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Abstract

The field of applied spectroscopy is strongly dominated by publications presenting proof-of-concepts, lab set-ups, and

demonstrations. In contrast, the corresponding number of commercial successes of inline spectroscopy is surprisingly

lower. This article discusses inline spectroscopy from an instrumentation perspective. It is the authors’ firm belief that the

success of inline spectroscopy lies in the understanding of how the design and implementation of the optical instrumen-

tation affects the data quality, and how this in turn will limit or enhance the performance of the prediction model.

This article emphasizes the need for a strong, multidisciplinary design team, whose design process is rooted in first

principles, to bridge the technology ‘‘valley of death’’ and convert research in applied spectroscopy into commercially

successful solutions.

Keywords

Inline spectroscopy, instrumentation, optical design, industrial applications

Date received: 16 February 2018; accepted: 4 June 2018

Introduction

Equipment for performing spectroscopic measurements, e.g.,

Fourier transform infrared (FT-IR), grating-based visible (Vis),

and near-infrared (NIR) instruments, is available in labs in a

wide range of facilities ranging from universities, chemical

factories, food processing industry, recycling industry, and

more. There are many examples of applied spectroscopy

where samples are brought from a process line to the instru-

ment either in the lab or at-line as part of the day-to-day

quality control procedures in process lines.1,2 However, the

ultimate goal for operators and quality managers is reliable,

nondestructive analysis of samples inline. Although inline

spectroscopy exists,3–9 we believe there is potential for

more successful, fully functional inline systems and that

instrumentation design plays a large role in this.

Researchers and industrial partners continue to join

forces in large-scale investigations to measure, model, and

determine if spectroscopy has potential in a wide range of

application fields,10,11 including pharmaceutical,12–15

food,16–20 waste sorting,21–23 bioprocess monitoring,24

and metallurgy.25–28 The potential for inline measurements

is ever-increasing as new, enabling technology is being

developed, e.g., enhanced silicon and InGaAs detectors,29,30

OEM spectrometers,31–33 and light-emitting diode (LED)

sources.34

The objective of this review article is to approach

inline spectroscopy from a solution design perspective.

The article aims to explore the overlap between the

world of applied spectroscopy–chemometrics and the

world of optical measurement system design. Building an

inline measurement system requires a profound under-

standing of the process where it will be installed, having

in-depth knowledge of what can be measured spectroscop-

ically, and understanding and respecting the laws of physics

that set the limits for any instrumentation design.

A Definition of Terms

For consistency, the following glossary of terms is given:

Component is used for lenses, LEDs, gratings, detectors,

light sources, read-out electronics, and amplifier cards.

Suppliers of optical components include Hamamatsu,

Edmund Optics, Thorlabs, Excelitas, etc.

Instrument can be used for spectrometers (grating-based,

diffractive optical element-based, FT-IR, etc.) or hyperspec-

tral imaging cameras. The instrument can sometimes include

an integrated source. It can be general-purpose or custo-

mized for the application. Suppliers of general-purpose
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spectrometers include Ocean Optics, Ibsen Photonics,

Wasatch Photonics, Avantes, Spectral Engines, BW-TEC

AG, Bruker, etc.

Optical measurement solution is an application driven design

that turns data to information. It includes the instrument,

light source, optics, software, data analysis, and sample pres-

entation/handling. Companies that deliver complete meas-

urement solutions include Tomra, Foss, Bruker, RTT, etc.

The Design Process

To have a successful process, the correct resources must

be allocated and a road map for the process is required.

Figure 1 illustrates the personnel resources that should be

available during the design process. Not all of these people

are always available, and they do not need to be involved at

each stage of the design process, but all have valuable input

that the core design team should utilize.

Figure 2 illustrates the suggested methodology for

designing an inline measurement solution. The inputs to

the design process are the description of the application

challenge and any relevant a priori knowledge that

the design team brings to the table. An initial layout for

the solution is also needed. The final goal of the design pro-

cess is a commercial solution. This article will focus on the

two middle steps, i.e., controlled characterization measure-

ments and measurements in realistic conditions. However,

these two steps are ‘‘sandwiched’’ between two very

important control tracks that can be the difference

between success and failure, and these are also described

in this article.

(a) Entering the design process requires full mapping the

end-user requirements and, as the design proceeds, it is

beneficial to continue to ‘‘check-in’’ with end-user

experts to ensure expectations are still aligned.

(b) The expected performance (accuracy) needs to be ana-

lyzed iteratively to optimize the design process.

Performance analysis should never be left until the

end of the design process.

Figure 1. Design team building.

Figure 2. Time progression and process for inline measurement solution design process.
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In Fig. 2, the numbers 1–6 indicate the design progres-

sion and these steps will be described in the article.

Depending of the complexity of the application, it may be

required to repeat some stages. For example, controlled

characterization measurements may be required again after

the measurements in realistic conditions if the performance

analysis reveals some remaining challenges or opportu-

nities. In some instances, the controlled characterization

measurements can be quite straightforward and other

times more complicated and lengthy.

End User–Application Requirement
Analysis Details

Ideally, the design process starts with the end-user require-

ment (Fig. 2, step 1). Selecting or designing technology for a

functioning inline spectroscopic system requires a clear pri-

oritization of what is acceptable to the end user. It gives the

designers a framework within which they have design free-

dom. It is recommended that this discussion takes place at

an end-user site so that it is easier to visualize how the final

implementation will be.

Examples of end-user requirements that are essential

input for the instrument requirement definition are:

. How does the end user currently measure (if at all)

and how does it perform or limit them? What are

the challenges with the measurements, e.g., are they

too subjective, time consuming, or not fully

representative?

. What measurement speed is required, e.g., are there belt

speeds that must be considered?

. Is a running average sufficient or is it critical to interpret

spatially or time-resolved variation?

. What classification/characterization accuracy is neces-

sary? Be clear what definition of accuracy is (e.g., 1%

on petrol pump can mean 3-sigma, 1% for a scientist

can mean 1-sigma).

. Is it possible to have a contact measurement or is non-

contact essential?

. Will the distance from the object to the instrument vary?

This is important as it affects the required depth of field

of the optical system.

. What is the expected range of sample variation that

needs be measured, e.g., minced meat with a potential

fat variation of 3–15% or 1–50%.

. What is the expected unwanted or interfering variation

in the samples, i.e., what should the measurement be

immune to, e.g., seasonal variation, size, and color?

. What do you want to measure and what do you need to

distinguish it from, e.g., an end user that wants to sort

PET plastic out of a waste stream but also requires that

all green PETs should end up in their own pile.

. What is a reasonable development cost and final system

price?

. How much does the measurement environment vary,

e.g., temperature, humidity, daylight through windows?

. Is it possible to retrofit the new system to an existing line

or will a new line be developed?

. What cleaning and validation steps are required to meet

industry standards and government regulations?

Each requirement should be discussed in the context of

how much leeway there is from the application side and how

this affects the solution design. On day one, the end user will

often request the best accuracy at the highest speed.

However, it is important that the end user understands

how this affects the solution design, since it is generally the

case that greater accuracy requires lower speed and vice

versa. Being inflexible with the solution requirement will

limit the design process, whereas understanding the

leeway aids the design process. This is a two-way discussion,

where the end user needs to understand the consequence of

their requirements and the design team learns how best to

prioritize these requirements going forward.

Controlled Characterization
Measurements

The decision to develop an inline spectroscopic measure-

ment system can either be based on what is found in lit-

erature or based on prediction models that have been

previously developed from measurements in the lab, using

general-purpose instrumentation. When the decision to go

inline is made, controlled measurements (Fig. 2, step 2) will

need to be performed and analyzed in the online context.

For example, if heterogeneity is foreseen as one of the main

inline challenges, it is useful to start with homogeneous

samples and gradually introduce heterogeneity in a con-

trolled manner when presenting the sample. Another

example could be sample height variation and, in this

case, it is important to understand how much going from

a limited depth of field to a larger depth of field reduces

optical throughput.

From an instrumentation perspective, an optimal meas-

urement solution design requires a full understanding of the

optical–spectral signal. To start moving from a lab concept

to a dedicated inline spectrometer, it is therefore critical to

look at your data! How much contrast is in the signal rela-

tive to the intensity? How much does your signal vary with

sample heterogeneity? How distinguishable is the signal

from interfering parameters?

First, a good starting point for defining your instrumen-

tation baseline is answering the following question:

In a controlled lab measurement, what acquisition time is

required to obtain a good enough spectrum?

This measurement time (integration time multiplied by the

number of repetitions) is the design baseline. A good
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enough spectrum means answering yes to the following:

. Are the changes in the spectral features relative to the

physical, target measurements (e.g., concentration), suf-

ficient to achieve the required classification accuracy for

the end user?

. Is the signal strength high enough relative to the instru-

ment’s statistical noise to distinguish changes in the spec-

tral features?

For inline spectroscopy, it is often essential to maximize the

number of photons reaching the detector so that the spec-

trum will be good enough. Increasing measurement time

will give more photons, but if it is necessary to measure

the same number of photons at higher speed, design

parameters such as resolution, range, amplifier design and

illumination design will become more crucial.

Second, the need for dynamics in the measurements

should be addressed:

The characterization measurements must span the meas-

urement range.

The spectra from extreme samples can reveal very import-

ant features that should be addressed in the final design. For

absorption spectroscopy, it will be necessary to

. Measure samples with the highest concentration of the

relevant substance so that you see the maximum possible

absorption

. Measure samples with the lowest concentration of the

relevant substance so that you see the minimum possible

absorption

It is important to span range to build a robust prediction

model and it is equally important to understand what the

physical limits of the potential system in this range. For

example, extreme measurements can reveal nonlinearities

in absorption that are important to address when designing

the dynamic range of the sensors. The dynamic range is

closely tied to the electronics design, e.g., what analog-to-

digital convertors (ADCs) should be chosen for the

spectrometer.

Third, the spectral features should be studied in detail:

Study the spectral features (and the regression vectors, if

already available).

Pre-studies and lab measurements may have higher spectral

resolution than needed in the inline measurement situation.

Protein, water and fat have broader spectral features in the

NIR and do not necessarily require the resolution found in

many general-purpose spectrometers, to be able to make a

prediction. Reducing spectral resolution increases optical

throughput and thereby allows greater online measurement

speed.19,35 Interpreting Raman shifts, however, requires

high spectral resolution in the spectrometer so reducing

resolution is not always possible. It is also important to

remember that lab spectrometers often have poor sensitiv-

ity at the extremes of their spectral range and longer meas-

urement times are often needed to examine features that

are present here.

It is common to use the regression vectors to under-

stand the key spectral features when building and validating

prediction models.36 However, it is just as valuable to use

the information in the regression vector to optimize the

optical measurement solution design process, e.g., when

selecting wavelength and range in a customized spectrom-

eter design. The regression vector can also identify the

specific parts of the spectrum that hold the most important

information, which can simplify the required components/

instrumentation in the final design.

Finally, it is also relevant to take note of what additional

sample handling or measurements were required to acquire

good spectra in the lab:

How is the sample handled and measured in the lab?

The following factors may be crucial in the final inline and

understanding them can better guide the design process.

. What was the required level of sample preparation? Was

it mixed, flattened, crushed? If the sample is less pre-

pared, at what point does the accuracy of the prediction

fall below the desired level. This helps quantify the

importance of sample preparation.

. How was the sample presented, i.e., geometry, distance,

and angles between illumination, sample, and the detec-

tion unit. This also determines whether the optimal

measurement geometry is reflection, transmission, or

interactance.

. Was it necessary to limit the distance from the spec-

trometer to the sample to within a certain range to

maintain prediction accuracy? If this range is smaller

than the expected range for the inline solution, depth-

of-field needs to be addressed before moving from the

controlled environment.

. How often was ambient light correction performed? If

ambient light affects the accuracy, it may need to be cor-

rected for per measurement.

. Was the sample temperature within at a certain tem-

perature for the tests? Does varying sample temperature

reduce the prediction accuracy and how likely are inline

temperature variations? Does knowing the sample tem-

perature help improve the prediction model?

. Was the sample measured at fixed pressure or under

controlled humidity conditions?

. Was the optical measurement path clearer than the

intended industrial application, e.g., will there be more

dust, steam etc. present in reality?
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Performance Analysis (Accuracy)

The accuracy of a spectroscopic measurement solution is

the degree to which the measurement output agrees with

the correct value (usually measured by a standardized

method). To identify the factors that limit the accuracy, it

is necessary to build a prediction model using data mea-

sured with the system and apply it to new data measured

using the same system, i.e., validation. Gaining an under-

standing of how different factors limit the accuracy of the

controlled measurements and relating this to the antici-

pated accuracy of the measurements in realistic conditions,

will ultimately lead to higher potential accuracy in the final

design (Fig. 2, step 3).

It is important to identify the main factors that poten-

tially limit the accuracy of the solution, which is equivalent

to identifying the main sources of errors in the measure-

ments. These limitations can be within the instrument, e.g.,

inherent random noise or wavelength drift. They can also

be external to the instrument, such as sensitivity to varying

sample presentation or unwanted light reflections in the

measurement region.

It is also important to identify if the accuracy is limited

in a random fluctuating way, or if it is more systematic.

The word ‘‘random’’ does not have a consistent usage

in literature and some sources of error may be regarded

as random or systematic depending on context. We will

define an error as random if it can be reduced by

averaging repeated measurements of the same sample

measurement situation under the same conditions, other-

wise it is systematic. If the task is to measure an average

value over a long series of measurements, the systematic

errors will in general have the highest importance.

Alternatively, if individual objects need to be measured

accurately at a high speed, the random errors will be

increasingly more important.

Based on this discussion, the sources of errors can be

classified as random versus systematic, and internal to

the instrument versus external or end-user specific.

We can then group the errors in a 2� 2 matrix, as

shown in Fig. 3. In general, random variations can be

improved by increasing signal to noise (averaging measure-

ments, improving optical throughput, selecting a detector

with higher response, stronger illumination, etc.), while sys-

tematic variations will require other design improvements.

Instrument-Specific Sources of Inaccuracy

Random Fluctuations in the Instrument. This is purely random

noise that is inherent in any detector and electronics

(Fig. 3). It includes thermal noise in the detector, photon

shot noise, and noise from electronics and ADCs. The

expression signal-to-noise ratio (SNR) of the instrument

is defined using this random noise. It should be estimated

by measuring the standard deviation of repeated measure-

ments in a controlled, dark environment, such that this

instrument-related noise is calculated independently from

any variations caused by ambient light. This noise will con-

sume some of the error tolerance in the prediction model

and it is helpful to know how much is consumed.

The SNR can be improved by increasing signal (opti-

mizing illumination, improving optical design for optimal

optical throughput), reducing noise (choosing best detec-

tor, electronics, ADC combination), or by increasing time

spent on each measurement.

If it is found that this random noise is insignificant, it

might be possible to improve system reliability by reducing

power consumption of the illumination, giving less heat,

which is preferred for instrumentation in an air-tight hous-

ing. Decreasing the voltage of halogen lamps will also

increase the lifetime of the bulbs.

Figure 3. Example of a source-of-inaccuracy matrix.
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Electrical interference from motor controllers or

switching power supplies can also increase the noise. If a

system that works well in the controlled environment is

noisier in the industrial environment, this is a likely cause.

Improving immunity to such interference must be con-

sidered during design process.

Systematic Variations in the Instrument. Long term drift and

other instabilities may include uncompensated temperature

dependent gain, and changes due to aging, such as wave-

length shift (Fig. 3) Detector arrays also have varying degree

of fixed pattern noise, which may change slowly over time

and temperature. It is not statistical noise. It can be

improved using robust standardization techniques, e.g., fre-

quent white spectrum calibration, frequent dark correction,

and a robust temperature calibration based on temperature

cycling and/or including additional cooling.

End User/Application-Specific Sources of Inaccuracy

It is important to identify which of the application driven

sources of inaccuracy (Fig. 3) most effect the prediction.

It is sometimes less clear if an application specific source of

inaccuracy should be classified as random or systematic.

In the lab, it is common to shield the measurement from

ambient light. This is not always possible in a real setting,

where access is required for inspection and maintenance.

Often, there will be fluctuations in ambient light, due to

flicker from AC illumination or more slowly varying reflec-

tions or shadows from moving objects. Fluorescent lighting

in factories may also have spectral features at shorter NIR

wavelengths that can disturb some measurements.

Correction for these fluctuations requires that the back-

ground signal correction occurs at a sufficiently high fre-

quency. This is easier if LED illumination is used in the

measurement solution but is more difficult with general

broadband sources since some form of mechanical shutter

will be needed. The instrument designer should aim to

make the system reasonably robust towards varying ambi-

ent light; however, the end user may also need to make

some adaptions, e.g., allowing the installation of a light-

blocking curtain.

If the objects to be measured vary in temperature or

humidity, this can give spectral changes that affect the result

of the spectral analysis. This will give a systematic error that

can often be reduced by modifying the prediction model, or

by including temperature measurements as inputs to the

model. Sample heterogeneity and size can give both system-

atic and random errors, depending on how the ‘‘repeated

measurements’’ in our definition is done. Reflections from

nearby surfaces, including the conveyer belt, can also give

errors.

Another application-specific error is the error in the

reference lab method required to build a prediction

model, i.e., the target value in the prediction plot. Every

reference method has its own inherent error, which

decreases with the number of sample repeats. Using spec-

troscopy for sorting of manufactured materials such as plas-

tic, is straightforward because obtaining an accurate

reference method is simply a case of reading the manufac-

turing marking on the material.37 However, this is not the

case when a quantitative prediction model is required.

Quantitative analysis of manufactured products such as

pharmaceutical tablets, require preparation of controlled

samples spanning the model range for building a model,38

or offline reference methods measuring stratified (tablet)

samples.39 Accurate reference methods for biological sam-

ples are challenging because the methods can have signifi-

cant systematic and random errors. Drip loss

measurements for water holding capacity,40 for example,

is subjective as it is heavily dependent on how the samples

are prepared for measurement. Soil analysis is based on

sampling a very heterogeneous sample from a large spatial

area and therefore representative sampling is challen-

ging.41,42 Reference methods for prediction of biomass

pellet quality, will include several time-consuming steps

like drying and weighting.43 Sometimes lab methods do

not exist, and the reference is based on an expert evalu-

ation, e.g., sensory panel,44 which is very subjective. If the

measurement is to be done using a time varying process, it

can be challenging to synchronize the spectroscopic meas-

urement with the reference measure to ensure that both

measurements have occurred simultaneously.19,45

When the sources of inaccuracy are identified, it often

requires a collaborative effort between the end user and

the design team to improve the performance. The end user

may need to compromise, e.g., accepting longer measure-

ment times or providing more controlled sample presenta-

tion. However, the design team will need to deal with

challenges in the measurement situation that cannot be

eliminated.

Sources of Inaccuracy and Solution Performance

In Fig. 4, the blue trace describes the relationship between

accuracy and measurement time for a given measurement

solution. The blue shaded area of the graph represents the

measurement times where the accuracy of the measure-

ment solution is limited by random fluctuations, which

can be either instrument or application related. These

errors can be reduced by averaging or increasing measure-

ment time. At some point, the limit of the measurement

solution will be reached and increasing measurement time

will no longer improve accuracy. This is represented by the

green shaded area, where the accuracy limit is increasingly

dominated by systematic variations. The more dominated

the solution is by systematic variation, the less influence

measurement time has on the accuracy.

Generating the plot below requires applying a prediction

model to either data that is measured at different
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integrations time or data with different levels of SNR, e.g.,

by adding varying amounts of synthetic noise to the signal.

Sources of Inaccuracy and Prediction

Figure 5 shows the effect of random sources of inaccuracy

on prediction. Figure 5a illustrates the distribution of meas-

urements relative to the deviation from the true value for a

repeated measurement of the same object. The orange trace

represents high sample heterogeneity or high statistical noise

and the blue trace represents homogenous samples or low

statistical noise. Figure 5b shows the corresponding predic-

tion plot, where the T-bar represents the variation in the

estimated value from the true value when a model is applied.

The T-bar should be reduced to an acceptable level. Relying

on single measurement accuracy in the scenario where

Figure 4. The relationship between accuracy and measurement time for a given measurement solution.

Figure 5. Instrument statistical noise (high¼ orange, low¼ blue).
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random sources of inaccuracy are high will result in a longer

T-bar, whereas increasing the integration time or the number

of samples averaged will reduce the T-bar.

Figure 6 shows how systematic variations, whether

instrument- or application-driven, will affect the prediction

model. Figure 6a shows the case where increasing SNR only

moderately improves the accuracy when systematic vari-

ation is present. This could be that the prediction of, for

example, dry matter in a natural object, is systematically

dependent on the size of the naturally varying sample

object. This error could be that prediction of small

sample objects is generally overestimated (Figs. 6a and

6d) and the prediction of big sample objects is underesti-

mated (Figs. 6b, 6c, and 6e).

Figure 6b shows the case where good SNR does not

improve the accuracy when systematic variation is present.

A simple example of this is a temperature-induced drift that

is not corrected for. Unless a temperature calibration is

included in the solution, good SNR will not be enough to

maintain accuracy.

Measurements in Realistic Conditions

The prototype for testing in the real-world scenario (Fig. 2,

step 5) should be based on the performance analysis that

was completed on data collected from the controlled meas-

urements. The design team, including end user–application

representatives, needs to:

(a) Identify if any of the sources of inaccuracy result in

measurement errors that are critical to the required

prediction accuracy (Fig. 2, step 3).

(b) Revisit the application requirements in the context of

installing the prototype in a realistic measurement

environment, to ensure that everyone in the design

team has the same understanding of the inline installa-

tion challenges (Fig. 2, step 4).

The prototype may require only slight modifications of

the lab setup or it may be a more advanced solution,

depending on the demands of the measurement conditions

and the duration of the tests. The ideal prototype for real-

world testing should prioritize accurate data collection

over measurement speed, e.g., by increasing illumination,

increasing integration time, using frequent dark correction,

averaging several measurements etc. While increasing the

speed of the measurement can and will be addressed in the

final solution, it is still necessary to have a plan in place at

this stage for how this will be addressed.

The ultimate aim of this prototype is to demonstrate the

inline measurement principle and to reveal unforeseen chal-

lenges that the real-world conditions introduce.

Unforeseen challenges are unfortunately a part of the

design process. If the prototype used for the realistic meas-

urements has effectively minimized foreseen sources of

inaccuracy, it is much simpler to identify those that were

unforeseen. Examples of pitfalls when going from controlled

measurements to an inline prototype demonstration are:

. The ambient light in the measurement location is too

strong, has spectral features or is modulated in some

way, influencing the quality of the signal.

. Other processes in the measurement location interfere

with the instrument, e.g., cleaning of the process line

each night requires that the prototype needs to be

encased in a sealed housing (IP65).

Figure 6. Understanding how sources of systematic variation affect accuracy (undefined units).
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. The system is not stable enough over time when measur-

ing continuously in the measurement location, e.g., ambi-

ent temperature variations.

. The measurement environment contaminates the optical

surfaces e.g., dust/dirt on windows/lenses or moisture

build-up.

. The measurement distance varies more than anticipated

and is not covered by the prototype’s depth of field.

. Unforeseen sample variation (natural or process

induced) introduces an error in the prediction.

. The measurement environment introduces stray light,

e.g., unwanted reflections from stainless steel surfaces

or brightly colored conveyor belts.

The move from controlled to realistic measurements can

be put in the context of the performance plot (as seen

previously in Fig. 4). An example case is illustrated in

Fig. 7, where the solid blue trace represents a controlled

measurement; it is more accurate due to the very con-

trolled environment and sample presentation. The dashed

blue trace represents the performance of the prototype

solution with the same core components but adapted to

measure in realistic conditions; it drops in accuracy due to

the presence of more sources of inaccuracies. If, after com-

pleting the trials, it is found that the accuracy is sufficient,

but the speed needs to be increased, the green trace rep-

resents a potential increase in measurement speed if the

system sensitivity is improved. However, if it is found that

the target accuracy in not reached, improved SNR will not

help, and it is necessary to identify what other sources of

inaccuracy are dominating, before going further. This may

involve conducting further measurements in controlled and

realistic environments.

The performance analysis on the data collected should

also address robustness and stability over time.

The desired result after realistic trials is that the target

accuracy is reached and robust over time. It is acceptable if

the measurement speed is slower than the target online

speed, since this can be addressed with improved SNR in

the final design (Fig. 2, step 6).

Progressing to a Commercial Solution

If it is found that the final design requires improvements

e.g., higher SNR, it is important to evaluate if better off-

the-shelf instrumentation is available, or if customized com-

ponents are needed to meet the end-user requirement.

If existing spectrometers/cameras cannot measure fast

enough for the application, a spectrometer with optimized

range, resolution, and detector material can give significant

sensitivity and efficiency improvement and can therefore

measure at higher speeds. Customizing a spectrometer

can be well worth the initial non-recurring engineering

costs and should not be dismissed if the cost–benefit ana-

lysis is promising.

If a high repetition rate of reference measurements is

required to increase the robustness of the measurement,

this will need to be included in the optical and/or

Figure 7. Performance plot of three different measurement solutions.
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mechanical design. An example of this is if the instrumen-

tation requires a stable temperature to perform well but

the application is such that the measurements need to be

performed in both warm and cold environments. This can

also be the case for an environment with varying humidity.

GasSecure is an example of a measurement that requires a

reference measurement for each signal measurement.

In this case, the reference measurement is included in the

optical design using filter functions.46

The cost of the available off-the-shelf spectrometers–

cameras can be too high for some applications, especially

for high-volume cases. Dedicated, simplified spectrometers

can often be lower in cost in volume. In some cases, the use

of filter–detector or LED–detector combinations give suf-

ficient spectral information and can even be preferred, e.g.,

due to the reduced power consumption.

The footprint of the instrument is also a driver for cus-

tomization. For example, if several spectral ranges need to

be covered, this could require several general-purpose

spectrometers with different detector materials, making

a very cumbersome and expensive instrument. Designing

a customized spectrometer can allow combining different

spectra ranges.

The sampling method or sample presentation can be

critical in reducing random and systematic variations in

the measurement. Mechanical presentation combined with

an optimized design of the optical geometry using custo-

mized lenses, can be just as important as which light source

and detectors are used.

As mentioned previously, there are several manufac-

turers of off-the-shelf spectrometers–cameras (industrial,

high-end, consumer) with the potential for different appli-

cation configurations (e.g., handheld, inline, online, harsh

environment, etc.). However, even if an available spectrom-

eter reaches the accuracy and price requirements, it is still

necessary to determine how much additional hardware

design is required to complete the solution. This usually

includes, but is not limited to:

. Illumination design: i.e., the size, shape, evenness, and

intensity of light spot or field-of-illumination. Illumination

solutions include optical fiber sources, LEDs, glow bars,

light bulbs, etc.

. Optical components and geometry: For example,

selecting lenses for the required size and shape of the

field-of-view and the relative position of the field-of-illu-

mination to the field-of-view. Filters may be needed to

suppress part of the spectral range (especially for Raman

or fluorescence measurements).

. Collection optics: i.e., the optical design for collect-

ing light from the sample into the spectrometer.

Optical fibers, for example, have advantages over free

space optics when it comes to light coupling, but

they come at a cost to the SNR and have a limited

field-of-view.

. Sample presentation: i.e., the mechanical design for

sample presentation or sample access. The end user–

application team must be involved here to give input.

It is worth noting that some commercial vendors of

general-purpose spectrometers deliver customized

versions of their core product and support adapting the

spectrometer to the application, based on the required

spectral response and resolution. Some vendors provide

complete system integration and system development and

can add software interfaces adapted for lab, field, and qual-

ity control use.47

If the final design reaches the performance and price

requirements, at the expected production volume, it is

very important to plan for the remaining work in instrumen-

tation standardization, software development and integra-

tion, supplier reliability, system-to-system variation analysis,

calibration model transfer, and adaption to different process

lines. This additional work is beyond the scope of this article.

Conclusion

This paper approaches online spectroscopy from an instru-

mentation perspective and aims to aid researchers, scien-

tists and engineers reach the goal of truly functional inline

spectroscopy. It is very common to underestimate the

effort and time required to take applied spectroscopy

from a proven concept to a functioning inline solution.

This article provides a tool for tracking the development

progress and identifying sources of inaccuracy in the

solution and can be summarized as follows:

. Build a multidisciplinary design team.

. Know your spectral data!

. Gain as much understanding of the application as pos-

sible, including restrictions on sample presentation.

. Use first principles: if you do not understand how the

data behave in a controlled measurement, you will never

understand it in an inline environment.

. Use a structured performance analysis methodology that

enables identifying and categorizing sources of inaccuracy

at an instrument level and at an application level.

. Be aware of the relationship between measurement

speed and accuracy, i.e., the performance of the solution.

. Know when to use off-the-shelf components and when

to customize. Do not assume choosing off-the-shelf is

the simplest route in the long term.
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9. Drägerwerk AG and Co. KGaA. ‘‘GS01 GasSecure—Fixed Wireless

Gas Detection’’. https://www.draeger.com/en-us_us/Oil-Gas-Industry/

GasSecure-GS01-Gas-Detection#GS01-Wireless-Gas-Detector

[accessed Jun 21 2018].

10. A.S. Gilbert, R.W. Lancaster. ‘‘IR and Raman Spectroscopy. Industrial

Applications’’. In: J.C. Lindon, G.E. Tranter, D.W. Koppenaal, editors.

Encyclopedia of Spectroscopy and Spectrometry, 3rd ed. Oxford, UK:

Academic Press, 2017, pp.394–407.

11. R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, et al. ‘‘Laser-

Induced Breakdown Spectroscopy Expands Into Industrial

Applications’’. Spectrochim. Acta, Part B. 2014. 93: 41–51.

12. M. Boiret, F. Chauchard. ‘‘Use of Near-Infrared Spectroscopy and

Multipoint Measurements for Quality Control of Pharmaceutical

Drug Products’’. Anal. Bioanal. Chem. 2017. 409(3): 683–691.

13. M. Anik Alam, Z Shi, J.K. Drennen, C.A. Anderson. ‘‘In-Line

Monitoring and Optimization of Powder Flow in a Simulated

Continuous Process Using Transmission Near Infrared

Spectroscopy’’. Int. J. Pharm. 2017. 526(1–2): 199–208.

14. S. Laske, A. Paudel, O. Scheibelhofer. ‘‘A Review of PAT Strategies in

Secondary Solid Oral Dosage Manufacturing of Small Molecules’’.

J. Pharm. Sci. 2017. 106(3): 667–712.

15. K. Knop, P. Kleinebudde. ‘‘PAT-tools for Process Control in

Pharmaceutical Film Coating Applications’’. Int. J. Pharm. 2013.

457(2): 527–536.

16. S. Grassi, C. Alamprese. ‘‘Advances in NIR Spectroscopy Applied to

Process Analytical Technology in Food Industries’’. Curr. Opin. Food

Sci. 2018. 22: 17–21.

17. M.T. Munir, W. Yu, B.R. Young, D.I. Wilson. ‘‘The Current Status of

Process Analytical Technologies in the Dairy Industry’’. Trends Food

Sci. Technol. 2015. 43(2): 205–218.
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