
Hg χ2

2= 2.969∗∗ 0.227
Pb F2,19= 5.227 0.016 (monob > IMTAa)=wildab

∗ Welch's t-test.
∗∗ Kruskal-Wallis H test.

Table 4
Summary of results of statistical analyses. Polyphenols and heavy metal contents in bulk biomass of Saccharina latissima were determined between sampling years
(2015, 2016), season (spring, summer, autumn), site (Bodø, Trondheim, France), and source (wild, monoculture, IMTA). Statistically significant effects were
identified using appropriate tests: independent-sample t tests for “year” and 1-way ANOVAs followed by Tukey's posthoc tests for “season”, “site” and “source”. If the
test assumption of homogeneous variances was violated, appropriate alternative tests were applied: Welch's t-test or Kruskal-Wallis H tests followed by Mann-
Whitney U tests with adjusted significance level (Bonferroni). Presented are respective test statistics (t, F or χ2), degrees of freedom (subscript) and P values (bold if
significant).

test statistic P value Direct comparison

Year Polyphenols t21=−0.186 0.854
As t10.79= 0.765∗ 0.461
Cd t21=−0.764 0.453
Hg t9.15= 1.822∗ 0.101
Pb t17.75=−2.207∗ 0.041 2016 > 2015

Season Polyphenols F2,20= 16.939 < 0.001 fall > summer= spring
As F2,20= 1.702 0.208
Cd F2,20= 0.375 0.692
Hg F2,20= 4.185 0.030 fall > summer= spring
Pb F2,20= 0.402 0.674

Site Polyphenols F2,20= 3.134 0.065
As χ2

2= 7.639∗∗ 0.022 France > Bodø=Trondheim∗∗∗

Cd F2,20= 14.364 < 0.001 Bodø=Trondheim > France
Hg χ2

2= 7.744∗∗ 0.021 Bodø= France > Trondheim∗∗∗

Pb χ2
2= 7.868∗∗ 0.020 (Franceb > Bodøa)= Trondheimab***

Source Polyphenols F2,20= 1.290 0.297
As F2,20= 0.402 0.674
Cd F2,20= 1.473 0.253
Hg χ2

2= 0.207∗ 0.902
Pb χ2

2= 5.178∗ 0.075

∗ Welch's t-test.
∗∗ Kruskal-Wallis H test.
∗∗∗ Mann-Whitney U tests.
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(France > Bodø=Trondheim; Fig. 5h) showed significant differences
between sites. In Saccharina, concentrations of all heavy metals mea-
sured exhibited spatial variability (Fig. 5 i–l; Table 4). Samples from
France contained highest As, Hg, and Pb, but lowest Cd. By contrast,
specimens from Norway possessed highest Cd, but lowest As and Pb; Hg
contents in Saccharina from Norway were different between the two
collection sites (Bodø > Tronheim). Only Hg varied between the two
years investigated (2015 > 2016; Table 3). Minor difference in Pb
contents were observed in the biomass source of Alaria (Mono >
IMTA; Table 3).

Based on the French recommendation (Afssa, 2007; CSHPF, 1990),
the mean levels of most heavy metals in different species of seaweeds

investigated in this study are below (< 100%) the maximum re-
commended value, except for Cd (> 100%; Table 5). In addition, the
maximum level of Hg was above the threshold value, but the average
Hg content did not exceed the recommended limit (Table 5).

According to the health risk assessment, considering an consump-
tion of 5.2 g dw of seaweed per day (approximately 26 g fresh weight,
assuming 80% water content), the exposure dose for a single heavy
metal may not exceed 0.118 μg (kg bw day)−1 and 0.095 μg (kg bw
day)−1 on average for women and men, respectively; these highest

Table 5
Quality assessment of unprocessed seaweed biomass. Presented are relative
quantities of heavy metals (%) according to the French recommendation (Afssa,
2007; CSHPF, 1990). Calculations are based on species-specific heavy metal
concentrations; data are shown as means (minimum-maximum).

CSHPF/Afssa* mg (kg dw)−1 Percent of CSHPF/Afssa

i-As† 3 Palmaria 12 (10–17)
Alaria 33 (22–56)
Saccharina 40 (30–57)

Cd 0.5 Palmaria 165 (5–491)
Alaria 315 (120–524)
Saccharina 120 (42–198)

Hg 0.1 Palmaria 63 (5–314)
Alaria 58 (4–258)
Saccharina 33 (1–105)

Pb 5 Palmaria 3 (1–13)
Alaria 5 (1–14)
Saccharina 4 (1–14)

*Maximum value according to French recommendation.
† i-As was alculated based on the percentage of i-As in t-As presented by Almela
et al. (2006) and Díaz et al., 2012 where i-As was 4.15% of t-As in Palmaria spp.
and i-As was 1.72% of t-As in different kelp species (Laminariales).

Table 6
Estimated exposure of Western Europeans to heavy metals from consumption of unprocessed seaweeds, including a health risk assessment. The targeted hazard
quotient (THQ) and the hazard index (HI) are measures of health risk. At HI < 1.0, the expected health risk is minimal. Data are means and maximum (in brackets,
to quantify high risk). RfD guidelines are more conservative than those provided by the Joint FAO/WHO Expert Committee as provisional tolerable weekly intake
(PTWI) and, thus, were used for this risk assessment.

RfD∗ Women Men

Exposure dose** THQ Exposure dose** THQ

μg (kg day)−1 μg (kg bw day)−1 μg (kg bw day)−1

i-As† 0.3 Palmaria 0.028 (0.037) 0.09 (0.12) 0.022 (0.030) 0.07 (0.10)
Alaria 0.073 (0.125) 0.24 (0.42) 0.059 (0.100) 0.20 (0.33)
Saccharina 0.090 (0.128) 0.30 (0.43) 0.072 (0.103) 0.24 (0.34)

Cd 1 Palmaria 0.062 (0.184) 0.06 (0.18) 0.050 (0.148) 0.05 (0.15)
Alaria 0.118 (0.197) 0.12 (0.20) 0.095 (0.158) 0.09 (0.16)
Saccharina 0.045 (0.074) 0.04 (0.07) 0.036 (0.060) 0.04 (0.06)

Hg 0.3 Palmaria 0.005 (0.024) 0.02 (0.08) 0.004 (0.019) 0.01 (0.06)
Alaria 0.004 (0.019) 0.01 (0.06) 0.003 (0.016) 0.01 (0.05)
Saccharina 0.002 (0.008) 0.01 (0.03) 0.002 (0.006) 0.01 (0.02)

Pb (3.6)§ Palmaria 0.012 (0.050) 0.00 (0.01) 0.010 (0.040) 0.00 (0.01)
Alaria 0.019 (0.053) 0.01 (0.01) 0.015 (0.043) 0.00 (0.01)
Saccharina 0.014 (0.051) 0.00 (0.01) 0.011 (0.041) 0.00 (0.01)

HIwomen_Palmaria 0.17 (0.40) HImen_Palmaria 0.14 (0.32)
HIwomen_Alaria 0.38 (0.69) HImen_Alaria 0.31 (0.56)
HIwomen_Saccharina 0.36 (0.54) HImen_Saccharina 0.29 (0.43)

*Recommended reference dose (RfD) according to the US EPA (2007), National Center for Environmental Assessment for chronic oral exposure (per kg bodyweight);
for Hg, reference dose for chronic inhalation exposure (per kg air).
**Based on daily intake of 5.2 g dw (as determined for China by Chen et al., 2018) and an average body weight of Western Europeans men (86.4 kg) or women
(69.3 kg) according to World Data Information (https://www.worlddata.info).
§In 2004, the US EPA considered it inappropriate to develop a reference value for Pb.
†i-As was calculated based on the percentage of i-As in t-As presented by Almela et al. (2006) and Díaz et al., 2012 where i-As was 4.15% of t-As in Palmaria spp. and
i-As was 1.72% of t-As in different kelp species (Laminariales).

Fig. 1. Variations in polyphenol content in dried bulk biomass of the three
edible seaweed species (Palmaria palmata, Alaria esculenta, Saccharina latissima).
Data are means ± S.E.; data are given in Table S1 (Supplementary material).
Statistical results are summarized in Table 1.
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values were determined for Cd in Alaria (Table 6). The hazard index
(HI) accounts for all heavy metals by considering their sum; HI was
smaller than 1.0 for all species, which indicated that heavy metal in-
toxication from consuming the three edible seaweed species in-
vestigated may be minimal (Table 6).

4. Discussion

4.1. Variations in polyphenols

Our study presents the first long-term and large scale study on the
polyphenol contents of three commercially important seaweed species
in Europe. The antioxidant properties of phenolic compounds found in
seaweeds are often associated with phenolic content (Connan,
Deslandes, & Gall, 2007). The use of seaweeds in human health and
food stability and quality is widely known. Here, variation in poly-
phenols was largely species-specific and seasonal. No spatial variation
was observed within the biogeographic region studied. Previously,
species-specific variations have been observed in snapshot measure-
ments (e.g. Ganesan, Kumar, & Bhaskar, 2008; Heffernan, Brunton,
FitzGerald, & Smyth, 2015) and numerous seasonal studies on brown
seaweeds in specific sites (e.g. Ragan & Jensen, 1978, and references
therein; Schiener, Black, Stanley, & Green, 2015).

Among kelps (Laminariales), this study showed that regardless of
collection site and season, Alaria (3.7 mg (g dw)−1) contains higher
concentrations of polyphenols than Saccharina (0.8 mg (g dw)−1).
Similarly, Schiener et al. (2015) reported that polyphenol content dif-
fers between kelp species from Scotland (converted): Alaria (8.7 mg (g
dw)−1) > Saccharina (4.2 mg (g dw)−1) > Laminaria hyperborea
(1.6 mg (g dw)−1)= Laminaria digitata (1.4 mg (g dw)−1). However,

concentrations of polyphenols were documented to vary with season in
temperate brown seaweeds (Connan, Goulard, Stiger, Deslandes, & Gall,
2004). In this study, lowest polyphenol content among kelps Alaria and
Saccharina were observed during spring (April–May); this is consistent
with reports from brown algae from Scotland (Schiener et al., 2015)
and Brittany (Connan et al., 2004). On the other hand, seasonal var-
iation in polyphenols appeared to be less pronounced in the kelp L.
digitata than in fucoids such as Fucus spp. and A. nodosum (Connan
et al., 2004). Regardless of taxonomic group, polyphenol content in-
creased during summer and peaked in early autumn for many fucoids
and kelps from Brittany (Connan et al., 2004), Scotland (Schiener et al.,
2015) and Norway (Ragan & Jensen, 1978). The seasonal variability
observed in polyphenols is probably a response to seasonal changes in
abiotic and biotic factors. For example, many polyphenols are im-
portant antioxidants and prevent physiological stress arising from ex-
posure to high irradiances, UV and high seawater and air temperatures
(Abdala-Diaz, Cabello-Pasini, Perez-Rodriguez, Alvarez, & Figueroa,
2006; Connan et al., 2007; Cruces, Huovinen, & Gomez, 2012; Ragan &
Glombitza, 1986; Schoenwaelder, 2002).

Although variability of a multitude of biochemical constituents has
been documented for Palmaria (e.g., Aguilera, Bischof, Karsten, Hanelt,
& Wiencke, 2002; Martinez & Rico, 2002; Rodde, Varum, Larsen, &
Myklestad, 2004; Roleda et al., 2018; Schmid, Guihéneuf, & Stengel,
2017), knowledge about seasonality of polyphenols in this red alga is
limited. As observed for brown algae, the antioxidative capacity of
Palmaria increased with increasing subsurface irradiances during the
summer in the Arctic (Aguilera et al., 2002), which was associated with
an increase in polyphenol as one important antioxidant systems in the
species. Here, in contrast to brown algae, the polyphenol content of
Palmaria was lowest in autumn (no winter measurement) and highest in

Fig. 2. Variations in polyphenol content in dried bulk biomass of the three edible seaweed species (Palmaria palmata, Alaria esculenta, Saccharina latissima) relative to
season, and site. Data are means ± S.E.; data are given in Table S2, S3, and S4 (Supplementary material). Statistical results are summarized in Tables 2–4.
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spring upon exposure to longer daylength and higher irradiances. On
the other hand, abiotic factors are particularly stressful for many in-
tertidal red algae during summer; this can lead to oxidative stress,
which may contributes to bleaching and low concentrations of poly-
phenols. Considering that Palmaria has approximately 50% and 90%
less polyphenols than Saccharina and Alaria, respectively (Fig. 1). this
species may have other antioxidant systems scavenging ROS, e.g. my-
cosporine-like amino acids (MAAs) (Wada, Sakamoto, & Matsugo,
2015) and enzymatic antioxidants such as superoxide dismutase (SOD),
ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase
(GPX) and peroxiredoxin (PrxR) (Mittler, 2002), to survive environ-
mental stressors in the intertidal zone.

4.2. Variations in heavy metals

The species-specific difference in the accumulation of some heavy
metals (e.g. As, Cd, and Pb) is mostly related to their cell wall chem-
istry. The main chemical groups involved in the biosorption of metallic
cation are carboxyl, amino, sulfhydryl, and sulfonate, which are part of
the algal cell wall polysaccharides (e.g. alginic acid, sulfated

polysaccharides), proteins, and peptidoglycans. The functional groups
in algal biomass containing carboxyl have higher affinity with heavy
metals than those with sulphate (Güven et al., 1995). The mechanism of
mercury adsorption is related to carboxylate groups in the biomass
(Carro, Barriada, Herrero, & de Vicente, 2011) while chelation is the
main mechanism of the algal biomass to sequester cadmium cation.
Lead binding mechanisms include a combination of ion exchange,
chelation, and reduction reactions, accompanied by metallic lead pre-
cipitation on the cell wall matrix (Raiza, Argaman, & Yannai, 2004).
Arsenic uptake depends on adsorption and metabolism-dependent ac-
tive uptake (Lomax et al., 2011).

Heavy metal concentration in dried commercially available sea-
weeds intended for human consumption is largely species-specific
(Almela et al., 2006; Besada et al., 2009; Khan et al., 2015). The in-
organic Arsenic (i-As), which is of major health concern, is generally
low in most seaweeds investigated except in brown seaweed species of
the family Sargassaceae in the order Fucales (Almela et al., 2006; Khan
et al., 2015; Rose et al., 2007): these are Hizikia fusiformis (= Sargassum
fusiforme) and Sargassum fulvellum where i-As was found to be 47–80%
and 97% of the total Arsenic (t-As), respectively. Other than these

Fig. 3. Variations in heavy metal contents in dried bulk biomass of the three edible seaweed species (Palmaria palmata, Alaria esculenta, Saccharina latissima). Data are
means ± S.E.; data are given in Table S1 (Supplementary material). Statistical results are summarized in Table 1.
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Fig. 4. Seasonal variations in heavy metal contents in dried bulk biomass of the three edible seaweed species (Palmaria palmata, Alaria esculenta, Saccharina latissima).
Data are means ± S.E.; data are given in Table S2, S3, and S4 (Supplementary material). Statistical results are summarized in Tables 2–4.
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extremely high i-As-containing species, green, red and brown seaweeds
generally contain on average i-As content of 13, 2.7, 1.6% of the t-As,
respectively (computed from data presented by Rose et al., 2007;

Almela et al., 2006; Díaz et al., 2012; Khan et al., 2015).
Despite the high As concentration in species of the genus Sargassum

(=Hizikia) (Almela et al., 2006; Khan et al., 2015; Yokoi & Konomi,

Fig. 5. Spatial variations in heavy metal contents in dried bulk biomass of the three edible seaweed species (Palmaria palmata, Alaria esculenta, Saccharina latissima).
Data are means ± S.E.; data are given in Table S2, S3, and S4 (Supplementary material). Statistical results are summarized in Tables 2–4.
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2012), washing and soaking before cooking can reduce t-As con-
centration by 60% (Hanaoka et al., 2001). After digestion, t-As in
cooked hijiki (Sargassum fusiforme) is mostly excreted and only about
5% of the administered dose is accumulated in mice (Ichikawa et al.,
2010).

Different species also exhibit different affinities to heavy metals; for
example, affinity towards heavy metal of the brown seaweed Fucus
vesiculosus is ranked as: Hg > Pb > Cd (Henriques et al., 2017a) while
green seaweed Ulva lactuca is ranked as: Hg > Cd > Pb (Henriques
et al., 2017b). Moreover, heavy metal concentration varied among
different kelp species– As: L. digitata [96mg (kg dw)−1] > Alaria
[75mg (kg dw)−1] = L. hyperborea [73mg (kg dw)−1]≥ Saccharina
[67mg (kg dw)−1]; Pb: Saccharina [1.2 mg (kg dw)−1]=Alaria
[1.1 mg (kg dw)−1] > L. digitata [0.34mg (kg dw)−1]≥ L. hyperborea
[0.26mg (kg dw)−1] (Schiener et al., 2015). Our study addressed heavy
metal concentrations in biogeographically widely distributed species
and we show a different trend in the accumulation of heavy metals: t-
As: Saccharina [70mg (kg dw)−1] > Alaria [57mg (kg dw)−1]; Pb:
Alaria [0.25mg (kg dw)−1] > Saccharina [0.18mg (kg dw)−1]) com-
pared to the study by Schiener et al. (2015), which examined a specific
site in Scotland.

The study in Scotland also showed monthly variation in As and Pb
among different kelp species, however, the variation is largely random
rather than showing a clear seasonal trend (Schiener et al., 2015). We
did not observed significant seasonal variation in heavy metal con-
centration except for higher Hg during autumn in Saccharina. Variation
in heavy metal concentration was mostly related to location. Interest-
ingly, brown seaweed inhabiting areas, which are contaminated with
heavy metals contained higher cell wall polysaccharides, which served
as a protective mechanism against toxicity (Andrade et al., 2010).

The mean heavy metal content of Palmaria (t-As: 8.8mg (kg dw)−1;
Pb: 0.826mg (kg dw)−1; Cd: 0.158mg (kg dw)−1) is in the lower limit
range compared to those reported by Almela et al. (2006) in commer-
cial seaweed from Spain and Japan (t-As: 12.6–13.0 mg (kg dw)−1; Pb:
1.52mg (kg dw)−1; Cd: 0.147–0.877mg (kg dw)−1). The same is true
in terms of the mean heavy metal concentrations of the two kelp species
(Alaria, t-As: 57mg (kg dw)−1; Pb: 0.253mg (kg dw)−1; Cd: 1.577mg
(kg dw)−1 and Saccharina, t-As: 70 mg (kg dw)−1; Pb: 0.185mg (kg
dw)−1; Cd: 0.598mg (kg dw)−1) when compared to other kelp species
of the order Laminariales (t-As: 4–116mg (kg dw)−1; Pb: 1.10–2.44mg
(kg dw)−1; Cd: 0.074–2.15mg (kg dw)−1) sold as products from Japan,
Korea, and Spain (Almela et al., 2006). In this regard, the seaweed
biomass harvested in this large-scale study can be considered safe for
consumption and as source of molecules for food, feed, and nu-
traceutical applications.

In the environment, heavy metals originate from various sources,
which can be both of natural or anthropogenic origin. Rock weathering
and soil formation are the primary natural sources of heavy metals and
average natural contents vary between rock types. For example, higher
Pb can be measured in granite (17 ppm) compared to and basalt
(7 ppm) rock; conversely, higher Cd and Hg is found in basalt (0.21 ppm
and 0.09 ppb, respectively) compared to granite (0.13 ppm and
0.03 ppb, respectively), while As is comparable at 2.2 and 2.0 ppm,
respectively (Bradl, 2005). Consequently, heavy metal composition and
concentrations in water bodies are influenced by rock and sediment
type. On the other hand, the principal natural sources of trace metals in
the atmosphere are wind-borne, volcanoes, seasalt spray and wild forest
fires (Nriagu, 1989). Industrial sources include emissions from trans-
portation, coal combustion, and fugitive particulate emissions (Bradl,
2005). The substances released into the air can be diluted by prevailing
air currents, precipitated, or transformed by chemical reactions on their
way to the immission location, e.g. the marine environment (Bradl,
2005). The species-specific and site dependent heavy metal con-
centration observed in Fig. 5 may be related to one or a combination of
several factors above. However, we are not able to pinpoint a specific
factor that could have contributed to the higher concentration of

specific heavy metal in a species as we did not analyze the type of
substrate, and the heavy metal concentrations in the seawater, sedi-
ment, and atmosphere in each collection site. Moreover, the accumu-
lation of specific heavy metal is also dependent on the adsorption ca-
pacity, active-uptake mechanism, and the cell wall chemistry of the
seaweed species. For example, a biomonitoring study in the east coast
of USA showed that the heavy metal concentrations (e.g. Pb and As)
present in the sediment and seawater among different sites are not
correlated to the heavy metal concentrations accumulated in different
seaweed species e.g. the green Ulva lactuca and Enteromorpha intestinalis
[=Ulva intestinalis], and the brown Fucus vesiculosus (Chaudhuri,
Mitra, Havrilla, Waguespack, & Schwarz, 2007). Moreover, we are
tempted to speculate that the higher Cd content in Palmaria from Ice-
land may be related to the volcanism of the oceanic island. However,
this hypothesis needs to be validated.

4.3. Regulations

France was the first European country to establish a specific reg-
ulation concerning the use of seaweeds for human consumption as
non–traditional food substance. In addition, the EU set maximum levels
(ML) for different heavy metals in different seafood. ML for Cd is set at
0.05–0.25mg (kg ww)−1 for fish, 1.0 mg (kg ww)−1 for different
mollusks (including bivalves and cephalopods), and 0.05mg (kg ww)−1

for seaweeds (OJEU L138/75, 2014). ML for Pb is set at 0.30mg (kg
ww)−1 for fish and seaweeds, and 1.5 mg (kg ww)−1 for different
mollusk (OJEU L161/9, 2015) and for Hg for fisheries products in
general is set at 0.5–1.0 mg (kg ww)−1 (OJEU L364/5, 2006). At pre-
sent, there is no specified maximum level of As in seafood. The EU
recommends member states to monitoring on the presence of As in food
during the years 2016, 2017 and 2018 (OJEU L213/9, 2015). The
monitoring should include a wide variety of foodstuffs reflecting con-
sumption habits (including fish and seafood) in order to enable an ac-
curate estimation of exposure. The EFSA scientific opinion further re-
commends that speciation data for different food commodities should
be generated to support dietary exposure assessment in order to refine
the risk assessment of i-As (OJEU L213/9, 2015). In general, these re-
commendations apply very conservative ML for seaweeds in compar-
ison to fish and invertebrates. Recently, the EU recommends member
states, in collaboration with food and feed business operators, to
monitor the presence of As, Cd, Pb, As, Hg and iodine in seaweed,
halophytes and products based on seaweed during the years 2018, 2019
and 2020; data will be used to assess dietary exposure (OJEU L78/16,
2018).

4.4. Seaweed safety: health risk assessment

Seaweed consumption is generally considered safe: humans con-
sume large quantities and number of species since centuries. Except for
Cd, the mean levels of heavy metals investigated (i.e. t-As, Pb, and Hg)
in the three edible seaweed species were below the maximum re-
commended by CSHPF and Afssa (Table 5). However, health risks in
eating heavy-metal contaminated seaweeds can occur when (1) large
quantity of seaweeds are consumed at once, and (2) when small
quantities of seaweeds are consumed over prolonged periods of time,
even if the heavy metal concentration is low or below toxicity levels.

In the absence of European seaweed consumption data, we used a
very conservative approach to calculate exposure dose by assuming that
Europeans would ingest similar quantities of seaweed as a Chinese
consume on average (5.2 g/adult/day), which is higher than that
Japanese consume (4 g/adult/day; Zava & Zava, 2011) and lower than
average seaweed consumption in South Korean (8.5 g/adult/day;
Hwang, Park, Park, Choi, & Kim, 2010). The daily seaweed consump-
tion of Europeans are probably significantly (> 50%) lower than the
daily seaweed consumption in China. According to our findings, the t-
As, Pb, Cd, and Hg contents of the three edible seaweeds investigated

M.Y. Roleda et al. Food Control 95 (2019) 121–134

131



do not pose a significant health risk to humans (Table 6).
Heavy metals and organic compounds may be accumulated by

seaweeds, although our study showed minimal accumulation of heavy
metals in seaweeds harvested from non-polluted European waters. High
i-As-containing seaweed should be avoided or adequately processed
and cooked to eliminate excess i-As. In fact, exposure to heavy metals,
e.g. high dietary methylmercury (MeHg), in island and coastal in-
habitants comes from eating fish and whale (Dewailly et al., 2008)
rather than consuming seaweed.

Surprisingly, the deaths (11–14) and illnesses cases (73) reported
from eating seaweeds were not due to heavy metals contamination but
due prostaglandin E−2, a physiologically active lipid, produced by the
seaweed species of the genus Gracilaria (Cheney, 2016; Hsu, Tsao,
Chiou, Hwang, & Hwang, 2007) or the lethal toxins synthesized by
epiphytes associated with edible seaweeds species (Cheney, 2016;
Haddock & Cruz, 1991; Yotsu-Yamashita et al., 2004). The marine cy-
anobacterium Okeania sp., which synthesizes a lethal toxin poly-
cavernoside can be associated with the tropical edible red seaweeds
Acanthophora specifera and Gracilaria edulis (Navarro et al., 2015; Yotsu-
Yamashita et al., 2004). In this regard, consuming seaweeds con-
taminated with toxic cyanobacteria can expose humans to risks higher
than due to heavy metal contamination. This suggest that raw algal
material should be pretreated prior to consumption, regardless of spe-
cies, origin and harvesting time (e.g. Stévant et al., 2018).

5. Conclusion

This is the first long-term investigation into the quality of the three
edible seaweed species in the North Atlantic. The distinctive species-
specific and seasonal variation in the antioxidant systems between the
red and brown seaweeds is likely related to their habitat and exposure
to different environmental stressors, and taxonomic (and genetic) dif-
ferences. Species-specific differences in some heavy metal concentra-
tions can be attributed to the adsorption capacity, uptake mechanism,
and the cell wall chemistry. Spatial variation may be associated with
heavy metal concentrations at harvesting or cultivation location; this is
likely dependent on several natural and anthropogenic factors. Heavy
metal concentrations in Alaria, Saccharina and Palmaria were below the
French (CSHPF and Afssa) recommendation. A health risk assessment
showed that there is low health risk for heavy metals by intake of these
seaweed species. However, an EU-wide regulation on maximal con-
centration of heavy metals in seaweeds should be set-up.
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