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Abstract 

Modular adaptable ships have received growing attention in recent decades as a promising approach 

to handling uncertainty in future operating contexts. A modular adaptable ship can be used for 

multiple purposes by changing its module configuration. This configuration change is based on the 

ship’s operation platform, which is used as a common basis for multiple module configurations. The 

design of an operation platform is a multi-objective problem in which designers have to deal with the 

conflicting requirements of multiple missions and carefully determine the interfaces that affect the 

configurability and flexibility of the modules. In this paper, we present an optimization model for the 

design of an operation platform. This determines the optimal platform design that best meets the 

desired capabilities of multiple missions while considering its expected lifecycle cost. A platform’s 

capabilities are evaluated based on its multiple module configurations for individual missions. The 

evaluation of lifecycle cost uses operation scenarios due to its sensitivity. We implemented the model 

in a case study involving an offshore support vessel, for which an operation platform was designed to 

compete with inflexible multi-purpose ships. The results give insights into the platform design 



problem with opportunities for further improvement of the design. 
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1. Introduction 

 

Modular adaptable ship (MAS) design is an approach to designing value-robust ships that can 

maintain their value throughout the lifecycle. MASs can change their configuration based on 

modularity, which is ‘a particular structure, in which tasks and parameters are interdependent within 

modules and independent across them’ (Baldwin and Clark, 2000). Modules can be combined and 

separated efficiently, which provides decision makers with strategic options for handling contextual 

uncertainty. One example is the option to delay investment decisions until the need for particular 

modules is realized in a future operating context. This is referred to as ‘evolutionary acquisition’, 

which has been applied to the ship acquisition process of the US navy (Abbott et al., 2008). Another 

option is flexible mission selection. Because MASs can change their functions through ship 

reconfiguration, decision makers can use them for multiple purposes to maximize profit. More related 

research works can be found in other works (Abbott et al., 2008; Doerry, 2014; Choi and Erikstad, 

2017; Choi et al., 2017; Rehn et al., 2018). Figure 1 illustrates the concepts of evolutionary 

acquisition and mission flexibility. 

 



 

 

(a) Evolutionary acquisition. (b) Flexible mission selection with affordable 

ship reconfiguration. 

 

Figure 1. Operational flexibilities provided by modular adaptable ships. 

 

MAS design can have potential synergy with the configure-to-order (CTO) strategy. The CTO 

strategy is a bottom-up development approach in which a design team creates prototype designs by 

configuring predeveloped standard modules. This allows for reduced development time and cost, as 

well as improved design reliability with proven technologies. Moreover, rapid prototyping allows for 

better communication with customers, which is essential for defining the appropriate key performance 

indicators for projects.  

In ship design, the standard modules comprise ship modules and task-related modules (Erikstad 

and Levander, 2012). For instance, ship modules include the main hull, deckhouse, bridge, and tanks 

and voids, which serve basic functions for ship operation, such as buoyancy, transition, storage, and 

accommodation. Examples of task-related modules include weapons and sensor systems in navy ship 

design, as well as topside modules such as well intervention towers, cranes, remotely operated 

vehicles (ROVs), and saturated systems in offshore support vessel (OSV) design. In the CTO strategy, 

ship design projects can be defined by module configuration, evaluation, and selection to best meet 

individual customers’ needs. Figure 2 illustrates the process of ship design projects based on the CTO 

strategy. 

 



 

Figure 2. Ship design projects based on the configure-to-order strategy. 

 

There are standard task-related modules available for ship designers that are provided by third-

party vendors. This enables ship designers to focus on the design of ship modules and the 

configuration of standard modules. There are also approaches to module configuration and evaluation 

for MASs. The design building blocks (Andrews, 2011) and packing approach (Van Oers, 2011) are 

available design synthesis approaches for MASs. These approaches create design alternatives using 

independent chunks, which are referred to as ‘blocks’ and ‘objects’, respectively. Sødal et al. (2008) 

present an evaluation method for flexible ships and compare the economic value of a multi-purpose 

carrier with that of specialized carriers. Page (2012) uses a Monte Carlo simulation for evaluating the 

lifecycle cost of flexible naval ships. Pettersen and Erikstad (2017) present a lifecycle evaluation 

model for flexible offshore construction vessels and estimate the value of flexibility by benchmarking 

the flexible designs against inflexible designs. Choi and Erikstad (2017) focus on integration of 

module configuration and lifecycle evaluation and present an optimization model that determines the 

optimal initial module configuration based on the lifecycle value. The lifecycle value in evaluations is 

defined by the net present value (NPV), which includes the economic value of operational flexibility 

resulting from modularity. This is the value of evolutionary acquisition and mission flexibility.  

Along these lines, Choi et al. (2017) present a hybrid method for considering contextual 

uncertainty in a module configuration. This approach uses both optimization and simulation. The 

optimization determines the initial module configurations (designs), and the simulation evaluates 



them based on contract scenarios. The simulation proceeds in a rolling horizon manner, in which 

contextual information is gradually revealed during the simulation run, and operational decisions are 

made in response to the information. Doerry and Koenig (2017) present a framework for the design of 

MASs that also considers contextual uncertainty in MAS design. The main difference between this 

method and the hybrid method by Choi et al. (2017) is the way that uncertainty is modeled. While the 

hybrid method represents uncertainty as a set of deterministic scenarios, Doerry and Koenig’s (2017) 

framework represents uncertainty as a Markov chain in a discrete time domain. 

Compared with the standardization of task-related modules, the standardization of ship modules 

has received less attention in the commercial sector. There can be several possible explanations, but 

one of the prime reasons could be the failure case of Japanese shipyards. In the 2000s, major Japanese 

shipyards focused on ship standardization. However, in the context of high oil prices, customers were 

more interested in maximizing revenue rather than minimizing costs, so they preferred customized 

ships for individual projects. This caused the Japanese shipyards to lose their market share to major 

Korean shipyards, which focused on high-end customized ships (Park and Hong, 2015). However, 

since 2014, the sharp drop in oil prices has changed the market situation. In the context of low oil 

prices, the low break-even point makes the reduction of capital expenditure and operating expenditure 

more important. As a result, there is growing interest in the standardization of ships and even offshore 

production units, which are generally considered as high-end customized products (Agussol and 

Lavagna, 2017; Wyllie et al., 2017). 

The ship modules of a MAS serve as an operation platform. In the general context of engineering 

systems design, the term ‘platform’ (or ‘product platform’) indicates common parts, components, and 

modules from which a stream of derivative products can be created efficiently (Meyer and Lehnerd, 

1997). However, as Rehn et al. (2018) state, these terms should be distinguished carefully. While a 

product platform is a common basis for multiple products for mass customization, an operation 

platform is a common basis for multiple configurations of a flexible product.  

Corl et al. (2014) present an optimization model for the problem of ship platform design. This 

model determines the optimal platform design for two different classes of navy ships. The objective 



function is a multi-objective function that comprises the mission effectiveness of each ship class and 

cost savings due to the commonality. Mission effectiveness is used instead of net profit because the 

navy ships are not designed for making profits. In the analysis of cost savings, the model considers 

savings from larger bulk purchases of components and the construction learning curve. However, this 

model is more related to the design of product platforms rather than operation platforms. 

In this paper, we present an optimization model for the design of a standard operation platform for 

MASs. This problem has multiple objectives due to the inherent nature of operation platforms, in 

which a number of requirements of multiple missions conflict with each other and designers need to 

consider platform reconfiguration. The model determines the optimal balancing point in terms of both 

capability and economic aspects. The model considers platform interfaces that determine the 

configurability of task-related modules and their operational flexibility for platform reconfiguration.  

The rest of this paper is organized as follows. In Section 2, we describe the model in more detail 

and the underlying assumptions. Section 3 presents the mathematical concepts of the model. In 

Section 4, we implement the model in a case study, and Section 5 describes the results. In Section 6, 

we conclude the paper with a summary and future work. 

 

 

2. Operation platform design for modular adaptable ships. 

 

The presented model is a goal programming model, in which the objective is to minimize the 

deviation between the desired capabilities of multiple missions and the achieved capabilities of the 

platform. It is assumed that there is a given set of target missions (or markets) of the operation 

platform and given standard requirements for each mission. In practice, the mission set is defined 

strategically based on the company’s portfolio. The standard requirements are defined based on both 

quantitative and qualitative analyses, such as the most likely or average values. In platform design 

research, defining the market set is referred to as ‘platform strategy formulation’, for which a market 

segmentation grid (Meyer and Lehnerd, 1997) is often used. The model calculates the platform’s 



capabilities based on its best derivative designs. The best derivative designs indicate ship designs that 

can be derived from the operation platform with the optimal module configurations for individual 

missions. The optimal configurations are determined based on the lifecycle cost and the achieved 

capabilities. The lifecycle cost includes the platform acquisition cost and expected costs of module 

acquisition and platform reconfiguration. We use the term ‘expected’ in this case because these costs 

are dependent on the operation scenario. 

The model includes three types of decision variables: ‘basic variables’, ‘slot (interface) variables’, 

and ‘configuration variables’ respectively. One underlying assumption is that the basic variables and 

slot variables are considered as ‘platform variables’, which affect the capabilities and costs of all of 

the derivative designs. The basic variables are related to ship modules and determine the basic 

capabilities of derivative designs. For instance, the length (L), breadth (B), depth (D), draught (T), and 

block coefficient (𝐶𝐶𝐵𝐵) are basic variables that have a great effect on the ship’s basic capabilities, such 

as the deck area, deadweight tonnage (DWT), ship resistance, stability, and gross tonnage (GT).  

The slot variables determine the level of spatial, energy, material, and signal support and are 

associated with the configurability of task-related modules. The slot variables also determine the 

configuration flexibility of the modules in the operation phase. The model is based on an assumption 

that the task-related modules basically have configuration flexibility in the design phase, but whether 

they have the flexibility in the operation phase is dependent on the slot variables.  

The configuration variables are used to determine the best derivative designs. The configurability 

of modules is dependent on the slot variables, so the values of the configuration variables are 

determined together with those of the platform variables during the optimization process. Figure 3 

illustrates the relationship between the ship modules (defined as the main body), slots, and task-

related modules using a class diagram described by the unified modeling language (UML). The main 

body has one or more slots, and each slot has one or more alternatives. The properties of the slot are 

determined based on the selected alternative. A slot has a module list, which comprises a set of task-

related modules. Each slot has a module, and an empty slot is represented by assigning a dummy 

module. Each number of the class relationship represents the quantity that a class instance can have, 



and the black and white diamonds represent physical and conceptual relationships, respectively. Evans 

and Clark (1997) provide a more detailed explanation of UML. 

 

 

Figure 3. Description of ship modules, slots, and task-related modules using a class diagram in the 

unified modeling language. 

 

 

3. Mathematical model 

 

This section presents the mathematical concepts of the model. The following is a description of 

the sets, parameters, and variables involved. 

 

Sets: 

𝑵𝑵 Set of missions, indexed by 𝑛𝑛 

𝑺𝑺 Set of slots, indexed by 𝑠𝑠 

𝑴𝑴𝑠𝑠 Set of modules of slot 𝑠𝑠, indexed by 𝑚𝑚 

𝑨𝑨𝑠𝑠 Set of slot alternatives of slot 𝑠𝑠, indexed by 𝑎𝑎 

𝑷𝑷 Set of Capabilities, indexed by 𝑝𝑝 

𝐱𝐱 Set of basic variables, indexed by 𝑥𝑥𝑖𝑖 

𝐲𝐲 Set of slot variables, indexed by 𝑦𝑦𝑠𝑠𝑠𝑠 

𝐳𝐳 Set of configuration variables, indexed by 𝑧𝑧𝑛𝑛𝑠𝑠𝑛𝑛 



 

Parameters: 

𝐵𝐵𝑛𝑛𝑛𝑛 Goal value of capability 𝑝𝑝 of mission 𝑛𝑛 

𝑊𝑊𝑛𝑛𝑛𝑛
−  

Weight that penalizes negative deviation of capability 𝑝𝑝 in 

mission 𝑛𝑛 

𝑊𝑊𝑛𝑛𝑛𝑛
+  

Weight that penalizes positive deviation of capability 𝑝𝑝 in 

mission 𝑛𝑛 

𝑅𝑅𝑛𝑛 Normalization factor of capability 𝑝𝑝 

𝐿𝐿𝑖𝑖𝑋𝑋 Lower boundary of basic variable 𝑥𝑥𝑖𝑖 

𝑈𝑈𝑖𝑖𝑋𝑋 Upper boundary of basic variable 𝑥𝑥𝑖𝑖 

𝑁𝑁𝐸𝐸𝐸𝐸 Number of equality constraints 

𝑁𝑁𝐼𝐼𝐸𝐸 Number of inequality constraints 

𝐹𝐹𝑠𝑠𝑠𝑠 
1 if slot alternative 𝑎𝑎 of slot 𝑠𝑠 allows for flexible module 

configuration, 0 otherwise 

𝐻𝐻𝑠𝑠𝑠𝑠𝑛𝑛 
1 if slot alternative 𝑎𝑎 of slot 𝑠𝑠 allows for configuration of 

module 𝑚𝑚, 0 otherwise 

 

Variables: 

𝑥𝑥𝑖𝑖 𝑖𝑖-th basic variable 

𝑦𝑦𝑠𝑠𝑠𝑠 1 if slot alternative 𝑎𝑎 is selected for slot 𝑠𝑠, 0 otherwise 

𝑧𝑧𝑛𝑛𝑠𝑠𝑛𝑛 
1 if module alternative 𝑚𝑚 is configured to slot 𝑠𝑠 in mission 𝑛𝑛, 

0 otherwise 

𝑑𝑑𝑛𝑛𝑛𝑛−  
Negative deviation between goal and achieved capability 𝑝𝑝 in 

mission 𝑛𝑛 

𝑑𝑑𝑛𝑛𝑛𝑛+  
Positive deviation between goal and achieved capability 𝑝𝑝 in 

mission 𝑛𝑛 



 

Model: 

 Minimize  ��
𝑊𝑊𝑛𝑛𝑛𝑛

−

𝑅𝑅𝑛𝑛
∙ 𝑑𝑑𝑛𝑛𝑛𝑛−

𝑛𝑛∈𝑷𝑷

+ ��
𝑊𝑊𝑛𝑛𝑛𝑛

+

𝑅𝑅𝑛𝑛
∙ 𝑑𝑑𝑛𝑛𝑛𝑛+

𝑛𝑛∈𝑷𝑷𝑛𝑛∈𝑵𝑵𝑛𝑛∈𝑵𝑵

 (1) 

 

 s.t. 𝑓𝑓𝑛𝑛𝑛𝑛𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) + 𝑑𝑑𝑛𝑛𝑛𝑛− − 𝑑𝑑𝑛𝑛𝑛𝑛+ = 𝐵𝐵𝑛𝑛𝑛𝑛 𝑛𝑛 ∈ 𝑵𝑵, 𝑝𝑝 ∈ 𝑷𝑷 (2) 

  𝑑𝑑𝑛𝑛𝑛𝑛− ,𝑑𝑑𝑛𝑛𝑛𝑛+ ≥ 0 𝑛𝑛 ∈ 𝑵𝑵, 𝑝𝑝 ∈ 𝑷𝑷 (3) 

  𝑦𝑦𝑠𝑠𝑠𝑠 ∙ 𝑧𝑧𝑛𝑛𝑠𝑠𝑛𝑛 ≤ 𝐻𝐻𝑠𝑠𝑠𝑠𝑛𝑛 𝑛𝑛 ∈ 𝑵𝑵, 𝑠𝑠 ∈ 𝑺𝑺,𝑚𝑚 ∈ 𝑴𝑴𝑠𝑠 , 𝑎𝑎 ∈ 𝑨𝑨𝑠𝑠 (4) 

  (1 − 𝐹𝐹𝑠𝑠𝑠𝑠) ∙ 𝑦𝑦𝑠𝑠𝑠𝑠 ∙ 𝑧𝑧𝑛𝑛1𝑠𝑠𝑛𝑛 = (1 − 𝐹𝐹𝑠𝑠𝑠𝑠) ∙ 𝑦𝑦𝑠𝑠𝑠𝑠 ∙ 𝑧𝑧𝑛𝑛2𝑠𝑠𝑛𝑛 𝑛𝑛1,𝑛𝑛2 ∈ 𝑵𝑵, 𝑠𝑠 ∈ 𝑺𝑺,𝑚𝑚 ∈ 𝑴𝑴𝑠𝑠 , 𝑎𝑎 ∈ 𝑨𝑨𝑠𝑠 (5) 

  � 𝑦𝑦𝑠𝑠𝑠𝑠
𝑠𝑠∈𝑨𝑨𝑠𝑠

= 1 𝑠𝑠 ∈ 𝑺𝑺 (6) 

  � 𝑧𝑧𝑛𝑛𝑠𝑠𝑛𝑛
𝑛𝑛∈𝑴𝑴𝑠𝑠

= 1 𝑛𝑛 ∈ 𝑵𝑵, 𝑠𝑠 ∈ 𝑺𝑺 (7) 

  𝑔𝑔𝑛𝑛𝑛𝑛(𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = 0 𝑛𝑛 ∈ 𝑵𝑵, 𝑗𝑗 ∈ {1, … ,𝑁𝑁𝐸𝐸𝐸𝐸} (8) 

  𝑘𝑘𝑛𝑛𝑛𝑛(𝐱𝐱,𝐲𝐲, 𝐳𝐳) ≤ 0 𝑛𝑛 ∈ 𝑵𝑵, 𝑘𝑘 ∈ {1, … ,𝑁𝑁𝐼𝐼𝐸𝐸} (9) 

  𝑥𝑥𝑖𝑖 ∈ {0, 1} if 𝑥𝑥𝑖𝑖  is a binary variable, 
𝑖𝑖 ∈ {1, … , |𝐱𝐱|} (10) 

  𝐿𝐿𝑖𝑖𝑋𝑋 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖𝑋𝑋 otherwise, 

  𝑦𝑦𝑠𝑠𝑠𝑠 ∈ {0, 1}. 𝑠𝑠 ∈ 𝑺𝑺,𝑎𝑎 ∈ 𝑨𝑨𝑠𝑠 (11) 

  𝑧𝑧𝑛𝑛𝑠𝑠𝑛𝑛 ∈ {0, 1}. 𝑛𝑛 ∈ 𝑵𝑵, 𝑠𝑠 ∈ 𝑺𝑺,𝑚𝑚 ∈ 𝑴𝑴𝑠𝑠 (12) 

 

Equation (1) is the objective function, which minimizes the deviation between the goal and 

achieved capabilities in multiple missions. A negative deviation 𝑑𝑑𝑛𝑛𝑛𝑛−  and positive deviation 𝑑𝑑𝑛𝑛𝑛𝑛+  are 

penalized by weight 𝑊𝑊𝑛𝑛𝑛𝑛
−  and weight 𝑊𝑊𝑛𝑛𝑛𝑛

+ , respectively. The deviations are normalized by 𝑅𝑅𝑛𝑛 due to 

the different scales of each capability. Equations (2) - (3) define the deviations. The achieved 

capability 𝑝𝑝 in mission 𝑛𝑛 is calculated by function 𝑓𝑓𝑛𝑛𝑛𝑛𝑈𝑈 (𝐱𝐱,𝐲𝐲, 𝐳𝐳). Equation (4) allows for only feasible 

module configurations, which are dependent on slot variables 𝐲𝐲. An element of matrix 𝐻𝐻𝑠𝑠𝑠𝑠𝑛𝑛 is 1 if 

the configuration of module 𝑚𝑚 is feasible when alternative 𝑎𝑎 is selected for slot 𝑠𝑠. Otherwise, it is 0. 

Equation (5) allows only flexible slots to change their module configuration. This is also dependent 



on slot variables 𝐲𝐲.  

Equation (6) ensures that only one slot alternative is selected for a slot. Equation (7) ensures that 

every slot is assigned one module. Equations (8) and (9) are equality and inequality constraints that 

ensure that the designs derived from the operation platform meet given physical and economic 

constraints. Examples are the constraint of metacentric height (GM) for intact stability and the 

constraint of expected lifecycle cost. The economic constraint makes sure that the derivative ships 

have a competitive price compared with competing ships. The costs include the costs to exercise 

options, such as additional module acquisition and ship reconfiguration costs. The lifecycle costs are 

evaluated based on a set of scenarios because they are dependent on the operation scenario. Equations 

(10) - (12) define the basic, slot, and configuration variables. 

 

 

4. Case study 

 

We applied the model to the design of modular adaptable OSVs. The goal is to design a standard 

multi-purpose platform that best meets the market requirements with affordability. The derivative 

designs of the platform would compete with conventional inflexible multi-purpose vessels, which are 

not designed for vessel reconfiguration in operation. The target market is medium-size multi-purpose 

vessels (generally from 4000 to 6000 DWT). The mission set is defined by platform supply (PS), 

diving support (DS), offshore construction and installation (OCI), and inspection, maintenance, and 

repair (IMR) missions. The key capabilities are defined by DWT, deck area, maximum speed, crane 

capability, the number of divers, moonpool size, the number of ROVs, and dynamic positioning (DP) 

class. Figure 4 illustrates the requirements of each mission, which are defined by the goal 

capabilities 𝐵𝐵𝑛𝑛𝑛𝑛 in this platform design problem. 

 



  

  

Figure 4. Standard functional requirements of each mission. 

 

We use asymmetric penalty weights where negative deviations are more weighted than positive 

deviations. Table 1 provides information about weights 𝑊𝑊𝑛𝑛𝑛𝑛
−  and 𝑊𝑊𝑛𝑛𝑛𝑛

+ . The sum of all weights is 1. 

 
Table 1. Weight information (𝑊𝑊𝑛𝑛𝑛𝑛

−  and 𝑊𝑊𝑛𝑛𝑛𝑛
+ ). 

𝑊𝑊𝑛𝑛𝑛𝑛
−  DWT 

(𝑝𝑝 = 1) 
Deck area 
(𝑝𝑝 = 2) 

Speed 
(𝑝𝑝 = 3) 

Crane 
(𝑝𝑝 = 4) 

No. of divers 
(𝑝𝑝 = 5) 

Moonpool 
(𝑝𝑝 = 6) 

No. of ROVs 
(𝑝𝑝 = 7) 

DP class 
(𝑝𝑝 = 8) 

PS 
(𝑛𝑛 = 1) 0.026 0.033 0.013 0.020 0.007 0.007 0.007 0.020 

DS 
(𝑛𝑛 = 2) 0.028 0.024 0.014 0.007 0.056 0.042 0.021 0.014 

OCI 
(𝑛𝑛 = 3) 0.025 0.020 0.005 0.030 0.020 0.005 0.010 0.025 

IMR 
(𝑛𝑛 = 4) 0.020 0.020 0.033 0.020 0.033 0.033 0.020 0.033 



𝑊𝑊𝑛𝑛𝑛𝑛
+  DWT 

(𝑝𝑝 = 1) 
Deck area 
(𝑝𝑝 = 2) 

Speed 
(𝑝𝑝 = 3) 

Crane 
(𝑝𝑝 = 4) 

No. of divers 
(𝑝𝑝 = 5) 

Moonpool 
(𝑝𝑝 = 6) 

No. of ROVs 
(𝑝𝑝 = 7) 

DP class 
(𝑝𝑝 = 8) 

PS 
(𝑛𝑛 = 1) 0.020 0.020 0.007 0.003 0.013 0.020 0.026 0.000 

DS 
(𝑛𝑛 = 2) 0.021 0.021 0.014 0.004 0.000 0.007 0.000 0.000 

OCI 
(𝑛𝑛 = 3) 0.005 0.010 0.003 0.000 0.001 0.005 0.010 0.025 

IMR 
(𝑛𝑛 = 4) 0.020 0.007 0.007 0.000 0.000 0.007 0.013 0.033 

 
The platform is defined by six basic variables 𝐱𝐱 and three slot variables 𝐲𝐲. Table 2 describes the 

basic variables. Basic variable 𝑥𝑥5 is an integer variable that determines the moonpool size. If 𝑥𝑥5 = 1, 

the platform does not have a moonpool. If 𝑥𝑥5 = 2 or 3, the platform has a moonpool with a size of 

49 𝑚𝑚2 or 81 𝑚𝑚2, respectively.  

 
Table 2. Basic variables 𝐱𝐱. 

Hull variable Meaning Unit Range (Min - Max) Step 
length 

Number of 
levels 

𝑥𝑥1 Length (L) Meter 80 – 100 1 21 

𝑥𝑥2 Breadth (B) Meter 16 – 25 0.5 19 

𝑥𝑥3 Draught (D) Meter 6 – 7.4 0.2 8 

𝑥𝑥4 Speed (V) Knot 12 – 18 1 7 

𝑥𝑥5 Moonpool Integer 1 – 3 1 3 

𝑥𝑥6 DP class Integer 1 – 3 1 3 

 

The platform has a ROV slot (𝑠𝑠 = 1), DS system slot (𝑠𝑠 = 2), and crane slot (𝑠𝑠 = 3), and each slot 

has four alternatives (𝑎𝑎 = 1, 2, 3, or 4). The higher number of slot alternatives indicates the higher 

level of spatial, structural, and energy support for the configuration of modules. Alternative 3 of DS 

system slot, for instance, indicates a larger deck space with higher strength than that of alternative 1 

and 2. This enables the slot to configure a wider range of DS modules, but increases the platform 

acquisition cost as well. Alternative 4 of each slot is designed for configuration flexibility in the 

operation phase. The slot alternative is designed based on alternative 3, assuming that the additional 

effort on the development of the configuration flexibility increases the platform acquisition cost. Table 

3 describes the configuration flexibility and the cost of alternatives of each slot, which are defined 



by 𝐹𝐹𝑠𝑠𝑠𝑠  and C𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆, respectively. For instance, the selection of slot alternative 4 of DS system slot (𝑦𝑦24 = 1) 

indicates that the slot is designed for configuration flexibility (𝐹𝐹24 = 1) and the cost is $1.2M (𝐶𝐶24𝑆𝑆𝑆𝑆  = 

1.2). 

 
Table 3. Configuration flexibility and cost information of slot alternatives. 
Slot (𝑠𝑠) Slot alternative (𝑎𝑎) Flexibility (𝐹𝐹𝑠𝑠𝑠𝑠) Cost (C𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆) 

1 

1 0 0 
2 0 0.1 
3 0 0.2 
4 1 0.5 

2 

1 0 0 
2 0 0.5 
3 0 0.8 
4 1 1.2 

3 

1 0 0 
2 0 0.3 
3 0 0.5 
4 1 0.9 

Note: The unit of 𝐶𝐶𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆  is $M. 
 

Each slot has a list of module alternatives. Table 4 describes the module information. The 

achieved capability 𝑝𝑝 by the configuration of module 𝑚𝑚 of slot 𝑠𝑠 is defined by 𝑈𝑈𝑠𝑠𝑛𝑛𝑛𝑛
𝑀𝑀𝑀𝑀 , and the module 

acquisition cost is defined by 𝐶𝐶𝑠𝑠𝑛𝑛𝑀𝑀𝑀𝑀. The configuration of Module 2 of DS system slot in IMR mission 

(𝑧𝑧422 = 1), for instance, provides a capability of 12 divers (𝑈𝑈225𝑀𝑀𝑀𝑀 = 12), while it causes the loss of 

DWT of 76 tonnes (𝑈𝑈221𝑀𝑀𝑀𝑀 = -76) and a deck area of 48 𝑚𝑚2 (𝑈𝑈222𝑀𝑀𝑀𝑀 = -48). The first module alternative of 

each slot is a dummy module, for which the value is 0 for cost and capabilities. Table 5 presents the 

values of matrix 𝐻𝐻𝑠𝑠𝑠𝑠𝑛𝑛. The matrix value is 1 if module alternative 𝑚𝑚 can be configured to slot 𝑠𝑠 when 

alternative 𝑎𝑎 is selected for the slot. Otherwise, the value is 0. 

 

Table 4. Module information (𝑈𝑈𝑠𝑠𝑛𝑛𝑛𝑛
𝑀𝑀𝑀𝑀 ) 

Slot 
(𝑠𝑠) 

Module 
(𝑚𝑚) 

Cost 
(𝐶𝐶𝑠𝑠𝑛𝑛𝑀𝑀𝑀𝑀) 

DWT 
(𝑝𝑝 = 1) 

Deck 
area 

(𝑝𝑝 = 2) 

Speed 
(𝑝𝑝 = 3) 

Crane 
(𝑝𝑝 = 4) 

No. of 
divers 

(𝑝𝑝 = 5) 

Moon-
pool 

(𝑝𝑝 = 6) 

No. of 
ROVs 

(𝑝𝑝 = 7) 

DP class 
(𝑝𝑝 = 8) 

1 
1 0 0 0 0 0 0 0 0 0 
2 5 -28 -15 0 0 0 0 1 0 
3 10 -56 -30 0 0 0 0 2 0 

2 
1 0 0 0 0 0 0 0 0 0 
2 9 -76 -48 0 0 12 0 0 0 
3 12 -98 -64 0 0 18 0 0 0 



3 

1 0 0 0 0 0 0 0 0 0 
2 4 -200 -16 0 75 0 0 0 0 
3 7 -450 -30 0 150 0 0 0 0 
4 10 -750 -45 0 250 0 0 0 0 

Note: The unit of 𝐶𝐶𝑠𝑠𝑛𝑛𝑀𝑀𝑀𝑀 is $M. 
 
Table 5. Configurability matrix (𝐻𝐻𝑠𝑠𝑠𝑠𝑛𝑛). 
Slot (𝑠𝑠) Slot alternative (𝑎𝑎) ℎ𝑠𝑠𝑠𝑠1 ℎ𝑠𝑠𝑠𝑠2 ℎ𝑠𝑠𝑠𝑠3 ℎ𝑠𝑠𝑠𝑠4 

1 

1 1 0 0  
2 1 1 0  
3 1 1 1  
4 1 1 1  

2 

1 1 0 0  
2 1 1 0  
3 1 1 1  
4 1 1 1  

3 

1 1 1 0 0 
2 1 1 1 0 
3 1 1 1 1 
4 1 1 1 1 

 
In this case study, the normalization factor 𝑅𝑅𝑛𝑛 is always greater than the goal and achieved 

capabilities. Thus, the normalized deviations have a value between 0 and 1. Table 6 describes the 

normalization factors. 

 
Table 6. Normalization factors (𝑅𝑅𝑛𝑛).  

𝑅𝑅𝑛𝑛 Value Unit 
𝑅𝑅1 6300 Metric ton 
𝑅𝑅2 1200 Square meter 
𝑅𝑅3 18 Knot 
𝑅𝑅4 250 Metric ton 
𝑅𝑅5 18 Person 
𝑅𝑅6 81 Square meter 
𝑅𝑅7 3 Unit 
𝑅𝑅8 3 Class 

 
The objective is to minimize the deviations. The achieved value of capability 𝑝𝑝 in mission 𝑛𝑛 is 

calculated by the function 𝑓𝑓𝑛𝑛𝑛𝑛𝑈𝑈 (𝐱𝐱,𝐲𝐲, 𝐳𝐳). Equations (13) - (18) describe the functions. Equation (13) 

calculates the net DWT of a derivative design, which is calculated by deducting the weight of 

configured modules from the DWT of the platform. Equation (14) calculates the net deck area, which 

is calculated by deducting the area of modules and moonpool size from the deck area of the platform. 



The moonpool size is determined by basic variable 𝑥𝑥5, which is defined in Equation (18). Equation 

(15) also calculates the maximum speed of the derivative design, and Equations (16), (17), and (19) 

calculate the crane, DS, and ROV capabilities. These capabilities are determined based on the 

configured modules described in Table 4. Equation (20) calculates the DP class of a derivative design, 

which is determined by basic variable 𝑥𝑥6. 

 

  𝑓𝑓𝑛𝑛1𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = 0.3824 ∙ (1.027 ∙ 𝑥𝑥1 ∙ 𝑥𝑥2 ∙ 𝑥𝑥3 ∙ 𝐶𝐶𝐵𝐵) + 503.8 + � � 𝑈𝑈𝑠𝑠𝑛𝑛1
𝑀𝑀𝑀𝑀 ∙ 𝑧𝑧𝑛𝑛𝑠𝑠𝑛𝑛

𝑛𝑛∈𝑴𝑴𝑠𝑠𝑠𝑠∈𝑺𝑺

 (13) 

  𝑓𝑓𝑛𝑛2𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = 0.547 ∙ (𝑥𝑥1  ∙ 𝑥𝑥2) + 39.8 + � � 𝑈𝑈𝑠𝑠𝑛𝑛2
𝑀𝑀𝑀𝑀 ∙ 𝑧𝑧𝑛𝑛𝑠𝑠𝑛𝑛

𝑛𝑛∈𝑴𝑴𝑠𝑠𝑠𝑠∈𝑺𝑺

− 𝑓𝑓𝑛𝑛6𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) (14) 

  𝑓𝑓𝑛𝑛3𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = 𝑥𝑥3 (15) 

  𝑓𝑓𝑛𝑛4𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = � 𝑈𝑈3𝑛𝑛4
𝑀𝑀𝑀𝑀 ∙ 𝑧𝑧𝑛𝑛3𝑛𝑛

𝑛𝑛∈𝑴𝑴𝑠𝑠

 (16) 

  𝑓𝑓𝑛𝑛5𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = � 𝑈𝑈2𝑛𝑛5
𝑀𝑀𝑀𝑀 ∙ 𝑧𝑧𝑛𝑛2𝑛𝑛

𝑛𝑛∈𝑴𝑴𝑠𝑠

 (17) 

  𝑓𝑓𝑛𝑛6𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = �
0, if 𝑥𝑥5 = 1

49, if 𝑥𝑥5 = 2
81, if 𝑥𝑥5 = 3

 (18) 

  𝑓𝑓𝑛𝑛7𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = � 𝑈𝑈1𝑛𝑛7
𝑀𝑀𝑀𝑀 ∙ 𝑧𝑧𝑛𝑛1𝑛𝑛

𝑛𝑛∈𝑴𝑴𝑠𝑠

 (19) 

  𝑓𝑓𝑛𝑛8𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) = 𝑥𝑥6 (20) 

 

Physical constraints are described in Equations (21) - (24). Equation (21) does not allow for ‘fat’ 

platform designs, which have a relatively short length compared with their breadth and block 

coefficient. Equation (22) ensures that hull designs have feasible and intact stability. Equation (23) 

ensures that hull designs have a required freeboard of 1.6 meters, and Equation (24) enables hull 

designs to have the recommended 𝐶𝐶𝐵𝐵 according to Watson and Gilfillan (1977). 

 

  𝐶𝐶𝐵𝐵/(𝐿𝐿/𝐵𝐵) ≤ 0.15 (21) 

  𝐺𝐺𝐺𝐺 ≥ 0.15 (22) 

  𝐷𝐷 = 𝑇𝑇 + 1.6 (23) 



  𝐶𝐶𝐵𝐵 = 0.7 + 0.0125 ∙ tan−1(
23 − 100 ∙ Fn

4 ) (24) 

 

We used a set of 60 operation scenarios for evaluating the lifecycle cost. A single scenario is 

defined by 𝑒𝑒, and its set is defined by 𝐸𝐸. Each scenario comprises a series of missions in 4 time 

periods. We assume that the operation time of the platform is 20 years, which makes each time period 

is 5 years. The lifecycle cost is calculated by aggregating the platform acquisition cost and the 

expected cost of module acquisition and platform reconfiguration. The function 𝑓𝑓𝑒𝑒𝑆𝑆𝐸𝐸(𝐱𝐱,𝐲𝐲, 𝐳𝐳, 𝑒𝑒) in 

Equation (25) calculates the lifecycle cost in a single scenario 𝑒𝑒. The function 𝑓𝑓𝑃𝑃𝐸𝐸(𝐱𝐱,𝐲𝐲) calculates the 

platform acquisition cost with the assumption that the cost is not affected by the operation scenario. 

Equation (26) defines 𝑓𝑓𝑃𝑃𝐸𝐸(x, y). The cost is proportional to the product of DWT and the maximum 

speed of the platform, including moonpool cost 𝐶𝐶𝑥𝑥5
𝑀𝑀𝑃𝑃, DP system cost 𝐶𝐶𝑥𝑥6

𝑀𝑀𝑃𝑃, and slot cost ∑ ∑ 𝐶𝐶𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆 ∙𝑠𝑠𝑠𝑠

𝑦𝑦𝑠𝑠𝑠𝑠. The cost of different sizes of moonpools and DP systems is presented in Table 7. Equation (27) 

defines the function 𝑓𝑓𝑒𝑒𝑀𝑀𝐸𝐸(𝐳𝐳, 𝑒𝑒), which calculates the module acquisition cost based on operation 

scenario 𝑒𝑒. The function 𝑓𝑓𝑒𝑒𝑠𝑠𝑛𝑛𝑀𝑀𝑀𝑀(𝐳𝐳, 𝑒𝑒) returns 1 if module 𝑚𝑚 of slot 𝑠𝑠 is used in operation scenario 𝑒𝑒. 

Otherwise, it returns 0. The module cost 𝐶𝐶𝑠𝑠𝑛𝑛𝑀𝑀𝑀𝑀 is presented in Table 4. Equation (28) defines the 

function 𝑓𝑓𝑒𝑒𝑅𝑅𝐸𝐸(𝐳𝐳, 𝑒𝑒), which calculates the platform reconfiguration cost in operation scenario 𝑒𝑒. 𝐶𝐶𝑅𝑅𝐸𝐸  is 

a fixed platform reconfiguration cost for each time, for which we used $1.5M. The 

function 𝑓𝑓𝑒𝑒𝑁𝑁𝑅𝑅(𝐳𝐳, 𝑒𝑒) returns the number of reconfigurations in operation scenario 𝑒𝑒. This number is 

dependent on the configuration variables 𝐳𝐳 and the operation scenario 𝑒𝑒. We also assume that if the 

module configuration is the same in two missions, there is no platform reconfiguration cost for 

transition between the missions. 

 

  𝑓𝑓𝑒𝑒𝑆𝑆𝐸𝐸(𝐱𝐱, 𝐲𝐲, 𝐳𝐳, 𝑒𝑒) = 𝑓𝑓𝑃𝑃𝐸𝐸(𝐱𝐱, 𝐲𝐲, 𝐳𝐳) + 𝑓𝑓𝑒𝑒𝑀𝑀𝐸𝐸(𝐳𝐳, 𝑒𝑒) + 𝑓𝑓𝑒𝑒𝑅𝑅𝐸𝐸(𝐳𝐳, 𝑒𝑒) (25) 

  
𝑓𝑓𝑃𝑃𝐸𝐸(𝐱𝐱, 𝐲𝐲) = 0.000402 ∙ �(0.3824 ∙ (1.027 ∙ 𝑥𝑥1 ∙ 𝑥𝑥2 ∙ 𝑥𝑥3 ∙ 𝐶𝐶𝐵𝐵) + 503.8) ∙ 𝑓𝑓𝑓𝑓𝑛𝑛3𝑈𝑈 (𝐱𝐱, 𝐲𝐲, 𝐳𝐳)� −  1.572 + 𝐶𝐶𝑥𝑥5

𝑀𝑀𝑃𝑃

+ 𝐶𝐶𝑥𝑥6
𝑀𝑀𝑃𝑃 + � � 𝐶𝐶𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆 ∙ 𝑦𝑦𝑠𝑠𝑠𝑠

𝑠𝑠∈𝑨𝑨𝑠𝑠𝑠𝑠∈𝑺𝑺

 
(26) 

  𝑓𝑓𝑒𝑒𝑀𝑀𝐸𝐸(𝐳𝐳, 𝑒𝑒) = � � 𝐶𝐶𝑠𝑠𝑛𝑛𝑀𝑀𝑀𝑀 ∙ 𝑓𝑓𝑒𝑒𝑠𝑠𝑛𝑛𝑀𝑀𝑀𝑀
𝑛𝑛∈𝑴𝑴𝑠𝑠

(𝐳𝐳, 𝑒𝑒)
𝑠𝑠∈𝑺𝑺

 (27) 



  𝑓𝑓𝑒𝑒𝑅𝑅𝐸𝐸(𝐳𝐳, 𝑒𝑒) = 𝐶𝐶𝑅𝑅𝐸𝐸 ∙ 𝑓𝑓𝑒𝑒𝑁𝑁𝑅𝑅(𝐳𝐳, 𝑒𝑒) (28) 

 

Table 7. Cost information of 𝐶𝐶𝑥𝑥5
𝑀𝑀𝑃𝑃and 𝐶𝐶𝑥𝑥6

𝑀𝑀𝑃𝑃. 

𝐶𝐶𝑥𝑥5
𝑀𝑀𝑃𝑃 

𝑥𝑥5 = 1 𝑥𝑥5 = 2 𝑥𝑥5 = 3 
0 0.9 1.3 

𝐶𝐶𝑥𝑥6
𝑀𝑀𝑃𝑃 

𝑥𝑥6 = 1 𝑥𝑥6 = 2 𝑥𝑥6 = 3 
0.7 1.2 1.5 

Note: The unit of 𝐶𝐶𝑥𝑥5
𝑀𝑀𝑃𝑃and 𝐶𝐶𝑥𝑥6

𝑀𝑀𝑃𝑃 is $M. 
 
 
5. Numerical simulation results 

 

We used a genetic algorithm (GA) to solve the optimization problem because of its effectiveness 

in combinatorial optimization problems (Juan et al. 2015). The GA used 100 chromosomes of 

populations, and the termination criterion was reaching the 2000-th iteration. The optimization time 

was approximately 25 seconds on an Intel(R) Core(TM) i7-2600 3.40GHz CPU with 16.0 GB of 

RAM. The optimal platform design (𝐱𝐱∗ and 𝐲𝐲∗) and the optimal module configuration (𝐳𝐳∗) in each 

mission are presented in Tables 8 and 9, respectively. The derivative designs of the platform are 

compared with an inflexible multi-purpose ship, which was created using the same optimization 

model without considering ship reconfiguration. The inflexible ship was used as a benchmark ship 

with which the derivative designs would compete with in the market. Hence, the cost of the 

benchmark ship was used as the lifecycle cost limit in the design of the operation platform.  

 

Table 8. Specifications of the optimal designs (𝐱𝐱∗ and 𝐲𝐲∗). 
Design no. 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6 𝑦𝑦1𝑠𝑠 𝑦𝑦2𝑠𝑠 𝑦𝑦3𝑠𝑠 

Inflexible design 100 20 7.4 13 2 3 a = 3 a = 3 a = 2 
Flexible design 100 18 7.4 12 2 3 a = 4 a = 4 a = 4 

 
Table 9. Optimal module configurations (𝐳𝐳∗) of the optimal platforms. 

 PS (𝑛𝑛 = 1) DS (𝑛𝑛 = 2) OCI (𝑛𝑛 = 3) IMR (𝑛𝑛 = 4) 
Design Slot 1 Slot 2 Slot 3 Slot 1 Slot 2 Slot 3 Slot 1 Slot 2 Slot 3 Slot 1 Slot 2 Slot 3 

Inflexible design m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 

Flexible design m = 1 m = 1 m = 1 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 m = 3 

 
Table 10. Lifecycle cost of the optimal platforms. 



Design Expected  
lifecycle cost 

Platform  
acquisition cost 

Expected module 
acquisition cost 

Expected ship 
reconfiguration cost 

Inflexible design $61.31M $32.31M $29M $0 
Flexible design $58.91M $28.24M $29M $1.68M 

 
Figure 5 compares the capabilities of the designs. As shown in Table 9, both the inflexible and 

flexible designs have the same module configurations in DS, OCI, and IMR missions. This occurs 

because platform reconfiguration cost of the flexible design can be reduced if it has the same module 

configuration in the missions. However, in a PS mission, the flexible platform removes the ROV, DS, 

and crane modules for additional DWT and deck area. Thus, the flexible design can have more DWT 

compared with the inflexible design, although it has a shorter breadth. 

 
Inflexible design vs. flexible design Inflexible design vs. flexible design 

    
    

Inflexible design vs. flexible design Inflexible design vs. flexible design 

    
Figure 5. Comparison between the inflexible design and flexible design in multiple missions. 
 

Most of the deviations of the flexible design are small, but there are also some large deviations, 

such as in the moonpool size in the PS mission and the DWT in the OCI mission. These large 

deviations occur because the moonpool size and DWT cannot be adjusted by a flexible module 

configuration, although the GA determines the optimal balancing point within the limit of the lifecycle 

cost. The deviation of the number of divers in OCI and IMR missions occurs because the penalty 

weights on the positive deviations are relatively small (0.001 and 0, respectively). 

The identified problems involving large deviations could also be opportunities for developing the 



design further. For instance, the deviation of the moonpool size in the PS mission could be reduced by 

considering a moonpool-ready system. The system has doors on the top and bottom, so it can serve as 

a moonpool or storage space according to the demand. This may increase the acquisition cost of the 

operation platform, but it would be valuable for further investigating the benefits and costs. 

The target mission list could also be redefined based on the design results. For instance, the OCI 

mission requires a relatively high DWT and deck area compared to other missions. Thus, it is difficult 

to meet the requirements of the OCI mission because the increased DWT and deck area have negative 

effects on other missions. Instead, we can consider excluding the OCI mission from the target mission 

list and including another mission that better fits the other missions. 

 

 

6. Conclusions 

 

In this paper, we have discussed the CTO strategy and standard modules for efficient design of 

MASs. We presented an optimization model for the design of a standard operation platform, which is 

a common basis for multiple module configurations of MASs. In this goal programming model, the 

objective is to minimize the deviation between the goal and achieved capabilities in multiple 

missions regarding the lifecycle cost. The model uses slot variables that are associated with the 

configurability of modules, and determine whether to have reconfiguration options that can be 

exercised in the operation phase. In evaluating platforms, the model considers the best derivative 

designs using configuration variables, and the designs are determined in terms of both capability and 

economic aspects.  

The model was implemented in a case study, in which we designed a standard operation platform 

for the design of modular adaptable OSVs. We compared the derivative designs with an inflexible 

multi-purpose ship as a benchmark ship. We assumed that the derivative designs would compete with 

the benchmark ship in the market and thus used the acquisition cost of the inflexible design as a cost 

limit in the design problem. The design results provide insights into the design problem with 



opportunities to improve the design. 

We defined deterministic goals based on the average demand of the target missions. However, it 

can be difficult to use the average values when a customer has particular preferences. To address this, 

a scalable design could be one solution, in which one or more design variables are scalable. That is, 

the derivative designs can have a wider range of capabilities to satisfy particular preferences. For 

instance, scalable hulls have received attention for economies of scale in ship design, and the 

technology is mature (Doerry 2014). However, scalability can also decrease the reliability of 

knowledge on the standard design. More specifically, only some of the knowledge from previous 

projects is reusable if the scalable variables change the design significantly. For example, hull 

resistance is sensitive to changes in the hull dimensions. Therefore, it would be difficult to reuse 

previous experiment results if there are major changes in the hull dimensions. More research on this 

issue would be valuable in future studies. 

Goal programming models have generic difficulties in determining the normalization factors and 

weights. Thus, although the optimization model proposes a platform design in a quantitative manner, 

designers need to investigate the design further. They should be aware that the design results are 

highly dependent on the given requirements, preferences, weights, and operation scenarios. One 

example is the penalty weights of the crane capability in the case study. When we used symmetric 

weights that equally penalize the negative and positive deviations of the crane capability, the GA 

determined an unacceptable design that switches its crane module in each individual mission, 

although one crane can be used for multiple missions. This occurs because we used improper penalty 

weights on the positive deviation of the crane capability. In ship design, the weights can be 

determined based on the effect of capabilities on the economic or utility value of designs. However, in 

many cases, it is difficult to analyze the effect due to the complexity. Instead, decision makers can use 

the relative importance of the capabilities in determining the weights. Analytical hierarchy process 

(AHP), for example, can be used to determine the weights by comparison based on decision makers’ 

preference, knowledge, and experience. 

We used a static module list in evaluating platform designs. However, the module list will evolve 



throughout the platform’s lifecycle. In particular, there is high uncertainty in the future module list in 

the design of open architecture systems that share module interfaces with third-party vendors. 

Although uncertainty is often considered as a negative risk, it can also bring about significant 

potential benefits that increase the value of design (McManus and Hastings 2005). Thus, it is 

necessary to investigate the effects of future modules on the value of operation platforms. 

 

 

References 

 

Abbott, J.W., Levine, A., Vasilakos J., 2008. Modular/Open Systems to Support Ship Acquisition 

Strategies. American Society of Naval Engineers (ASNE) Day. 23-25. 

Agussol, L., Lavagna, P., 2017. Cost Effective Solutions: Less is More. Offshore Technology 

Conference.  

Andrews, D.J., 2011. Marine requirements elucidation and the nature of preliminary ship design. 

Transactions of the Royal Institution of Naval Architects (RINA), Vol 153, Part A1, International 

Journal Maritime Engineering (IJME), Jan-Mar 2011. 

Baldwin, C.Y., Clark, K.B., 2000. Design rules: The power of modularity (Vol. 1). MIT Press, 

Cambridge. 

Choi, M., Rehn, C. F., Erikstad, S.O., 2017. A hybrid method for a module configuration problem in 

modular adaptable ship design. Ships and Offshore Structures. 1-9. 

Choi, M., Erikstad, S.O., 2017. A module configuration and valuation model for operational flexibility 

in ship design using contract scenarios. Ships and Offshore Structures. 12(8), 1127-1135. 

Clark, A., Evans, A., 1997. Foundations of the Unified Modeling Language, in: Proceedings of the 

2nd Northern Formal Methods Workshop. Springer, New York. 

Corl, M. J., Parsons, M. G., Kokkolaras, M., 2014. Optimal Commonality Decisions in Multiple Ship 

Classes, in: Advances in Product Family and Product Platform Design (pp. 625-645). Springer, 

New York. 



Doerry, N.H., 2014. Institutionalizing Modular Adaptable Ship Technologies. Journal of Ship 

Production and Design. 30(3), 126-141. 

Doerry, N.H., Koenig, P., 2017. Framework for Analyzing Modular, Adaptable, and Flexible Surface 

Combatants. SNAME Maritime Convention, Houston, TX, October 25-27, 2017. 

Erikstad, S.O., Levander, K., 2012. System Based Design of offshore support vessels. Proceedings of 

the 11th International Marine Design Conference (IMDC), 2012. 

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., Figueira, G., 2015. A review of simheuristics: 

Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations 

Research Perspectives. 2, 62-72. 

McManus, H., Hastings, D., 2005. A Framework for Understanding Uncertainty and its Mitigation 

and Exploitation in Complex Systems. In INCOSE International Symposium. 15, 484-503. 

Meyer, M.H., Lehnerd, A.P., 1997. The power of product platforms. The Free Press, New York. 

Park, Y., Hong, P., 2015. Product architecture and product development: Case study of Korean 

shipbuilding firms. In: Management of Engineering and Technology (PICMET), 2015 Portland 

International Conference on (pp. 1603-1609). IEEE. 

Page, J., 2012. Flexibility in early stage design of US Navy ships: an analysis of options. J Ship 

Product Des. 28, 128–133. 

Pettersen, S.S., Erikstad, S.O., 2017. Assessing flexible offshore construction vessel designs 

combining real options and epoch-era analysis. Ship Technology Research. 64(2), 76-86. 

Pimmler, T.U., Eppinger S.D., 1994. Integration analysis of product decompositions. ASME Design 

Theory and Methodology Conference, Minneapolis, MN. 

Rehn, C.F., Pettersen, S.S., Erikstad, S.O., Asbjørnslett, B.E., 2018. Investigating tradeoffs between 

performance, cost and flexibility for reconfigurable offshore ships. Ocean Engineering. 147, 546-

555. 

Sødal, S., Koekebakker, S., Aadland, R., 2008. Market switching in shipping - A real option model 

applied to the valuation of combination carriers. Review of Financial Economics. 17(3), 183-203. 

Van Oers, B.J., 2011. A packing approach for the early stage design of service vessels. PhD Thesis, 



TU Delft. 

Watson, D.G.M., Gilfillan, A.W., 1977. Some ship design methods. Naval Architect. (4). 

Wyllie, M., Newport, A., Mastrangelo, C., 2017. The Benefits and Limits of FPSO Standardisation. 

Offshore Technology Conference.  




