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Abstract
Reactive transport in porous media with dissolution and precipitation has important applications in oil and gas industry and
groundwater remediation. In this work, we present a simulation method for reactive flow in porous media of two salts
that share an ion. The method consists of a front-tracking solver that uses the Riemann solutions of the underlying set
of hyperbolic partial differential equations. In addition to the discontinuities stemming from the nonlinearities of the flux
function, the flux function for the corresponding advection reaction equation also admits discontinuities for a heterogeneous
medium. Here, we solve the Riemann problem for the governing nonlinear hyperbolic system with a discontinuous flux
function. We use mass balance across the interface and the non-decreasing sequence of velocity of waves to seek the unique
solution for this problem. Furthermore, a model is provided for mixing of streamlines at the well to estimate the amount
of precipitate. In the use of streamline methods, we have modified the definition of time-of-flight to allow the model to be
easily utilised for the heteregeneous case. The simulation method is applied to model dissolution through injection of an
unsaturated fluid. It is shown that the first dissolution shock, which causes induced precipitation due to the co-ion effect,
results in accumulation of precipitate at the well.

Keywords Precipitation and dissolution · Hyperbolic systems · Front-tracking algorithm · Streamline simulation method
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1 Introduction

Dissolution and precipitation of minerals in reactive flows
are important phenomena in many industrial and natural
processes. Water-flooding operations in oil and gas industry
are one of these processes where evaluation of precipitation
and dissolution of minerals plays a major role in reducing
potential risks. In water-flooding, oil is driven out of the
production well by injecting sea water into the reservoir
at different locations. The two water streams, consisting
of resident formation brine and the injected sea water,
respectively, become chemically reactive as they propagate
through the reservoir due to their different compositions.
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These chemical reactions involve precipitation of minerals
in the reservoir and more importantly at the wellbore [33].

In this work, we present a streamline method for flows
with two chemical reactions involving dissolution and precip-
itation of two salts relevant to water-flooding. In principle,
the two salts that initiated the discussion of this problem
were barium sulphate and calcium sulphate. These salts
are common precipitates that form around the wellbore. It
should be noted that for simulating scaling at the wellbore,
the porosity away from the well will at most change by a
factor 0.15% in the most extreme case. This happens when
a stream of 4000 ppm barium mixes with another stream of
water that is reach in sulphate. Hence, assuming a constant
porosity seems to be a reasonable assumption. This holds
true everywhere except for around the well where the accu-
mulation of precipitates changes the flow path dramatically
[33]. Assuming constant porosity, along with other relevant
assumptions, allows us to decouple the flow and transport
in this problem. In addition, considering the fact that the
flow is dominated by trasport in these type of problems [2],
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we can effectively model the problem using a hyperbolic
system of partial differential equations. This class of prob-
lems is a good candidate to be used in streamline simulators.
However, it should be also noted that numerical solutions
for a class of more general problems including diffusion has
been studied and developed [1, 23, 24]. The models in these
papers have been obtained from the work of [22]. More
comprehensive models have been developed accounting for
the effect of porosity change on the flow and temperature on
the chemical equilibrium [8]. Others have studied the effect
of temperature on the viscosity and density of the fluid [9]
and multiphase flow settings [31].

Streamline simulation is a divide-and-conquer strategy
that solves flow (pressure/flux) and fluid transport in sep-
arate steps. It uses a Lagrangian grid with sub-grid reso-
lution for the fluid transport and exploits loose couplings
in the equations to enable large time steps. In principle,
a streamline simulator for porous media has three main
components that work together;

1. A pressure solver that calculates the pressure field by
solving the elliptic or parabolic pressure equation and
evaluates the velocity field using Darcy’s law. This
solver works on the Eulerian coordinates.

2. A 1D solver that solves the evolutionary 1D transport
problem for a given time step on the Lagrangian
coordinates.

3. A mapping from Eulerian to Lagrangian coordinates
and vice versa. The former uses the flow information
(pressure and velocity field) to obtain the Lagrangian
coordinates. This transformation decouples the 2D/3D
problem into a family of 1D problems along stream-
lines. Since the 1D problems are independent, we can
pick a representative set of streamlines. These stream-
lines are then passed to a 1D solver that propagates
compositions or other quantities. The results of the 1D
solver are mapped back to the Eulerian coordinates
through averaging the quantities from streamlines.

The choice of the 1D solver depends on the physi-
cal processes involved and affects the overall performance.
Front-tracking algorithms are very well suited for convec-
tion dominant flows, because they use the exact solution of
the corresponding Riemann problem and can resolve dis-
placement fronts and other discontinuities exactly [12, 20].
A Riemann problem is an initial-value problem for a hyper-
bolic partial differential equation where the initial data is a
step function. The solution to a Riemann problem involves
propagating waves or traveling discontinuities. These waves
may smear out and form a continuous variation as they
propagate (in the nonlinear case) or they may retain their
sharpness while traveling in the system (in both linear and
nonlinear case).

For the the corresponding Riemann problem of the
problem at hand, we use the solution provided by Helfferich
in a porous medium with constant porosity (homogeneous)
[18]. We extend Helfferich’s solution to the heterogeneous
case by reformulating it in hyperbolic terminology. The flux
function for the corresponding reactive advection problem
depends on the porosity. Hence, we need to solve a system
of nonlinear hyperbolic equations with discontinuous flux
function in the heterogeneous case.

Hyperbolic partial differential equations with discontinu-
ous flux function appear frequently in simulation of flow in
porous media. The theory is well established for solution to
generic 1D scalar cases [3, 4, 15, 16] and multidimensional
scalar cases [6]. However, a general approach to solve these
type of challenging problems for system of equations is not
available. Existence and uniqueness of solutions for linear
systems have been studied and some numerical techniques
for nonlinear systems are suggested based on linearisation
[17]. Another type of approximation for systems with fixed
interface is suggested in [7]. The solution in the general case
can depend on the small scale assumptions. The main point
of our problem is that all the waves travel in the same direc-
tion and a global solution can be derived. Our solution for
the 2×2 system is based on conservation of mass across
the interface and the simple principle of increasing speed
of propagation for the sequence of solution waves which
for two waves means that the leading wave must propagate
faster than the trailing wave.

The novelties of the approach in this manuscript are
three main ideas. The first one is on the mixing rule at
the well. Generally, at the well, where the flow converges,
one obtains a maximum mixing of incoming fluid. In
finite volumes, it is needed to have a finer mesh close to
wellbore to capture this mixing. However, the mixing model
discussed in Section 3.2 does not require a finer spatial
resolution. The second is the spatial parameterization used
along streamlines; to incorporate heterogeneities, this is
chosen to be different than the usual time-of-flight. Finally,
we have solved a 2×2 Riemann problem with discontinuous
flux functions. The general solution for hyperbolic systems
with discontinuous functions do not exist in a closed form
[17]

The structure of this manuscript is as follows: Section 2
describes the physical and chemical model. In Section 3,
we provide a brief discussion on streamline simulators and
develop a model for mixing of streamlines at the well. In
Section 4, we provide the Riemann solution for the one-
dimensional problem. We provide a review of the solution
provided by [18] together with our extension of the solution
for the heterogeneous case. A few examples for different
settings are illustrated in Section 5. Concluding remarks are
presented in Section 6.
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2Model equations

The problem we address here is the injection of brine into a
reservoir that already contains another brine with a different
composition. The difference in compositions causes the two
brines to react as the injected brine pushes the initial one.
The flow field is obtained independent of the chemical
reactions and transport of the materials. We assume there is
no difference in the density and the viscosity of the injected
and the produced brine. For the use case of this problem, i.e.
dissolution and precipitation of sulphate minerals (BaSO4
and CaSO4), the change of density of the water is negligible.
However, the reader should refer to [29] for stablity of
density-driven flows and [8, 9, 31] for full models that
incorporate the density change. The Darcy’s law in the
absence of gravity reads

v = −K

μ
∇P, (1)

where K is the permeability tensor and μ is the viscosity of
the solution. Mass conservation for an incompressible fluid
in an incompressible rock requires

∇ · v = 0. (2)

Equations (1) and (2) with relevant prescribed boundary
conditions are solved to obtain the velocity field.

For the reactive part, we consider two ions A and B that
react with another ion C to produce two salts AC and BC
which precipitate,

A + C ↔ AC, (3a)

B + C ↔ BC. (3b)

At constant temperature and when ions are in equilibrium,
the products of the ion concentrations are constant, i.e.,

kA = nAnC, (4a)

kB = nBnC, (4b)

with nα being the concentration of component α in the fluid
(e.g., moles per litre).

The total amount Nα of component α in a unit volume of
a porous medium is

NA = nAφ + mA, (5a)

NB = nBφ + mB, (5b)

NC = nCφ + mC . (5c)

where φ is the porosity of the rock and mα denotes the
amount of component α in form of precipitate (AC and
BC in Eq. (2)) per volume of rock (mole per litre). We
assume that the volume of precipitates is negligible and
thus the porosity does not change due to dissolution and
precipitation of salts. In addition, we assume that the
dissolution or precipitation of salts has a negligible effect
on the volume and density of water. These two assumptions

mean that precipitation can not drive flow and therefore
limit the coupling between flow and transport.

Using the charge balance equation

nC = nA + nB, (6)

in Eqs. (4) and (5) and the fact that the amount of C
precipitate equals the sum of that of A and B, the two
independent primary variables NA and NB are chosen.

We assume the precipitates are stationary. Hence, the
amount of component α that is transported by the fluid
is vnα . The governing equations for the corresponding
reactive transport problem read

∂Nα

∂t
+ ∇ · (vnα) = 0, α = {A, B}, x ∈ � ⊂ R

3, t > 0,

(7a)

with the initial compositions

Nα(x, t = 0) = Nα0(x), (7b)

and appropriate boundary condition on ∂�. For the rest of
this manuscript, we use bold letters N and n to represent
the total and fluid concentrations in vector form i.e., N =(

NA

NB

)
and n =

(
nA

nB

)
.

Equation (7a) is a conservational law. The conserved
quantities are NA and NB . In this formulation, concentra-
tions in the fluid take the role of flux functions, i.e., nA =
nA(NA, NB) and nB = nB(NA, NB). Explicit expressions
for the secondary variables, (flux functions nA and nB and
precipitate functions mA and mB ) in terms of NA and NB

depend on the presence of precipitates, i.e. whether or not
the fluid is saturated. We expand on the functional form of
these relationships in Section 4.1 and derive explicit forms
in the Appendix.

3 Streamline simulation

We choose a combination of streamline and front-tracking
methods to solve Eq. (7) numerically for several reasons.
First, the inherent numerical diffusion in finite volume
methods will often overestimate or underestimate the
amount of precipitate. As we will see in Section 4,
the Riemann solution for the 1D case involves contact
discontinuities in many cases. For contact discontinuities,
the characteristic wave speeds are equal on both sides of the
propagating discontinuity. Unlike multiphase displacement
fronts, these discontinuities do not have any inherent self-
sharpening mechanism and are therefore more susceptible
to numerical smearing when solved with a low-order finite
volume scheme. Second, general numerical methods are not
computationally efficient for Eq. (7a). The flux functions
nα are not differentiable across the boundary curves on the
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hodograph plane (see Section 4.1) for constant values of
φ. This non-differentiability imposes restrictions on time
steps for implicit finite volume methods because standard
Newton solvers fail to converge for large time steps. Non-
smooth variations of φ in space renders the flux function
discontinuous which in turn introduces more difficulty in
implementing finite volume methods. Third, the solution for
the simplified case is already developed [18] and we can
develop the more general case based on that. Availability of
the solution for the 1D Riemann problem makes the problem
well suited for front tracking. Finally, streamline methods
can often be more computationally efficient than finite
volume methods in large domains and highly heterogeneous
media [14].

3.1 Flow in the reservoir

In this section, we provide a streamline method to
simulate the reactive flow in a porous medium. In a
streamline simulator, we convert the multidimensional
transport equations into a set of simpler 1D equations. Each
1D problem explains the propagation of quantities along one
streamline. A streamline at an instance of time is a curve
that is everywhere tangential to the velocity field. Therefore,
two streamlines can never cross and the transport along a
streamline is a 1D problem [14].

Herein, we will only solve the flow equations, Eqs. (1)
and (2), on rectilinear grids. This means that we can use
a variant of Pollock’s method [30] to trace streamlines. In
streamline methods for typical problems, e.g., tracer trans-
port or two-phase flow saturation calculation, the stream-
lines are traced using Pollock’s method by calculating the
time-of-flight for an arbitrary particle at initial position xi .
The time-of-flight τ ∗ is defined as the time that is required
for a particle at xi to reach a certain position x

τ ∗ =
∫ x

xi

φ

|v|dξ . (8)

The integral in the above definition is along the particle
path. Here, we use a modified definition of time-of-flight
that does not include φ, i.e.,

τ =
∫ x

xi

1

|v|dξ . (9)

The reason we use this definition is twofold. First, we can
reconstruct the 1D form of Eq. (7a) along a streamline with
no explicit dependence on φ. The result is similar to a truly
1D problem. To reconstruct the 1D form,

∂Nα

∂t
+ ∂nα

∂x
= 0, α = {A, B}, x ∈ R, t > 0. (10)

we expand the divergence operator in Eq. (7a) and use
Eq. (2) and the differential form of Eq. (9), i.e.

v · ∇τ = 1.

The result is the 1D problem in time-of-flight coordinates

∂

∂t

(
NA

NB

)
+ ∂

∂τ

(
nA(NA, NB)

nB(NA, NB)

)
= 0. (11)

Second, for streamline methods, the porosity only occurs
explicitly in the temporal derivative. Here, in contrast, in
Eq. (7a) both terms nα and Nα are functions of φ. This
means that the 1D wave speeds in Eq. (11) will involve φ,
whereas in other streamline methods, the effect of φ on the
wave speed is accounted for in τ and not seen in the 1D
equations.

After the propagation along the streamlines, the solutions
are mapped back on to the spatial grid. The overall value of
quantities for each cell is calculated using the contribution
of each streamline that passes through that cell. The result
of the 1D solver for each streamline is averaged to yield the
concentration on each cell in the multidimensional domain
using the following equation

Nα,j =

nsl∑
i=1

Viτi,jNα,i,j

nsl∑
i=1

Viτi,j

, (12)

where nsl represents the number of streamlines and τi,j is
the incremental time-of-flight of streamline i at cell j and
Vi is the amount of fluid that streamline i carries [21].

To evaluate the amount of fluid Vi that each streamline
carries in 2D settings, we use the method suggested in [28].
We distribute the injected fluid on the outflow faces of the
inlet cells in the Eulerian grid. An inlet cell is defined as
a cell through which fluid is injected into the domain. In
this regard, each streamlines is associated with a conceptual
stream-tube. The boundaries of these stream-tubes are
constructed by bisecting the location of streamlines on the
outflow faces of the inlet cell. The width of each stream-tube
is proportional to the amount of flow of its corresponding
streamline. Hence, the fluid is distributed to the streamlines
according to the weights that are determined by the width
each stream-tube.

If the flow field changes for any reason, it has to be
reflected on the streamlines. Hence, after a simulation from
time t0 = 0 to t1, the quantities are mapped to the Eulerian
grid (using e.g., Eq. (12)), the flow field is recalculated
and the fronts are propagated from t1 to t2. This introduces
a special type of numerical diffusion that may smear the
fronts. For this problem, however, we will not consider any
scenarios that changes the flow field and hence it remains
constant. Herein, we run the simulation always from t0 = 0
to any time t and therefore, the results are free from any
error caused by numerical dispersion.
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3.2 Mixing at well

In many circumstances, such as during the water-flooding,
the flow is dominated by advection, and thus mixing through
diffusion is limited in the reservoir. However, at the well all
streamlines converge and mixing takes place. If this mixing
results in an excessive production of precipitates (scales),
the well will clog and the flow stops. Scaling requires
very expensive remediation strategies. In this section, we
provide a model for mixing of streamlines at the well to
estimate the concentration and the amount of produced
precipitates. We assume that all streamlines converge at the
well and only at the well. We assume that the streamlines
mix and reach equilibrium in a certain volume Vw. In this
volume, precipitates form if the molar content of a species
exceeds its saturation value. The fluid mixture without the
precipitate then leaves the well towards the surface. The
subsequent dynamics are not addressed here. The mass
balance for the components at the well reads as

N(tk + δt) = N(tk) + fin − fout

Vw

δt, (13)

where fin and fout are the molar inflow and outflow of
ions to the well, respectively. According to our mixing
assumption, we set δt such that at the next time step, the
well contents are completely swept out and replaced by the
new mixture of streamlines. We approximate fin and fout as
constant values from tk to tk + δt . Given the total flow rate
q we obtain the time step δt from the following relation

δt = Vw

q
. (14)

For the molar inflow we have

fin = δt

nsl∑
i=1

qini (tk), (15)

where qi denotes the flux of streamline i and ni (tk) is
the vector of concentrations at time tk associated with
streamline i. Note that in Eq. (15) we have used n and not
N , because the precipitates do not move and it is only the
fluids that mix at the well. The molar outflow is expressed
via the following equation

fout = δt n̄(tk)

nsl∑
i=1

qi, (16)

where n̄(tk) is the concentration of the equilibrated outflow
from the well at time tk . The summation in the Eq. (16)
yields the total out-flux from the well q. Using Eqs. (5a),
(15) and (16) in Eq. (13) with φ = 1 yields

N(tk + δt) = n̄(tk) + m(tk)

+ δt

Vw

(
nsl∑
i=1

qini (tk) − qn̄(tk)

)
, (17)

with m = (mA, mB)T . Inserting the value of δt (Eq. (14)) in
Eq. (17) yields the total amount of components at the next
time step

N(tk + δt) = 1

q

nsl∑
i=1

qini (tk) + m(tk) (18)

The average value of concentrations in the fluid at the next
time step n̄(tk+δt) and the amount of precipitates m(tk+δt)

is calculated using Eqs. (5a) and (36) with φ = 1 and
N(tk + δt) obtained from Eq. (18).

Note that we have not used any spatial resolution for the
well in deriving Eq. (18). In fact, we only post-process the
results from the streamline simulator. Note further that Vw

is a model parameter that represents the mixing volume in
the well. To obtain the history of concentration n̄(tk) and
the amount of precipitate at the well m(tk), we need to
iterate through Eq. (18) with the estimated value for δt . An
interpolation might be required since δt and the time step
for the streamline simulator are not essentially equal.

4 Front-tracking and Riemann solver

The initial conditions for Eq. (11) are piece-wise constant,
because a streamline passes through several cells that
potentially have different concentration of components.
We first develop the solution for the case with a single
discontinuity in the initial compositions, i.e.,

N(x, 0) =
{

N l , x < 0,

N r , x > 0.
(19)

Here, we use subscripts l and r representing left and
right compositions, respectively. Equation (10) with initial
compositions given by Eq. (19) is referred to as a Riemann
problem. In Section 4.3, we combine Riemann solutions
to construct the global solution for several discontinuities
using front tracking.

The solution to the Riemann problem follows from
Helfferich [18]. In the next subsection, we give a summary
of his analysis. The solution and the analysis applies to the
case where porosity of the medium is constant. This solution
is extended to involve heterogeneities of the system in the
second subsection.

4.1 Helfferich’s solution for constant porosity

The solution to any 1D Riemann problem depends only on
the flux function and the two compositions (states), N r and
N l , of the initial condition. Any other composition (state)
that appears is transient and we refer to it as an intermediate
state. The solution is self-similar and is obtained through
the method of characteristics (also known as Riemann
fans). Accordingly, the solution is characterised by a set
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of waves that separate different states [26]. Any state can
be represented as a point in the state-space, which is often
referred to as the hodograph plane [32]. Constructing the
solution in the hodograph plane allows us to trace the
waves by following composition paths from the two initial
states.

Figure 1 shows the corresponding hodograph plane for
the problem at hand. Four regions representing four fluid
conditions are marked in Fig. 1. Region I is unsaturated
while region II is fully saturated with both salts. Regions
III and IV are partially saturated (i.e., only one salt is
saturated). For a single saturated component A, Eqs. (4a)
and (6) with nB = 0 yield the single component saturation
concentration as

ñA := √
kA (20)

for A and similarly

ñB := √
kB (21)

for component B. When both A and B are saturated, we need
to solve Eqs. (4a), (4b) and (6) for nA and nB to obtain the
saturation concentrations as

n̂A := ñA√
ñ2

A + ñ2
B

, n̂B := ñB√
ñ2

A + ñ2
B

. (22)

Fig. 1 Hodograph plane and the separating curves for kA = 1, kB =
2, φ = 0.2. A fluid in region I is unsaturated, whereas in region II, it is
saturated with both components and therefore both precipitates exist.
In region III, we have precipitates of A, but the fluid is unsaturated
with respect to B. Region IV is the reverse of region III. The boundary
curve between regions I and III, where A becomes saturated but B
remains unsaturated, is labelled as ABU . The boundary curve BAU is
similarly defined. The horizontal and vertical lines are the other two
boundaries denoted by BAS and ABS , respectively. The triple point

with coordinates
(
n̂Aφ, n̂Bφ

)T is defined as the intersection of all the
boundary curves

The separating curve between regions I and III in
Fig. 1 is obtained when no precipitates are present, i.e.,
mA = mB = 0. Eqs. (4a), (5a) and (5b) can now be
combined to obtain

ABU :=
{

NB = (φñA)2

NA

− NA

}
. (23)

Similarly,

BAU :=
{

NA = (φñB)2

NB

− NB

}
, (24)

is obtained for the curve separating regions I and IV. The
border between regions II and III and between II and IV are
defined by the straight lines

ABS := {NA = φñA} , (25)

BAS := {NB = φñB} , (26)

respectively. It is now possible to mathematically define
regions I to IV using Eqs. (23) to (26).

The structure of the self-similar solution depends
on the saturation of the components in both left and
right compositions, i.e., their location in the hodograph
plane. The propagating concentration variations for this
system are either contact discontinuities or shocks. Contact
discontinuities are elementary waves that are sharp in the
absence of diffusion and smear proportional to the square
root of time in systems with diffusion. The latter occurs
because these waves lack any self-sharpening properties.
Shocks on the other hand tend to balance the diffusion
mechanisms with the hyperbolic self-sharpening properties
of the shock. Hence, a shock retains its shape after
an initial smearing [26]. For our problem, shock waves
are retarded chemical fronts that form as a result of a
complete dissolution of a salt. Here, the number of shocks
is equal to the number of salts being dissolved [10].
Contact discontinuities are transport waves that advance
a concentration variation whenever there is no chemical
reaction happening, i.e. when the solubility product is less
than ksp. A non-stationary contact discontinuity propagates
with the same speed as the fluid flows. Another form of
contact discontinuities appear if a salt is partially dissolved.
These contact discontinuities are stationary waves [18].

To use the method of characteristics, we analyse the
Jacobian matrix of the quasi-linear form of Eq. (11) (see
details in Appendix). In summary, the eigenvalues in the
unsaturated zone (region I) are both 1/φ because no reaction
happens if both states are in this region and the two PDEs
decouple to two independent transport problems. In region
II, both eigenvalues are zero. Finally, if only one salt is
saturated (regions III and IV), we obtain λ1 = 0, λ2 = 1/φ.
We analyse the behaviour of the system in regions III and
IV with the help of integral curves. Integral curves are
defined as the curves which are everywhere tangent to the
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corresponding eigenvector rp of an eigenvalue λp. They are
given by the following equation

Ip(t, N) = N +
∫ t

0
rp(N)dτ, p = 1, 2. (27)

There are no rarefaction waves in this system because the
eigenvalues are always constant along the integral curves
[26]. We denote the two types of contact discontinuities
as 1-contact and 2-contact (or C1 and C2). The former is
stationary whereas the latter waves travel with the fluid
velocity (i.e. speed 1/φ).

If a wave has endpoints in different zones in the
hodograph plane, the structure of the solution is different
from the ones already discussed. In general, a wave with the
left composition in a region with less precipitate is a shock
(for example from regions I to III or from III to II). The
velocity of a shock, v̄, for a discontinuity with states N and
N∗ is found by utilising the mass balance law across the
discontinuity resulting in the Rankine-Hugoniot condition

n (N) − n
(
N∗) = v̄

(
N − N∗) (28)

In solving Eq. (28), we need an additional condition to
choose the physical solution out of all the possible candidate
solutions. Such additional conditions are often referred to as
entropy conditions. For our solution, we use the Lax entropy
condition [25], which states that a shock is admissible if it
satisfies either of the inequalities

λ1 (N l) > v̄ > λ1 (N r ) , (29a)

λ2 (N l) > v̄ > λ2 (N r ) . (29b)

For a given point N , the set of all the points that satisfy the
Rankine-Hugoniot jump condition (Eq. (28)) with respect to
N and Eq. (29a) is referred to as the 1-Hugoniot locus of N

and is denoted by H1 (N). The 2-Hugoniot loci is defined
analogously and is denoted by H2 (N).

The complete solution to Eqs. (11) and (19) is
constructed case by case depending on the location of N l

and N r in regions I to IV, thus 16 cases. The intermediate
states are found by intersecting integral curves and/or
Hugoniot loci in the hodograph plane. These curves are
either quadratic functions or straight lines and therefore
the calculation of intermediate states is straightforward and
can be expressed explicitly. The solution to Eq. (11) with
intermediate state N i is denoted by

N l
W1−−→ N i

W2−−→ N r , (30)

where W is either a shock (S) or a contact discontinuity (C).
In the rest of this section, we provide the solution for all the
cases.

– Cases 1, 2: Case 1 refers to N l and N r being in region
I. As stated before, the solution for this case is only a

simple wave N l
C2−→ N r , and the two PDEs decouple.

Case 2 refers to the case where both states lie in region
II. The solution for this case is similar in that it is only
one wave, but now this single wave is stationary because
both eigenvalues of the Jacobian matrix are zero.

– Cases 3, 4: In case 3, both left and right states belong
to region III and in case 4 they both lie in region IV.
The solution for case 3 is illustrated in Fig. 2a. The
solution in notation of waves and an intermediate state

is N l
C1−→ N i

C2−→ N r , where N i is the intersection
of the horizontal line from N l and the 2-integral curve
from N r in region III (I1 (N l) and I2 (N r )). Case 4 has
an equivalent structure.

Cases 5 to 9 refer to the situations where the upstream
composition has more precipitate than the downstream
composition. They all have a similar structure: a stationary
wave followed by a fast transport wave, because precipitates
do not move with the fluid. The notation for the solution

reads N l
C1−→ N i

C2−→ N r .

– Cases 5, 6: The initial condition for Case 5 is N l ∈ II,
N r ∈ III (and N r ∈ IV for Case 6). The solution for
Case 5 in the hodograph plane is illustrated in Fig. 2b.
The intermediate state for case 5 is the intersection of
I2 (N r ) and the boundary line BAS between regions
II and III. The solution for case 6 follows the same
structure.

– Cases 7, 8: Case 7 refers to state N l being in III (IV for
case 8) and N r in I. For case 7, the intermediate state
is the intersection of I1 (N l ) and the boundary curve
ABU between regions III and I. The concentration of
A for N i is equal to that of N l . Case 8 has a similar
structure with difference that the stationary wave keeps
the concentration of B fixed, i.e. NlB = NiB .

– Case 9: Case 9 is N l ∈ II and N r ∈ I. The intermediate
state in this case is the intersection of all the boundary
curves in the hodograph plane denoted by the triple
point.

Cases 10 to 14 describe the solution for cases where the
upstream is relatively fresher than the downstream, i.e. the
left composition belongs to a region with less precipitate in
the solution. The solution for these cases involves at least
one shock S1 or S2.

– Cases 10, 11: Case 10 refers to the situation where
N l ∈ III and N r ∈ II. The solution for this case is

a stationary wave followed by a fast shock N l
C1−→

N i
S2−→ N r . Point N i is the intersection of I1 (N l) and

H2 (N r ) and lies in region III. Case 11 has a similar
structure with N i in region IV.

– Cases 12, 13: In Case 12, N l lies in region I and
N r in III. The slow wave for the solution to this case
is S1 and the fast wave is C2. Hence, we expect to
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Fig. 2 Structure of the solution
for (a) Case 3 and (b) Case 5.
Each arrow represents a wave
that is labelled with its family 1
or 2. The dashed blue lines are
integral curves. The point
between C1 and C2 is N i

obtain N i in region III by intersecting H1 (N l) with
I2 (N r ). However, it is not always possible to find the
intersection N i inside region III due to the structure
of the flux function nα . In fact, if NlB > φn̂B for
N l = (NlA, NlB)T , then the second wave becomes
compound. However, we do not have rarefactions in this
system and the compound wave appears in the form of a
shock-contact wave. This compound wave arises a new
intermediate state N∗

i . The second intermediate states

N∗
i in the complete solution N l

S1−→ N i
S2−→ N∗

i

C2−→
N r lies on the intersection of I2 (N r ) and the boundary
line BAS between regions III and II. Point N i lies on
the intersection of H2 (N i ) and H1 (N l) in region IV.
The solution for case 13 is similar in structure.

– Case 14: Here, we consider dissolution of both salts
with an unsaturated fluid, hence N l ∈ I , N r ∈ II.

The solution for this case involves two shocks, N l
S1−→

N i
S2−→ N r , thus a combination of cases 10 to 14.

Point N i can be either in region III or IV or it can
disappear. Helfferich concluded that if N l is below the
line passing through N r and the triple point, then N i

will be in region III to satisfy v̄ (S2) > v̄ (S1). Figure 3a
shows the solution for this case. On the other hand, if
N l lies above the line, the admissible value for N i is in
region IV. For the case that N l is exactly on this line the
two shocks have the same velocity, merge and state N i

disappears.

Two more special cases are considered as cases 15 and
16.

– Cases 15, 16: In case 15, we analyse the solution for
N l ∈ III and N r ∈ IV, which is a combination of
cases 7 and 13. This case is illustrated in Fig. 3b. The
solution involves a compound shock-contact wave and
hence there are two intermediate states N i and N∗

i . The

full solution is N l
C1−→ N i

S2−→ N∗
i

C2−→ N r where

N∗
i is the intersection of I2 (N r ) and the boundary

curve ABS between regions II and IV. Since N∗
i is

on the boundary, it belongs to both regions II and IV.
Therefore, the rest of the solution follows as case 10,
i.e. N i = I1 (N l) ∩ H2

(
N∗

i

)
. The solution for case 16

follows a similar structure to that of case 15.

4.2 Solution for variable porosity

In this section, we describe the solution for the Riemann
problem when the porosity is spatially discontinuous in
addition to discontinuities in the concentrations. Hence, the
problem is given by

∂N

∂t
+ ∂n

∂x
= 0, (31a)

∂φ

∂t
= 0, (31b)

N(x, 0) =
{

N l , x < 0,

N r , x > 0,
(31c)

φ(x, 0) =
{

φl, x < 0,

φr , x > 0.
(31d)

Generally speaking, the flux functions nα depend on the
primary variables Nα with porosity acting as a parameter,
i.e. nα = nα(NA, NB; φ). Hence, Eq. (31) can be decoupled
into two separate problems.

We aim to obtain the solution by transforming Eq. (31)
into two systems and analysing the behaviour on the
interface in between where we have discontinuity of the
quantities. This is similar to the scalar case in which one
finds the global solution using the minimum jump entropy
condition across the interface [5, 15, 16]. Equation (31) is
decoupled into two problems

∂N

∂t
+ ∂

∂x
nl (NA, NB) = 0, (32a)

N(x, 0) =
{

N l x < 0,

N ′
l x = 0,

(32b)
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Fig. 3 Structure of the solution
for (a) case 14 and (b) case 15.
Integral curves and Hugoniot
loci are shown by thick dashed
blue curves. The red dashed line
in figure (a) passes through N r

and the triple point (shown by a
solid point) and determines the
location of N i

and

∂N

∂t
+ ∂

∂x
nr (NA, NB) = 0, (33a)

N(x, 0) =
{

N ′
r x = 0,

N r x > 0,
(33b)

with nl (·, ·) := n(·, ·; φl) and nr (·, ·) := n(·, ·; φr). Given
that N(x, 0−) from Eq. (32) and N(x, 0+) from Eq. (33)
satisfy additional condition [17, 20], each of the problems
Eqs. (32) and (33) has a unique solution according to the
previous section. It remains to find the states N ′

l and N ′
r

to concatenate these solutions together. In addition, ∂φ
∂t

in
Eq. (31) suggests that there is a stationary wave accounting

Fig. 4 Solution on the
hodograph plane for the case
when N l ∈ III. The hodograph
with thin solid curves
correspond to φl = 0.1 and the
thick ones are for φr = 0.3. The
dotted arrow represents the
stationary wave W̃0. Set D is
shown in b, c and d which
coincides with I1

(
N ′

r

)
. The

integral curves and Hugoniot
loci are shown by dashed blue
curves for hodograph plane with
φr = 0.3
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Fig. 5 Characteristic plot for the solution of Eqs. (11) and (19) with
N l = (0.05, 0.05)T , φl = 0.1 and N r = (0.3, 0.4)T , φr = 0.2

for the discontinuity of porosity1. Thus, we seek the end-
points of the aforementioned stationary wave, W̃0, N ′

l and
N ′

r that account for the porosity change. This wave glues
the weak solution of Eq. (32) to that of Eq. (33).

We first find admissible values for N ′
l . The solution to

Eq. (32) should not have any waves with positive speed
because the wave to the right of this solution, i.e. W̃0, is
stationary. It is not possible to have any waves with negative
velocity either, because the eigenvalues of the Jacobian
matrix are always non-negative. Hence, the solution to
Eq. (32) can contain only stationary waves. This means that
the solution to Eq. (32) is a stationary wave and is to the left
of another stationary wave W̃0 between N ′

l and N ′
r . They

both start at the same position x = 0 and as a result, the two
waves merge and the state in between, N ′

l , disappears. The
conclusion is N l = N ′

l .
To determine the state N ′

r , we use the conservation of
flux across the interface, i.e.

nlA (N l) = nrA

(
N ′

r

)
, nlB (N l) = nrB

(
N ′

r

)
. (34)

In Eq. (34), we are stating that only the dissolved ions in
the fluid travel. This is in accordance with our assumption
that precipitates are stationary. Unfortunately, this condition
is not enough to ensure a unique value for N ′

r since neither
of the four mappings NA 
→ nA(NA, ·), NB 
→ nA(·, NB),
NA 
→ nB(NA, ·) nor NB 
→ nB(·, NB) is surjective. We
look at this problem case by case depending on the values
of nA and nB for N l , i.e. location of N l in the hodograph
plane. We identify four cases depending on the location of
N r .

1. If N l is not saturated with any of the salts, N ′
r is

uniquely determined using Eqs. (34) and (37), i.e.
NrA = NlA

φr

φl
and NrB = NlB

φr

φl
.

2. If N l is saturated with A and unsaturated with B (i.e.
N l belongs to region III in Fig. 1), then N ′

r should
also belong to region III so that the flux is conserved.

1Obviously, this wave is stationary due to the construction of the
problem i.e., heterogeneity of medium.

Fig. 6 Interaction of solution waves for several initial discontinuities.
The top figure shows the evolution of characteristics. Red lines
represent shocks and blue lines contact discontinuities. Three instants
t1, t2 and t3 are highlighted by black dashed lines. The three lower
figures show concentration profiles at these three instants. The initial
conditions are illustrated by coloured dashed curves

To show this, we pick N l = (NlA, NlB)T ∈ III, then
solving Eq. (34) for N ′

r yields

N ′
r ∈ D =

{
N = (NA, NB)T |NB = φr

φl

NlB ,

NA ≥ 1

2

(√
N2

B + 4φ2
r ñ

2
A − NB

)}
, (35)

using Eqs. (36) to (40) . The set D is a horizontal line
that lies under the line NB = φr n̂B because NlB <

φln̂B . On the other hand, the point with the minimum
value of NA lies on the boundary curve ABU (c.f.
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Fig. 7 Evolution of fronts of NA

(left) and NB (right) in a 2D
homogeneous medium for
injection of an unsaturated water
to dissolve two salts (problem of
Fig. 5 with φl = φr = 0.2) in
three different instances of time
(in pore volumes); 1.0 (top) , 1.5
(middle) and 2.3 (bottom).
Some of the streamlines are
depicted for visulaisations
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Eq. (23)). Hence, the set D completely lies in region
III and we have infinite possible candidates for N ′

r . In
the following, we first show that the global solution to
Eq. (31) is independent of N ′

r . We select an arbitrary
value for N ′

r in the set D so that we can construct a
solution for Eq. (33).

The solution to Eq. (33) with N ′
r saturated in A

involves a stationary wave (possibly) followed by non-
stationary waves. To show this, we consider four cases
for location of N r and we refer to the corresponding
case number in the previous section for details.

(a) N r ∈ I: N ′
r

C1−→ N i
C2−→ N r (case 7)

(b) N r ∈ II: N ′
r

C1−→ N i
S2−→ N r (case 10)

(c) N r ∈ III: N ′
r

C1−→ N i
C2−→ N r (case 3)

(d) N r ∈ IV: N ′
r

C1−→ N∗
i

S1−→ N i
C2−→ N r (case 15)

In summary, if N ′
r belongs to region III, the solution to

Eq. (33) always involves the stationary wave C1. Thus,
the two stationary waves in sequence, (W̃0) and the first
wave in the solution of Eq. (33) (C1), merge and the
state in between (N ′

r ) disappears. In other words, the
solution for this case is independent of N ′

r . However, to
be able to construct the solution for Eq. (33), we choose
N ′

r to be the intersection of the boundary curve ABU

and the set D. Figure 4 illustrates solutions to the above
four cases (a to d) with φl = 0.1 and φr = 0.3.

3. If N l is saturated with B and unsaturated with respect
to A, the solution follows the same structure as in
the previous case. State N ′

r is chosen to lie on the
intersection of BAU and the corresponding vertical line.

4. Finally, when the left composition is completely
saturated (i.e., N l belongs to region II) the situation is

Fig. 8 The nA-nB plane constructed by projecting the two boundaries
ABU and BAU from the hodograph plane. Point n1 and n5 correspond
to the streamlines 1 and 5 of Fig. 7. Any mixture of the fluids lie on
the dashed line which is outside of the domain and is oversaturated

analogous to the previous two cases. There are infinitely
many possibilities for N ′

r such that nl(N l) = nr (N r )

(basically any point in region II). However, the Riemann
solution with left composition in this region always
contains a stationary wave, c.f. cases 2, 5, 6 and 9 in
Section 4.1. Hence, the solution is independent of the

state N ′
r . The simplest choice for N ′

r is N ′
r =

(
φr n̂A

φr n̂B

)

(the intersection of all of the separating curves).

In summary, we have proved the admissible set for N ′
l is

{N l} and the admissible set for N ′
r in the set D. In addition,

for any values of N ′
r in D we obtain the same solution,

because N ′
r does not appear in the solution.

4.3 Front tracking

Sections 4.1 and 4.2 described the solution for a single
discontinuity whereas the initial condition for Eq. (11) has
several discontinuities. Hence, initially we need to solve
several Riemann problems. The solution waves from these
Riemann problems might collide at later times in different

Fig. 9 a History of the concentration of the sampled water (dashed for
nA and solid for nB ) for homogeneous medium (φ = 0.2). b History
of precipitate of A, mA (dashed blue) and precipitate B, mB (solid red)
at well in mole/volume with Vw = 0.1. As soon as B is dissolved, due
to the co-ion effect, precipitate A starts to accumulate and reaches a
maximum dependent to Vw before it dissolves
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Fig. 10 a Porosity and b
permeability field (−log(K)))
of 20th layer of SPE10 model
from MRST [11]

locations. Every time two or more waves collide, a new
Riemann problem appears and needs to be solved. The
process of following each front to calculate the time and
location of collisions is called front tracking [13, 19].

Figures 5 and 6 illustrate the front-tracking idea in
the characteristic plot. Characteristics are curves in x-t
plane along which the solution remains constant. Figure 5
shows the characteristics for a problem with given initial
condition. Each of the lines in Fig. 5 represents a wave
that travels with constant speed equal to the inverse of
the slope of that line. In the x-t characteristic plane, these
collisions are represented by intersecting lines. Figure 6
illustrates an example for intersecting characteristic curves.
In this example, an unsaturated solution is used to dissolve
precipitates in a homogeneous system. The system initially
contains a bank of precipitate B (x ∈ [0.05, 0.4]) followed
by both precipitates (x ∈ [0.45, 0.6]) and precipitate A
(x ∈ [0.6, 0.75]) with gradual transition between each bank.

In our implementation, we have used two doubly linked
lists. The first list (X-list) contains all the discontinuities
and is sorted by the location of each discontinuity. Initially
at t = 0, we have only the X-list. Each discontinuity
in the X-list is represented by the solution waves of the
its corresponding Riemann problem. The collision time
for each two neighbouring waves are computed and the
collisions are stored in the second list (T-list). The T-list
is sorted with respect to the collision times. All waves are
propagated until the first collision (from T-list) occurs. The
Riemann problem for the corresponding collision is solved
and the solution is replaced by the colliding waves in the
X-list. The T-list is updated based on the collision of the
new waves with their neighbours. The algorithm stops when

there are no collisions or when the next collision happens
after the simulation time.

5 Illustrative results

In this section, we present the results of two simulations of
injection of unsaturated fluid to dissolve two salts with
different solubility product in a 1/4-five-spot-pattern. More
specifically, we take kA = 1 and kB = 2, c.f. Fig. 1, with
constant concentration of species for injection fluid N in =
(0.05, 0.05)T . The boundary conditions for the pressure
equation for both cases are similar (constant pressure at
producer with a source term of 1 pore volume of fluid per
unit time injected at the injection well). The two simulations
are different in that the first is in a homogeneous medium
whereas the second is for a heterogeneous rock. For both
cases, the domain dimensions are 366 × 671 and the
simulation time is set to 6 pore volumes with dt = 0.01 pore
volume. For the homogeneous case the grid dimensions are
120 × 220.

Figure 7 shows the propagation of injection fluid and
evolution of dissolution fronts in a homogeneous medium
with constant porosity 0.2 and permeability 100 milli
Darcy using 120 streamlines. The initial condition of the
medium is (0.4, 0.3)T . The 1D version of this problem
is explained in case 14 of Section 4.1. As illustrated in
Fig. 3a and explained in Section 4.1, the intermediate state
N i has a higher concentration of NA. The reason is that
the faster shock S2 dissolves salt B and salt A starts to
precipitate due to the co-ion effect. In the 2D case of this
problem, the streamlines mix at the well resulting in even
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Fig. 11 Evolution of fronts of
nA (left) and nB (right) in a 2D
heterogeneous medium for
injection of an unsaturated
solution to dissolve two salts in
three different instances of time
(in pore volumes); 1.2 (top) , 2.4
(middle) and 4.8 (bottom)
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Fig. 12 a History of the concentration of the sampled water
(mole/volume) for the heterogeneous case. b History of precipitate of
A, mA (dashed blue) and B, mB (solid red) at well in mole/volume
with Vw = 0.1

more precipitate of A. These precipitate do not leave the
system until an unsaturated mixture arrives and dissolves
the precipitates. In fact, if the arriving streamlines are not
saturated and they have different compositions, they may
induce more precipitates.

The accumulation of precipitates at the well through
the mixing of streamlines is best illustrated in the plane
spanned by the secondary variables nA and nB . Figure 8
shows an example. The values of nA and nB are bounded
by zeros (horizontal and vertical axes) and the projection of
BAU and ABU from the hodograph plane into this plane.
The concentration of the components for any fluid (n)
can be represented by a point in this domain including
its boundaries. Now consider for example, the streamlines
1 and 5 in Fig. 7 after 1.5 pore volumes have been
injected. Streamline 1 at the well is saturated with both
components and the concentration of the components is(
n̂A, n̂B

)T . Along streamline 5, the fluid is unsaturated with
B but saturated with A. The two fluid concentrations are

illustrated in the nA-nB plane. The domain is not convex and
therefore any linear combination of n1 and n5 is outside the
domain and implies an oversaturated fluid. As a result, more
precipitates are produced and the precipitates accumulate
and potentially clog the well. In a finite volume-based
simulation, precipitates are distributed over the whole cells
containing the well due to the numerical dispersion. This
yields an underestimate of the amount of precipitate at the
well. Figure 9 shows the produced water and the amount of
accumulated precipitate at the production well.

As an example with heterogeneous porosity, we take
the 20th layer of the SPE10 model from [11, 27] (c.f.
Fig. 10). As discussed in Section 4.2, the discontinuity in
porosity causes the flux function to be discontinuous and
thus the solution to the Riemann problem may involve an
additional constant state. For the initial condition, we set
the fluid concentration of species (nα) equal for all blocks
to establish an initial chemical equilibrium. The amount of
initial precipitate for each block is set to be proportional
to the porosity of that block. Hence, a cell with more
void space would accommodate more precipitates initially.
Figure 11 illustrates propagation of the fronts (nα) in the
whole domain at three times using 380 streamlines in
60×220 grid cells. Figure 12 shows produced water at the
production well.

6 Conclusions

We have presented a streamline method for flow in porous
media involving two chemical reactions with dissolution
and precipitation. The two reactions share an ion and thus
the common-ion effect determines the saturated concen-
tration levels. The method is based on a front-tracking
algorithm that uses the Riemann solution along each stream-
line. To apply the method for a heterogeneous medium, the
1D solution is extended to take into account discontinuities
of the flux function for the underlying hyperbolic PDE. The
unique entropy satisfying solution for the hyperbolic system
is sought through honouring conservation of mass across the
interface and the monotonic increase of wave speeds.

To predict scaling at the well, a model for mixing
streamlines at the well is provided. The well model post-
processes the results from streamline simulator. Through
this model, we have shown how streamlines with different
concentrations arriving at different times result in high
accumulation of precipitates at the well.

This problem is pathological to handle with finite
volumes especially because of the characteristics of
dissolution/precipitation function. These terms make the
flux function non-differentiable (and discontinuous in the
heterogeneous case). Other simple numerical methods
may add too much numerical dispersion in the solution.
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However, we see that most of the waves in 1D solution are
contact discontinuities that are not self-sharpening. Hence
an over dispersive method may be inaccurate.
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Appendix: Secondary variables

In this section, we derive the expressions for the secondary
variables in terms of the primary variables NA and NB .
The secondary variables nα are used for the analysis of the
corresponding eigen-problem and to identify wave types.

For the secondary variables nA and nB , we note that they
are continuous but not necessarily differentiable across the
borders. In general

nα(N)=nα,R if N ∈ R, R={I,II,III,IV} , α = {A, B}.
(36)

A fluid in region I is unsaturated with respect to both ions A
and B and hence

nα,I = Nα

φ
. (37)

In region II, we have saturation with respect to both ions and
therefore

nα,II = n̂α . (38)

To find concentrations for region III, we use Eq. (5b) to
obtain nB and then replace it in Eq. (4a) and solve for nA,

nB,III = NB

φ
, nA,III = 1

2

√(
NB

φ

)2

+ 4ñ2
A − NB

2φ
. (39)

Similar to region III, the concentrations for region IV can be
obtained

nA,IV = NA

φ
, nB,IV = 1

2

√(
NA

φ

)2

+ 4ñ2
B − NA

2φ
. (40)
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