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Abstract An algorithm for risk-based optimization (RO) of engineering sys-
tems is proposed, which couples the Cross-entropy (CE) optimization method
with the Line Sampling (LS) reliability method. The CE-LS algorithm relies on
the CE method to optimize the total cost of a system that is composed of the
design and operation cost (e.g., production cost) and the expected failure cost
(i.e., failure risk). Guided by the random search of the CE method, the algo-
rithm proceeds iteratively to update a set of random search distributions such
that the optimal or near-optimal solution is likely to occur. The LS-based fail-
ure probability estimates are required to evaluate the failure risk. Throughout
the optimization process, the coupling relies on a local weighted average ap-
proximation of the probability of failure to reduce the computational demands
associated with RO. As the CE-LS algorithm proceeds to locate a region of
design parameters with near-optimal solutions, the local weighted average ap-
proximation of the probability of failure is refined. The adaptive refinement
procedure is repeatedly applied until convergence criteria with respect to both
the optimization and the approximation of the failure probability are satisfied.
The performance of the proposed optimization heuristic is examined empiri-
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cally on several RO problems, including the design of a monopile foundation
for offshore wind turbines.

Keywords Risk - Reliability - Optimization - Design - RO - RBDO -
Cross-entropy - Line Sampling

1 Introduction
1.1 Problem definition

The design of an engineering system aims at producing an economical struc-
ture and minimizing risk. Risk is a measure of potential adverse consequences
for the owner, society and environment. The objectives of structural cost and
risk minimization are often contradictory and an optimal trade-off must be
identified, which is the goal of the Risk Optimization (RO) framework (e.g.,
[4,35,37]). RO minimizes the total costs of a system, which is composed of the
design cost of a system (e.g., production cost) and the expected cost of failure
(i.e., failure risk). The set of design parameters that minimizes the total cost is
found within a set of feasible or admissible designs, which is determined by a se-
ries of deterministic (e.g., geometry limitations) and probabilistic constraints.
In ROs of engineering systems, the probabilistic constraints are often reliability
constraints (i.e. upper bounds on the failure probabilities). Alternative design
optimization frameworks include Deterministic Design Optimization (DDO)
(e.g., [5]) and Reliability-Based Design Optimization (RBDO) (e.g., [5,48]),
which aim at optimizing the design cost of a structure with respect to a se-
ries of constraints, while not accounting for the failure risk on the objective
function. In the DDO framework the constraints are defined by a series of de-
terministic constraints (e.g., allowable stress), while in the RBDO framework
the set of constraints is expanded to include reliability constraints.

In this study, the RO problem is defined as follows:

minimize C(t) = Cp(t) + Y Crr(t) Pri(t) (1a)
k=1
subject to
hi(t) <0, i=1,..ng (1b)
Prp(t) < PP k=1,..,n, (1c)
th <t <t (1d)

where the total cost, C(t), is a function of design variables t = [t1, ta, ..., tn}T
€ 2, Cp(t) specifies the design cost of a structure or an engineering system
to account for the cost of production, operation, inspection, maintenance, and
disposal, Cr(t) is the cost of the kth failure event, and Pr(t) is the cor-
responding failure probability. h;(t) defines the ith deterministic constraint,
while P specifies the kth reliability constraint. The upper and lower bounds
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for t are t! and t%.
For a given t, Ppi(t) is defined as an m-dimensional integral:

Prn(t) = / 61 (W)t @)

where u = [uq, ug, ..., um}T € (2, is a realization of a vector of independent
standard normal random variables, U = [Uy, U, ..., Um]T7 with zero-mean and
unit standard deviation; g (u, t) is the performance function corresponding to
the kth failure criterion, which has a positive value, gi(u,t) > 0, in the safe
domain (i.e., safe state of a structure), and a nonpositive value, gi(u,t) < 0, in
the failure domain of the outcome space; ¢, (u) is an m-dimensional joint prob-
ability density function composed of m independent standard normal marginal
distributions. In the general case, where g; is a function of dependent non-
normal random variables, X, it is assumed that suitable probability preserv-
ing transformations exist, u = Ox y(x) and x = Oy x(u) (e.g., Nataf [30] and
Rosenblatt [36]).

1.2 Short literature review

Due to the similarity between the RO and RBDO formulations, the follow-
ing section provides a short literature review of RO and RBDO algorithms.
Although the RO and RBDO formulations are relatively similar, the imple-
mentations of the two formulations are different in case one relies on sampling-
based failure probability estimates (e.g., [5,41]). The corresponding RO im-
plementations are often characterized by noisy objective functions due to the
numerical noise associated with sampling-based failure probability estimates.
Consequently, the solution to the RO problem often relies on the implemen-
tation of a global optimization algorithm (e.g., Genetic Algorithm [44], Cross-
entropy [7]), while the solution to the RBDO problem can be found through
numerically more efficient nonlinear programming algorithms (e.g., [40]).

A relatively straightforward solution to RO and RBDO problems is obtained
by nesting a reliability algorithm within an optimization algorithm in a so-
called ’double-loop’ formulation. The implementations of the double-loop for-
mulation are often associated with high computational cost due to the nature
of optimization and reliability algorithms, which commonly require numer-
ous evaluations of complex structural models (e.g., finite element models). To
avoid the high computational cost associated with the double-loop formula-
tions, a relatively large number of advanced formulations and simplifications
have been proposed in the literature. However, the majority of these formula-
tions examine the RBDO problem (e.g., [48,11,38,1,51]), while the number of
proposed formulations for the RO problem is relatively limited (e.g., [28,21,
41,46,23)).

Depending on the type of reliability methods employed in the evaluation of
RBDO or RO problems, the RBDO and RO algorithms can be classified into
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algorithms that apply sampling reliability methods (e.g., Monte Carlo, Impor-
tance Sampling, Subset Simulation) and algorithms that apply approximate
reliability methods (e.g., FORM, SORM). As suggested by [48], the RBDO
and RO algorithms that apply approximate reliability methods can be fur-
ther divided into double-loop, single-loop, and decoupling approaches. The
two most commonly implemented double-loop formulations are known as the
Reliability Index Approach (RIA) (e.g., [33,19]) and the Performance Measure
Approach (PMA) (e.g., [16]). The application of the RIA formulation to both
RBDO and RO problems was examined in [19]. The failure probabilities in the
objective function of the RO problem in [19] are approximated with FORM
estimates. The performance of the PMA formulation on RBDO and RO prob-
lems was examined, respectively, in [38] and [40], where the failure probabilities
in the objective function of the RO problem are approximated with auxiliary
variables. Single-loop algorithms transform the double loop into a single loop
by replacing reliability constraints with approximate deterministic constraints
(e.g., [9]) or utilizing the Karush-Kuhn-Tacker optimality conditions (e.g.,[28]).
The application of the single loop algorithm to the RO formulation in [28] relies
on the FORM approximation of the failure probability in the objective func-
tion. In the decoupling approaches, the RBDO problem is transformed into
a sequence of deterministic optimizations, with periodic reliability analyses
conducted to update the set of admissible designs. The Sequential Optimiza-
tion and Reliability Assessment (SORA) method is a decoupling approach that
evaluates the RBDO problem through a sequence of deterministic and reliabil-
ity analyses [17]. The reliability analyses are conducted after the deterministic
optimization to ensure constraint feasibility [17]. The Sequential Approximate
Programming (SAP) is an alternative decoupling method that transforms the
RBDO problem into a series of approximate subproblems with approximate
objective function and constraints [11]. The SAP method provides a solution
to the RBDO problem by sequentially improving the optimal design and the
approximation of the FORM estimate of the failure probability [11]. Although
the decoupling approaches are mainly applied to the RBDO formulations, the
SAP method was evaluated on an RO formulation in [11] with an approxima-
tion of the FORM estimates of the failure probability in the objective function.
Applications of RO and RBDO algorithms with approximate reliability meth-
ods rely on the adequacy of the reliability estimates. In the case of significant
nonlinearities in the reliability problems, the approximations can lead to over-
or under-estimates of the failure probabilities. This can significantly affect the
ability of the corresponding RO and RBDO algorithms in locating the mini-
mizer and satisfying the reliability constraints. In such conditions one usually
resorts to RBDO and RO algorithms that implement sampling-based reliabil-
ity methods. As suggested in [48], the RBDO and RO algorithms implement-
ing sampling-based reliability methods can be organized into three groups;
applications of metamodels, decoupling approaches, and enhanced reliability
approaches. A metamodel is commonly a regression or a classification model
constructed as an approximation of the performance function (e.g., [15]). A
metamodel is applied within RO or RBDO algorithms to reduce the computa-



Coupling the cross-entropy with the line sampling method for RO 5

tional demands resulting from computationally complex models of engineering
structures. Some of the commonly considered metamodels in structural relia-
bility literature include: polynomial response surfaces (e.g., [8]), Kriging (e.g.,
[18,10,29]), Artificial Neural Networks (e.g., [41]) and Support Vector Ma-
chines (e.g., [3]). The majority of the proposed metamodel-based algorithms
consider the RBDO formulation (e.g., [10,29]), while several approaches exam-
ine the RO formulation (e.g., [18,41]). Similar to the decoupling approaches
with approximate reliability methods, the decoupling approaches for RBDO
problems with sampling-based reliability methods attempt to approximate the
probability of failure throughout the optimization process. For example, in [25,
24,47], the probability of failure is approximated by an exponential function
of design parameters, while in [2] and [12] the Bayesian theorem is applied
to approximate the reliability problem based on samples from the failure do-
main. Applications of decoupling approaches to the RO formulation include
the Design Space Root Finding (DSRF) method, which aims to approximate
the failure probabilities over the design space by calculating the roots of the
limit state function [21].

Direct integration of simulation techniques with optimization methods is im-
plemented in several enhanced reliability methods (e.g., [39,46]). For exam-
ple, the RBDO algorithm in [39] utilizes the sample average approximation to
supply gradients of the probabilities to an optimization algorithm. An alterna-
tive simulation based approach, known as the Stochastic Subset Optimization
(SSO) [46], seeks to locate a region of the design space where the failure proba-
bility is minimized. The SSO method operates on a set of samples in a so-called
augmented reliability space where the design parameters are artificially consid-
ered as uniformly distributed random variables. The SSO algorithm proceeds
iteratively to locate a subset of the design space likely to contain the optimal
solution, which can be found by a more detailed local search.

1.3 Scope and outline

This paper proposes a decoupling RO algorithm based on sampling reliabil-
ity methods, referred to as CE-LS. The proposed RO algorithm combines the
Line Sampling (LS) (e.g., [34]) reliability method and the Cross-entropy (CE)
(e.g., [14]) global optimization method. The CE-LS coupling is considered as
advantageous within the context of the RO problem due to the robustness
of the CE global optimization algorithm and the fact that the LS reliability
method provides efficient and unbiased failure probability estimates in both
low- and high-dimensional reliability problems. Driven by the random search
of the CE algorithm, the CE-LS method proceeds iteratively to update a set
of random search distributions in the design space such that the optimal or
near-optimal solution of the RO problem is likely to occur. To avoid poten-
tially high computational demands associated with this double-loop imple-
mentation, a local weighted average (LWA) approximation of the probability
of failure is iteratively refined as the optimization algorithm proceeds. The
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adaptive refinement procedure of the CE-LS algorithm is repeatedly applied
until convergence criteria with respect to both the optimization and the prob-
ability of failure estimates are satisfied. The proposed optimization heuristic
is examined on several RO problems and an RBDO problem.

The paper is organized to provide a basic overview of the LS method in Section
2 and the CE method for optimization in Section 3. The formulation of the
proposed CE-LS algorithm is introduced in Section 4 with a discussion of the
implementation, convergence criteria and constraint modeling. The proposed
algorithm is examined in Section 5 on several RO problems and a RBDO prob-
lem. A discussion on the performance of the CE-LS algorithm is provided in
Section 6, followed by a short summary with conclusions in Section 7.

2 Line Sampling

LS formulates a reliability problem as a number of conditional one-dimensional
reliability problems in the outcome space 2 (e.g., [22,26]). The one-dimensional
reliability problems are defined parallel to the important direction, a. « is a
unit vector pointing to the region of the failure domain nearest to the origin of
(24, as illustrated in Figure 1. A general approach for determining « is based
on a unit vector pointing to the average of a set of samples generated with
the Markov Chain Monte Carlo (MCMC) method from the distribution of the
random variables conditioned on the failure event [26]. In case of moderately
nonlinear performance functions, a can be closely approximated by a unit vec-
tor pointing to the most likely point in the failure domain, also known as the
design point. Some of the additional approximate approaches for determining
« include a normalized gradient vector of g(u) pointing to the direction of
the steepest descent, or a unit vector based on engineering judgment. In this
paper, « is selected as the direction of the design point or approximations
thereof.

Sampling is performed on the hyperplane orthogonal to a. For each sample,
the contribution to the Pr is calculated as a one-dimensional reliability inte-
gral along a. Given a, the failure domain, F', can be expressed as:

F={u€eR" uq € Fa(ui,....,up_4)} (3)

where w4 is a standard normal random variable defined along o, u*+ € R™~!
is a vector of random variables orthogonal to «, while Fy, is a function repre-
senting the failure domain along c, defined on R"™~! [34]. Pr can be expressed
as follows:

Py = / Tp(W)dn(w)du =

/Rmf1 (/R IF(U)¢(ua)dua) S (uh)dut =

/Rm : (/FQ(UL) ¢(“a)d“a> m—1(uh)dut =
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Fig. 1: Line Sampling method.

| )b (0t = B [B(F, ()]

where Ip(u) is an indicator function, such that Ip(u) = 1 if u € F and
Ir(u) = 0 otherwise.

In the case that F,(u') is bounded by [ﬁ(uL)7 oo), the conditional one-
dimensional reliability problem can be evaluated as ®(F,(ut)) = &(—p(ut)),
where $(ut) is the distance from the hyperplane u' = 0 along « to the limit
state surface, g(u) = 0, as indicated in Figure 1. In the case that Fy,(ul) is
composed of several discontinuous intervals this formulation is extended anal-
ogously, for example (—oo, 81 (ub)] U [B2(ut),o0), where B2(u’) > B (ut),
leads to ®(F,(ut)) = &(B1(ut)) + &(—B2(ut))

If F(ut) is bounded by [B(uh), 00), an unbiased estimate of Py is calculated
as:

N N N
o= Y (E () = oY e(-s) = o P ()
i=1 i=1 i=1

where {uj ~ ¢,,—1(ut):i=1,..,N} is a set of samples from the (m — 1)-
dimensional hyperplane orthogonal to c. It is important to observe from Eq. 4
that even a single line search along the important direction provides an esti-
mate of Pp. This property of the LS method will be one of the main building
elements of the proposed CE-LS method in the following sections. The variance
of the estimator PF can be evaluated as:

Var [PF} = m Z (PFi - PF)Q (5)

i=1
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The coefficient of variation of Pr, estimated as CéV(PF) = ,/Var [PF} / Pp,

is commonly used to asses the accuracy of Pp.

3 Cross-entropy method for optimization

The CE method is a heuristic approach for estimating rare events and solv-
ing optimizations problems [14,7]. The method was initially developed as an
adaptive importance sampling method for the estimation of rare-event prob-
abilities by minimizing the cross-entropy or Kullback-Liebler divergence as a
measure of distance between two distributions. Given that the probability of
locating the optimal or a near-optimal solution using naive random search is
usually a rare-event probability, the CE method can be applied as a random-
ized algorithm for optimization [14]. The CE method adaptively updates a
series of sampling distributions of the random search such that the optimal or
near-optimal solution is more likely to occur. The sampling distributions are
adaptively updated to converge to a distribution with high probability mass
in the region of near-optimal solutions [7]. The method is selected for an ap-
plication to RO problems as it features a robust global optimization algorithm
and requires the choice of only a relatively low number of parameters.

Consider a function S(t) over a search space (% with a single minimizer,

t* = [t1,...,t5]" € 12, and the corresponding minimum, v*:
S(t*) =" = min 5(t) (6)

The CE importance sampling formulation for rare-event estimation is adapted
to solve the optimization problem in Eq. 6 by considering the probability
P(S(t) < +), where t is associated with a probability density function f(t;8)
on {2, and @ are distribution parameters, while v is close to the unknown
minimum +*. The CE algorithm adaptively updates v and @ to provide an
importance sampling distribution that concentrates its probability mass in the
neighborhood of t*, as illustrated in Figures 2 (a) to (b). Random sampling
from such a distribution is more likely to provide the optimal or near-optimal
solution [7] for the problem in Eq. 6.

This study implements the CE algorithm for optimization with normal up-
dating as specified in Algorithm 1. The CE algorithm with normal updating
employs a set of independent normal distributions to generate design states
separately for each of the components of the parameter vector t = [t1, ..., tn]T €
2. In the CE algorithm with normal updating, f(t;8) is a multivariate nor-
mal distribution with independent components specified by 8 = (u, 0%), where

T . T. .
W= [l1, ..., fin] " is a vector of means and o2 = [a%, o 0'721] is a vector of vari-
ances.

The CE algorithm proceeds iteratively to update € and «y until a convergence
criterion is satisfied. In the implementation of the CE algorithm with normal
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Fig. 2: Cross-entropy method.

updating in [7], the convergence criterion is expressed in terms of the max-
imum value of the standard deviation in the ¢th iteration among the design
components, such that max, ;. < €m;r = 1,...,n, where €y, is a tolerance
limit. Once convergence is achieved, it is common to select the mean value of
the random search distributions as the minimizer (e.g., [7]).

Although global optimization algorithms are relatively efficient in locating
the region of near-optimal solutions, considerable computational expenses are
often required to locate the true optimum within the region of near-optimal so-
lutions (e.g., [5]). Different techniques can be implemented in such conditions,
as for example hybrid optimization algorithms that combine global optimiza-
tion and nonlinear programming algorithms (e.g., [5]). In the context of the
CE method it is common to implement the dynamic smoothing (e.g., [27]) or
the injection (e.g., [6]) techniques. The dynamic smoothing introduces a set
of coefficients which impede the updating of the parameters of the random
search distributions. The coefficients of the dynamic smoothing are selected
to prevent the parameters of the random search distribution from converging
too quickly to a sub-optimal solution. The injection extension prevents the
optimization process from converging to a sub-optimal solution by increasing
the variance of the random search distribution periodically throughout the
optimization process.

Deterministic (Eq. 1b) and reliability constraints (Eq. 1c) can be incor-
porated in the CE method by implementing the acceptance-rejection or the
penalty method [27]. Given a random search state of the CE algorithm, the
acceptance-rejection method enforces constraints by accepting the state if the
constraints are satisfied. Otherwise, the considered state is rejected and the
random search proceeds to generate another state. The acceptance-rejection
procedure is repeated until the specified number of random search states are ac-
cepted. The efficiency of the acceptance-rejection method depends on the ratio
of accepted over the total number of proposed design states, known as the ac-
ceptance rate. In situations with low acceptance rates and/or computationally
demanding numerical models, used to evaluate constraints, the acceptance-
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Algorithm 1 CE algorithm for stochastic optimization with normal updating
from [7]

T T
1: Define py = [1o1, .., fton) " » 04 = [01,.-,08,] " » Ns, Ne, €lim. > where Ng
is the number of samples of the random search per iteration step, while

N, is the number of elite samples.

2: Initiate 7 < 0
3: while max, 0;. > €jn do
4 14—1+1 > Update the iterator.
5 for 1 <j < Ng do
6: tj ~ N(p;_1,0,-1) > Generate a design state.
7 S; + S(t;) > Evaluate the function.
8 end for
9 S(l) <. < S(Ns) > Sort the values in the ith step from smallest to
largest.
10: vi < S(n.) > Evaluate the p-quantile of the samples, with N, = p- Ng.
11: for 1 <r<ndo > Update parameters p and o.
12:
L
Wi <— N ZI[S] < viltjr
€ ]=1
13:
1 )
7 N, ;I[Sj <l (e — pir)
> Where I [S; < ;] is an indicator function such that I =1 if S; <~;
and I = 0 otherwise.

14: end for
15: end while
16: return p, > Estimator of the minimizer.

rejection method can result in high computational costs.

The penalty method is an alternative to the acceptance-rejection method in
situations with low acceptance rates and/or computationally demanding con-
straints. The penalty method modifies the objective function to penalize the
constraint violation. For example, in the case of a deterministic constraint as
in Eq. 1b, the penalty function can take the following form:

56) = 56 + > Pt 7
k=1

where Py (t) are penalty functions. The penalty function is usually defined to
penalize the constraint violation proportionally:

Pk-(t) = Spk + max [0, hk(t)] (8)
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where Spi > 0 is selected according to the importance of the kth constraint
violation.

4 CE-LS method
4.1 Introduction

A straightforward coupling of the CE optimization and the LS reliability
method in a double-loop RO algorithm is associated with high computational
costs. An alternative CE-LS coupling is formulated in this study in which
an LWA approximation of the probability of failure in the design space is
constructed and refined throughout the optimization process. The LWA ap-
proximation of the probability of failure enables the CE-LS coupling to avoid
repeated nested estimations of the reliability problem within the optimization
algorithm.

The motivation for the coupling between the CE optimization and the LS re-
liability methods is rooted in several important features of the two methods.
The CE method is a robust global optimization algorithm well-suited for noisy
objective functions. The LS method is a robust and highly efficient reliabil-
ity method that provides unbiased reliability estimates for a wide range of
problems, including nonlinear and high-dimensional reliability problems (e.g.,
[42]). One relevant feature of the LS method is that a single sample (i.e., line
search) provides an estimate of the failure probability. This property is uti-
lized within the LWA approximation of the reliability estimates to integrate
the CE and LS methods, as shown later in this Section. The LWA is selected
because it provides a nonparametric local regression model with a reasonable
trade-off between accuracy and computational efficiency. The LWA model is
compatible with the CE method, as the CE algorithm requires only local es-
timates of the objective function at each design state. The compatibility also
extends to the LS method, where the failure probability estimate is defined
as an average estimator, which allows for a straightforward implementation of
the LWA estimator.

4.2 Formulation

Consider a set of Ng design states generated in the ith step of the CE algorithm
with normal updating;:

tj~N(pi_y,0i-1); j=1,..,Ns 9)

T . T T

where t; = [tj1,...,tjn]" , while pt; = [Wi1, ..., in]” and 07 = [07,...,02,] " are
the parameters of the normal random search distribution in the ith step. In

order to evaluate the total cost and the reliability constraints, as defined in
Eq. 1, estimates of the probability of failure are required for the set of design
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states generated by the random search in Eq. 9. In contrast to the double-
loop algorithm, which requires highly accurate estimates of the probability of
failure for the design states in Eq. 9, the CE-LS algorithm relies on an LWA
approximation of the failure probability. The LWA approximation of the prob-
ability of failure in the design space is constructed with the Nadaraya-Watson
nonparametric regression model [32,50], presented in Appendix A.

The LWA approximation is constructed under the assumption that the limit
state surface of the reliability problem is smooth in the vicinity of a design
state, such that the reliability estimates at the neighboring design states can
be employed collectively to provide an accurate approximation of the prob-
ability of failure. An approximation of the probability of failure at a design
state can be obtained with smaller sample size relative to the corresponding
double-loop algorithm due to the reliance of the LWA model on the collective
of reliability estimates at neighboring design states.

The LWA approximation of the reliability problem is expected to provide suf-
ficient guidance to the random search of the CE-LS algorithm as it requires
information on the relative optimality of samples within a population, and not
highly accurate estimates of the absolute optimality at the intermediate sam-
pling steps of the optimization process. The updating mechanism of the CE
algorithm is based on the identification of the relative difference in the opti-
mality of the samples within a population at each intermediate sampling step.
This means that although the averaging of the LWA model results in a certain
bias in the total cost estimates, the optimization process is not expected to be
significantly affected as long as the relative differences in optimality between
the samples can be correctly identified. Moreover, as the LWA estimate is re-
fined throughout the optimization process, this bias is expected to decrease at
later sampling steps.

The accuracy of the LWA approximation of the failure probability estimate
at a design state can be controlled by the sample size at the considered de-
sign state and the number of design states in its neighborhood. To simplify
the implementation of the CE-LS method in this study, the accuracy of the
approximation is here controlled only by the number of design states. The
sample size per design state in Eq. 9 is fixed to a single line search along the
important direction, as defined in the LS method.

Consider that a single line search is evaluated for each of the design states in
Eq. 9 for the kth reliability problem, as presented in Figure 3:

Line searches are conducted along the important directions, ax; k =1, ..., n,.,
for each of the design states. In general « is dependent on the design pa-
rameters, but often a single oy, provides a reasonable approximation of the
important direction across the design space.

Based on the set of line searches in Eq. 10, the estimator in Eq. 4 is transformed
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Fig. 3: Illustration of the CE-LS method. A single line search along the im-
portant direction is evaluated for each of the design states.

into an LWA estimator as follows:

Ng
Pri(t;) =Y wies® (—Br(ts)) (11)
s=1
where wys;s = 1, ..., Ng is a set of weights:
Ky(t;, —t;
Whs = NSH(J—) (12)
> Ku(t; —t)
=1
with kernel function Kg(v):
1 _

where K (v) is a function defined to provide higher weights to the design states
closer to v = 0, while H is a n X n nonsingular positive definite bandwidth
matrix. In this study, K(v) is the Gaussian kernel, while H is selected to be
a diagonal matrix with entries proportional to the variances of the normal
random search distributions, H = h - diag(c?, ...,02), where h is a bandwidth
parameter. Proper selection of h is important as it affects the variance and the
bias of the estimate. Larger values of h reduce the variance of the estimate as
more values have a significant effect on the estimate. However, as h increases
the estimator is averaged across a broader range of design states, which can
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lead to a larger bias. The value of h is determined to balance the effects
of variance and bias of the estimators by minimizing the leave-one-out cross
validation score, following Appendix A (Eq.42).

An estimate of the variance of the weighted estimator in Eq. 11 is calculated
as [49]:

Var [Pm(tg‘)] = 57 (t)) %S: Wi (14)

where 67(t;) is the estimate of the residual variance for the kth reliability
problem, calculated as discussed in Appendix A.

An LWA approximation of the total cost is constructed at the design states in
Eq. 9 as follows:

Ny
C(t;) = Cp(t;) + > CrirPri(t)) (15)
k=1
The total cost estimate is a biased estimator due to the bias in the estimates
of the failure probabilities. The variance of the total cost is estimated as:

Var [é(tj)} - i C2, Var [PFk(tj)} (16)
k=1

An estimate of the coefficient of variation for the local average estimate of the
total cost is calculated as:

CoV [é(tj)} =/ Var [é(tj)}/é(tj) (17)

The estimates of the total cost in Eq. 15 and the reliability problem in Eq. 11
are used to evaluate the constraints and update the parameters of the ran-
dom search distributions, as defined in Algorithm 1. The constraints can be
included by the acceptance-rejection or the penalty method, as discussed in
Section 3.

The parameters of the random search distributions are updated based on the
set of N, samples with the lowest estimated total cost according to Algo-
rithm 1. With the parameters of the random search distribution updated, the
procedure in Egs. 9 to 17 is reiterated to provide another set of design states
and reliability estimates in the region of the design space previously identified
to minimize the total cost. Since the CE-LS algorithm requires information on
the regions of the design space minimizing the total cost, and not necessarily
highly accurate estimates of the total cost, it is expected that the bias in the
total cost estimates will not significantly affect the performance of the algo-
rithm. It is important to note that the design states generated in the previous
iterations of the algorithm are not discarded, but are used to construct the
LWA approximation in the current iteration. As the CE-LS method localizes
the region of the design space with near-optimal solutions, the LWA approx-
imation of the failure probability is adaptively refined with additional design
states, thus improving the accuracy of the approximation. Consequently, due
to a decreased extent of averaging, the bias in the LWA approximation of the
probability of failure is reduced.
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4.3 Convergence criteria

The CE-LS algorithm proceeds iteratively until certain convergence criteria
are satisfied with respect to the random search in the design space and the
convergence of the total cost estimate. The convergence of the random search is
monitored with respect to the maximum value of the standard deviation scaled
by the interval between the upper and lower bound of the corresponding design
parameter in the ith iteration of the algorithm:

€ = max o, /(t* —t1) < eim (18)

where ¥ and t\ are, respectively, finite upper and lower bounds for the rth
design parameter, while €y, is a tolerance limit.

Convergence of the total cost estimate can be monitored by the value of the
coefficient of variation in Eq. 17. The average value of the coefficient of vari-
ation of the total cost estimate, among the design states in an iteration step,
is utilized as a convergence criterion:

Ns
NLS ZC(SV {é(tj)] < COVlim (19)

where CoVyy, is the limiting value.

Once convergence is achieved, it is common to select the mean value of the
random search distributions as the minimizer (e.g., [7]). Alternatively, the
solution to the RO problem can be further refined by conducting a local search
based on the parameters of the random search distribution obtained in the
last iteration step of the algorithm. A local search can be conducted with
the corresponding double-loop or any alternative optimization algorithm in
the region of the design space localized in the last iteration of the CE-LS
algorithm.

4.4 ITmplementation

The implementation of the CE-LS method for an unconstrained RO problem
is summarized in Algorithm 2. The total cost is specified with Cp(t) and Cp,
while the bounds of the feasible design space are specified with t! and t*. The
CE-LS algorithm requires the specification of the maximum number of itera-
tion steps, No, the number of design states per iteration, Ng, the number of
elite samples, N, the initial parameters of the random search distributions,
o and o, and the convergence limits, €, and CoVy;y,. Although the selec-
tion of the parameters of the CE-LS algorithm is problem dependent, efficient
performance of the CE algorithm is achieved in [27] with N, = 10 for n < 50
and N, = 20 for 50 < n < 100. Provided that common values of p are between
0.01 and 0.1, the values of 100 < Ng < 1000 for n < 50 and 1000 < Ng < 2000
for 50 < n < 100 can serve as an initial guidance.
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A

Igorithm 2 CE-LS for unconstrained RO

1

W N

16:

17:
18:
19:
20:

: Define No, Ng, Ne, t!, t%, Cp, Cr, po = [po1, - pon)”, 03 = [0317---708n]T, €lim
CoViim, a1,...,0.
: Initiate ¢ < 0 . .
: while {i < No & [max, o4 /(t% — tL) > €y or 2325—1)4NS+1 CoV (C(tj)) /(i -
Ng) > CoViim] } do
it 1+1 > Update the iterator.
for (i—1)-Ns+1<j<i-Ngdo
t; ~ N(p;_q1,0—1) > A design state is accepted if tl < t; < t*. Otherwise, it is
rejected and a new design state is generated.
Brj < Br(t;); k=1,..,n > Generate a sample on the hyperplane orthogonal
to a and perform a line search for the kth failure state.
end for
hy, + argminy, Ry, (h) > Estimate the optimal bandwith by minimizing the
leave-one-out cross-validation score for the kth failure state.

for (i—1)-Ng+1<j<i-Ngdo
N ©Ng
Pri(tj) < > wisP(—Brs) > Nadaraya-Watson approximation
s=1
i N .
where ws + K, (t; —ts)/ Zf]:ls Kj, (65— tq) > Weights.
.~ Ta ©Ng
Var [Ppk(tj)] — 62(t5) Y wi, > An estimate of
s=1

the variance of the kth failure probability estimate, where &i (t;) is the estimate of the
residual variance for the kth reliability problem, as defined in Appendix A.

C(t;) « Cp(t)) + X CriPri(t))
i=1

21:

22:

23:
24:
25:

~ N nr ~ A
Var [C(t)] « X O3 Var [Pri(t;)]
=1
oV [ A(tj)] « /Var [é(tj]/é(tj)
end for .
Cay < ... <Cvyg) > Sort the values in the ith step from smallest to largest.
Vi C(Ne) > Let «; be the sample p quantile, such that N = p- Ng.
for 1 <r<ndo > Update parameters p and o.
1 i-Ng .
Hir < Z I[C(tj) < ’Yz‘] tjr
€ j=(—1)-Ng+1
1 i-Ng X
oF N > I[C(tj) < %} (tjr — pir)®
e

> j=(i—1)-Ng+1

> Where I [C’(t]) < 'yi] is an indicator function such that I =1 if C’(tj) < +; and
I = 0 otherwise.
end for
end while
return p; or conduct a local search.

The initial parameters of the random search distribution, g, and o, should

be selected such that a set of random states covers the design space relatively
uniformly between t' and t“. The selection of Np, €lim, and CoViy, primarily
depends on the available computational resources. In general, larger values of
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No allow for lower values of €);,, and CoVy;, to be achieved. Low values of €,
will lead to finer estimates of the region of the design space with near-optimal
solutions, while low values of CoVy;, lead to higher accuracy in the total cost
estimates.

4.5 Constraints

The implementation of the CE-LS method to an unconstrained RO problem in
Algorithm 2 can be extended to optimization problems with deterministic and
probabilistic constraints by implementing the acceptance-rejection and/or the
penalty method. As discussed in Section 3, the acceptance-rejection is com-
monly applied in RO problems with computationally inexpensive constraints
and relatively large acceptance rates. These criteria are commonly satisfied
by deterministic constraints, specified by closed form expressions. Reliability
constraints are commonly computationally expensive to evaluate in structural
ROs due to the application of computationally demanding reliability meth-
ods and/or complex structural models (e.g., finite element model). To avoid
potentially low acceptance rates and the corresponding computational costs,
the reliability constraints are modeled by the penalty method. The penalty
method modifies the objective function to penalize the reliability constraint
violations. The following formulation of the penalty function is adopted in this
study:

C(t) = C(t) + Cp - max [o, max (Ppk(t) - }%)} (20)
where Cp > 0 measures the importance of constraint violation, while P};g‘
is the kth constraint limitation. The value of Cp should be selected large
enough to prevent the samples violating the constraints from updating the

parameters of the random search distributions in the following iteration of the
CE-LS algorithm.

5 Numerical examples
5.1 Risk optimization problem

The CE-LS method is applied to an RO problem taken from [21] to investigate
the effects of noise in the objective function on the optimization process. The
RO problem is specified with an n-dimensional vector of design parameters t =
[t1, ...,tn]T, and a vector of three independent normally distributed random
variables, X = [X}, X2,X3]T, where X1, X5, Xo ~ N(1,0.2). The RO problem
is defined as follows:

i=1

minimize C(t) = exp (Z tf) —1+CpPr (21a)
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where
Pp = Plg(x) < 0] (21b)
g(X) = X1 Xo + 2.5 (]:[1 ti + Z) + = ;ti — X3 (21c)
0<t;<1; i=1,..n (21d)
and CF = 20.

As observed from Eq. 21a, the objective function incorporates a risk term to
account for the expected failure cost, defined as a product of the failure cost
and the corresponding failure probability. The application of sampling relia-
bility methods for the estimation of the failure probability produces estimates
that are subject to a certain degree of numerical noise. Consequently, the noise
is transferred to the values of the objective function, as illustrated in Figure 4.
Figure 4 presents a realization of the objective function where the failure prob-
ability estimates were calculated with the LS method and CoV(Pr) < 0.01.
From Figure 4 it can be observed that the presence of noise in the failure
probability estimates leads to a noisy objective function. The CE-LS method
is developed to address this type of problems as is relies on the CE global
optimization algorithm.

log(C(t))

Fig. 4: A realization of the cost function in Eq. 21a. The grayscale plot shows
the log C(t) values.

The CE-LS algorithm is applied to the RO problem in Eq. 21 with the
following parameters; No = 20, Ng = 102, p = 0.1, €}, = 0.01. The impor-
tant directions are selected to point in the direction of the design point. The
design points are located numerically for each design state. The results are
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presented in Table 1 for a range of dimensions of the optimization problem,
n = {2,10,20}, in terms of the estimate of the average value of the design

n ~

components at the minimizer, ¢y, = 1/n tmin,r, estimate of the mini-

r=1
mum, Chnin, estimate of Pg at the minimizer, Pp (f:min), the total number of
objective function calls, N,, and the total number of performance function
calls, Ny. The results in Table 1 correspond to the average values among ten
runs of the algorithm. The results are presented with the corresponding coef-
ficients of variation, CoV, to examine the variability in the estimates among
the ten runs of the algorithm. The CoV values are calculated empirically as a
ratio of the standard deviation of an estimate over its average value.

The performance of the CE-LS method is compared to the corresponding
double-loop algorithm, obtained by coupling the CE optimization and the LS
reliability methods. The double-loop algorithm is implemented with the same
convergence criteria as the CE-LS algorithm. The reliability estimates are cal-
culated with a convergence criterion of CoVy;, = 0.05. The double-loop results
in Table 1 correspond to the average values among ten runs of the algorithm.
Additionally, the numerical performance of the CE-LS approach is compared
to the DSRF method in [21]. The DSRF method evaluates the failure probabil-
ities over the design space by calculating the roots of the limit state function.
The RO problem in Eq. 21 was examined with the DSRF method in [21] with
the primary goal of examining the numerical efficiency of the approach. Al-
though the estimates of the minimizer, minimum, and failure probability are
illustrated for some numerical examples in [21], they are not explicitly pre-
sented. For that reason, Table 1 presents only the computational performance
of the DSRF approach in terms of the number of performance function eval-
uations, Ny, as these results were explicitly provided in [21].

A reference estimate of the minimizer for the RO problem in Eq. 21 is ob-
tained by coupling the Genetic Algorithm global optimization algorithm with
the Monte Carlo method (GA-MC). The Genetic Algorithm is implemented
with 15 generations, a population size of 50 per generation, and 5% elite popu-
lation. The Monte Carlo estimates of the failure probability are calculated with
the convergence criteria defined by the coefficient of variation of the total cost
of COV(C') < 0.001 or the maximum number of samples of 10”. Given that the
cost function is symmetric with respect to the diagonal between t! = [o,..., O]T
and t! = [1,... 1]T and that the minimum is found at the diagonal, as shown
in Figure 4, the application of the GA-MC algorithm is simplified by consid-
ering a one-dimensional optimization problem along the diagonal. Due to the
simplification of the optimization problem, the GA-MC results in Table 1 are
not directly comparable with the results of the CE-LS and the double-loop
algorithms in terms of accuracy and computational efficiency. The main pur-
pose of the GA-MC estimates is to provide reference results to the CE-LS and
the double-loop algorithms.

The comparison of the results in Table 1 reveals that the CE-LS method lo-
cated the minimizer and the minumum in the region of near-optimal solutions,
comparable to the results from the double-loop and the GA-MC algorithms.
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The variabilities in the estimates between the CE-LS and the double-loop algo-
rithms are comparable and increase from = 2% for n = 2 to =~ 10% for n = 20.
The results demonstrate that the CE-LS method can be efficiently applied
to RO problems characterized by noise in the objective function introduced
by sampling-based failure probability estimates. The comparison between the
number of objective and performance function evaluations reveals that the
majority of computational expenses are associated with the performance func-
tion evaluations. The number of objective function evaluations increases with
n, with no significant difference between the CE-LS and the double-loop al-
gorithm. The differences in the number of performance function evaluations
reveal that the CE-LS algorithm can provide significant reductions in computa-
tional expenses when compared to the double-loop and the DSRF algorithms.

Table 1: Results for the RO problem in Eq. 21.

[(n ] [ CE-LS [ Double-loop | DSRF [21] [ GA-MC ]
tmin 0.443 0.447 - 0.451
CoV (%) 2.400 0.690 - 1.867
Pr 1.48-1073 | 1.26-1073 - 3.37-1073
CoV (%) 17.029 14.071 - 5.236
9 Cinin 0.110 0.109 - 0.110
CoV (%) 2.705 2.427 - 0.821
No 500 450 - 750
CoV (%) 21.082 11.712 - 0
Ny 1.27-10% 1.63 - 105 8.62-10° | 6.03-10°
CoV (%) 20.593 11.577 - 4.491
tonin 0.426 0.436 - 0.440
CoV (%) 8.472 6.569 - 2.000
Pp 3.84-1072 | 3.41-1072 - 5.70 - 1072
CoV (%) 8.234 11.856 - 0.535
10 | Cumin 1.178 1.134 - 1.179
CoV (%) 3.648 3.553 - 0.330
No 1120 970 - 750
CoV (%) 38.300 16.870 - 0
Ny 2.35 - 10% 8.58 - 10* 1.57-107 | 6.20-10°
CoV (%) 37.597 17.305 - 3.049
timin 0.374 0.371 - 0.387
CoV (%) 12.049 9.295 - 2.197
Pp 5.20-1072 | 5.27-1072 - 7.96 - 102
CoV (%) 10.298 8.696 - 0.287
20 |  Cmin 1.574 1.548 - 1.614
CoV (%) 7.320 5.946 - 0.340
N, 1330 1210 - 750
CoV (%) 53.054 32.467 - 0
Ny 2.92 - 10% 9.60 - 104 1.83 - 107 5.05 - 10°
CoV (%) 52.892 34.909 - 7.767
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5.2 Nonlinear RBDO problem

The CE-LS method is applied to an RBDO problem studied in [10], which
features a deterministic objective function with deterministic and reliability
constraints. The problem is selected to investigate the performance of the CE-
LS algorithm on a classic RBDO problem and the implementation of deter-
ministic and reliability constraints. The RBDO problem is specified with two
design parameters t = [t1, tQ}T, two independent normally distributed random
variables, X = [X}, XQ]T, and three probabilistic constraints, defined by re-
spective performance functions ¢; (X), g2(X), and g3(X). The RBDO problem
is defined as follows:

minimize C(t) = t; + t2 (22a)
subject to
Prj = Plgj(x) <0] <&(-B;); j=1,2,3 (22b)
0<t; <10; i=1,2 (22d)
where )
XX,
(%)= 2152 1 (22¢)
(X1 +Xo—5)° (X1 — X, —12)°
X) = —1 22f
92(X) 30 * 120 (226)
80
X)=—m——7—-1 22
93( ) X12+8X2+5 ( g)
X; ~N(t;,03); i=1,2 (22h)
Pr=pP2=pP3=2 (22i)

The RBDO problem in Eq. 22 can be examined graphically in Figure 5.
The reliability constraints in Figure 5 are constructed based on Monte Carlo
estimates of probabilities in Eq. 22b with 107 samples of the random param-
eters X. The graphical solution (GS) to the RBDO problem is found at t =
[3.312,2.886]" with the corresponding objective function value C/(t) = 6.198.
The values of the performance functions and the reliability constraints corre-
sponding to the GS minimum estimate are presented in Table 2.

In addition to the GS, Table 2 contains the estimates obtained with the
CE-LS algorithm, the corresponding double-loop algorithm, and a series of
RBDO algorithms that apply approximate reliability methods, which include
RIA, PMA, SORA and SAP. The results corresponding to the PMA, SORA
and SAP methods are obtained from benchmark tests in [1].

The CE-LS algorithm is applied to search for the minimum value of the ob-
jective function with the following parameters; No = 10, Ng = 10?, p = 0.1,
€1im = 0.05. In order to accelerate the convergence of the CE-LS algorithm to
the minimizer at the intersection of two reliability constraints, the injection
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Fig. 5: Graphical solution to the RBDO problem in Eq. 22. The grayscale
plot shows the objective function. The region of feasible designs is obtained by
bounding the design space, withing the limits in Eq. 22d, with positive values
of the deterministic constraints (Eq. 22¢), and reliability constraints (Eq. 22b).

technique [6] was applied to Algorithm 2. After initially satisfying the conver-
gence criterion defined by €5, the injection technique increases the variance of
the random search distributions to prevent the search process from converging
to a sub-optimal solution. In this example, the injection technique is applied
once within a search to set the variance of the random search distributions
equal to the variance in the second iteration of the CE-LS algorithm.

Since the optimal solution is found on the boundary of reliability constraints
corresponding to Pry and Ppo, the CE-LS estimate of the minimizer is calcu-
lated by conducting a local search based on the near-optimal design states in
the last step of the CE-LS algorithm. To ensure that the CE-LS estimate of
the minimizer satisfies the reliability constraints, relatively accurate estimates
of the failure probabilities in Eq. 22b are calculated with the LS method for
the design states in the last step of the CE-LS algorithm. The estimates of the
failure probabilities are calculated with a target CoViyy, = 0.1.

The important directions are selected to point in the direction of the design
point. The design points are located numerically for each design state. The
reliability constraints in Eqs. 22b are enforced in the CE-LS algorithm with
the penalty method. The objective function is reformulated as:

C(t) = C(t) + Cp - max O,mjax (Ppj —P(—5;)) (23)

where C,, > 0 is the penalty cost. The value of C), is iteratively increased from
102 in the first iteration step up to 10° at No = 10 to prevent severe viola-
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tions of the reliability constraint as the CE-LS algorithm proceeds to locate
the region of the design space with near-optimal solution.

The performance and stability of the CE-LS algorithm are examined on ten
evaluations of the RBDO problem in Eq. 22. The CE-LS results in Table 2
correspond to the average values among the ten runs of the algorithm. The
results are presented with the corresponding coefficients of variation, CoV, to
examine the variability in the estimates among the ten runs of the algorithm.
The CoV values are calculated empirically as a ratio of the standard deviation
of an estimate over its average value.

The double-loop algorithm is performed with the same convergence criteria
as the CE-LS algorithm. The reliability estimates are calculated with a target
CoVyim = 0.05 for all the reliability problems. The reliability constraints are
enforced by the acceptance-rejection algorithm.

The comparison of results in Table 2 reveals that the CE-LS method located
the region of the design space with near-optimal solutions, comparable to the
results of the alternative approaches. The comparison of the minimum esti-
mates indicates that the CE-LS and the double-loop algorithm provide slightly
higher estimates than the GS. This is considered to be primarily a consequence
of the low efficiency of global optimization algorithms is approaching local op-
tima (e.g., [5]). The minimum estimates provided by RBDO algorithms that
employ approximate reliability methods are slightly lower than the GS solu-
tion. This is a consequence of the FORM approximation that results in under-
estimates of Pp; and violations of the corresponding reliability constraint.
These results demonstrate that the CE-LS algorithm is capable of incorpo-
rating both the deterministic constraints via the acceptance-rejection method
and the reliability constraints via the penalty method.

The comparison of computational expenses in terms of N, and N, shows
that CE-LS method can significantly reduce the computational expenses when
compared to the corresponding double-loop algorithm. However, the computa-
tional expenses of RBDO algorithms with approximate reliability methods are
lower as compared to ones of the CE-LS method. These results indicate that
the CE-LS method is not expected to perform more efficiently than the exist-
ing RBDO algorithms on problems with convex objective functions and where
FORM approximations of the reliability estimates do not lead to constraint
violations. The CE-LS method is expected to perform efficiently on problems
with noisy objective functions and nonlinear reliability problems.

5.3 High-dimensional RO problems

In the following section, a parametric study is conducted on an RO problem
to evaluate the effect of the number of design parameters and the number
of random variables on the performance of the CE-LS algorithm. The effect
of nonlinearity of a reliability problem on the CE-LS algorithm is examined
by comparing a linear with a parabolic failure limit. Given that a reliability
problem with a linear performance function requires a single line search along
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Table 2: Results for the RBDO problem in Eq. 22.

[ | CE-LS | Double-loop | GS [ RIA [ PMA® [ SORA® [ SAP® |
i1 3.308 3.311 3.312 [ 3.295 - - -
CoV (%) 0.579 0.566 - - - - -
2 2.937 2.931 2.886 | 2.897 - - -
CoV (%) 1.184 1.269 - - - - -
Pry 0.0201 0.0192 0.0228¢ 0.0227° (0.0247¢)
CoV (%) 7.807 7.535 - S e T
Pry 0.0137 0.0174 0.0228¢ 0.0227% (0.0197¢)
CoV (%) 32.880 30.324 - - - - -
Prs 1.371-10719 | 3.944.10-23 - ~ 0P - - -
CoV(%) 2.984 - 102 31.166 - - - - -
Crmin 6.245 6.242 6.198 | 6.192 | 6.192 6.192 6.193
CoV (%) 0.294 0.342 - - - - -
N, 820 - - 18 - - -
CoV (%) 12.595 - - - - - -
Ny 7.119 - 10% 6.702 - 10° - 2183 540 255 180
CoV (%) 11.693 13.905 - - - - -

Note: @ Results from [1], ® FORM estimate, ¢ Monte Carlo estimate

a known important direction to be evaluated, the application of the CE-LS
algorithm to the RO problem with a linear reliability problem is intended
primarily to investigate the effect of the number of design parameters on the
performance of the algorithm. The implementation of the reliability problem
with a parabolic failure limit serves to investigate the combined effects of
the number of design parameters and the number of random variables on the
performance of the CE-LS algorithm.

5.8.1 Linear failure limit

The RO problem is defined as follows:

minimize C(t) = zn: Cit? + CpPr(t) (24a)
i=1
subject to

Pr(t) < PEm (24D)
—5<t,<25 i=1,..,n (24c¢)

where . .
g(u,t) = Zti — Zuj (24d)

i=1 j=1

while C(t) is the total cost as a function of a set of design parameters t =
[t1, ...,tn]T, U =[Uy,..., Um]T is a vector of independent standard, normally
distributed random variables with zero-mean and unit standard deviation,
C;,i=1,...,n are the design cost parameters, C is the cost of failure, P};m =
10~* is the failure probability limit. Due to a relatively simple formulation of
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the RO problem in Eq. 24, the minimizer can be found analytically as shown
in Appendix B.

The RO problem in Eq. 24 is studied for a range of n (number of design

parameters) and m (number of random variables). The location of the mini-
mizer in Eq. 47 is defined by m and the desired reliability index of Sy, = 4
at the minimum. The design cost parameter C; is defined according to Eq. 49
in Appendix B by specifying Cr = 100,
The CE-LS method is implemented with the following parameter values; No =
100, Ng = 103, p = 0.1, CoVyj, = 0.1, and €, = 0.001 for n = 2, while
€im = 0.01 for n = 10 and n = 100. Higher values of €, for n = 10 and
n = 100 are selected due to higher computational costs of the CE-LS algo-
rithm in these cases. In the initial step of the CE-LS algorithm, the design
states are generated uniformly within the bounds of the design space. Given
the linear performance function, the important direction of the LS method
can be determined analytically to be &« = 1/y/m - [1,..., 1]T. The reliability
constraint in Eq. 24b is implemented with the penalty method by modifying
the objective function:

C(t) = C(t) + Cp - max [0, Pp(t) — Pp™] (25)

where C), is the penalty cost. The value of C,, is iteratively increased from zero
at the first iteration of the algorithm to 10'° at No = 100.

The performance of the CE-LS algorithm is examined based on ten evalua-
tions of the RO problem in Eq. 24. The CE-LS results in Table 3 correspond
to the average values among the ten runs of the algorithm. The variability
in the estimates among the ten runs of the algorithm is examined with the
corresponding coefficients of variation, CoV.

The CE-LS estimates are compared to the corresponding analytical solutions
for a range of dimensions of the optimization and the reliability problem. The
mean value of the normal random search distribution is selected as the es-
timate of the minimizer. Since the analytical solution specifies that all the
design components have the same value at the minimum in Eq. 46, the results
are compared with respect to the average value of the design components at
the minimizer fmin = 1/7> 1| tmin,r- tmin denotes the CE-LS estimate of the
minimizer, and t.,;, denotes that of the analytical solution. The CE-LS esti-
mates and the analytical solution agree well. The examination of CoV values
reveals relatively low variation in the estimates of the minimizer, usually below
10%. The convergence of the minimizer is examined by plotting the mean val-
ues of the random search distribution, p;-;7 = 1,...,n, for different iterations
steps, ¢, in Figure 6 (n = 10 and m = 2). Figure 6 shows that the mean values
converge relatively uniformly to the value of fmin = 0.562.

From the results in Table 3, a good agreement is observed between the CE-LS
estimates of the total cost, C’min, and the analytical values of the minimum
total cost, Chin. The variation in C’min is relatively low with CoV’s lower
than 5%. The estimates of the total cost are associated with very low coeffi-

cients of variation, CoV [C’min], due to accurate estimates of the probability
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Fig. 6: Mean values of the random search distribution of the CE-LS algorithm
for the RO problem in Eq. 24 with n = 10 and m = 2.

of failure at the minimizer. Additionally, the estimated value of Pg at tonin,
pp(fmin), is compared to the analytical solution, Pg(tmin), to investigate the
accuracy of the local average approximation of the probability of failure. The
comparison between the CE-LS estimates and the analytical values of Pg in
Table 3 reveals good agreement. A slightly higher variation in the Pp values
is expected to be a consequence of the variation in the minimizer values. The
computational demands of the CE-LS algorithm can be examined with the
number of objective function evaluations, N,, and the number of performance
function evaluations, IN;. The value of N, corresponds to three performance
evaluations per design state for the evaluation of the line search along a. An
increase in the computational costs is observed with an increase in the number
of design parameters in Table 3 with a variation up to 21%. Since the values

of CoV [C*min} are relatively low, the convergence of the CE-LS algorithm is

governed by the value of e.

5.8.2 Parabolic failure limit

The effects of n and m on the efficiency of the CE-LS algorithm are evaluated
by a performance function with a parabolic failure limit for the RO problem
in Eq. 24:

g(u,t) ZGZU?—U1+Zti (26)
j=2 i=1

where a is a constant.

The performance of the CE-LS algorithm is evaluated for a range of n and
m as presented in Tables 4, 5, and 6. The parameters of the random vari-
ables and the design cost, C; and Cp, are specified in Section 5.3.1, while
-5 < t; < 5;i = 1,...,n. The penalty method is implemented to enforce
the reliability constraint with the parameters specified in Section 5.3.1. To
adapt to the performance function in Eq. 26, the important direction of the
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Table 3: Results for the RO problem in Eq. 24 with the linear failure limit.

m
2 [ 10 [ 100
n=2
tonin 2.818 6.305 19.933
CoV (%) 0.262 0.113 0.0965
Crin 2.994 - 106 2.994 - 108 2.994 - 109
CoV(%) 0.014 0.006 0.005
CELS cov [émm] 7.491-1076 | 4.121-1076 | 2.205.1076
Pr(tmin) 3.375-1075 | 3.338-107% | 3.350-107°
CoV(%) 1.481 1.065 0.760
N, 8.9.103 1.8 -10% 2.23-10%
CoV(%) 17.923 21.276 18.191
Ny 2.67 - 10* 5.4 -10% 6.69 - 10
CoV(%) 17.923 21.276 18.191
Tmin 2.828 6.325 20.0
Analytical ‘min 2.993 - 106 2.993 - 106 2.993 - 106
Pr(tmin) 3.167-1075 | 3.167-107% | 3.167-107°
n =10
tonin 0.562 1.254 3.972
CoV(%) 0.437 0.399 0.212
Chin 3.033 - 106 3.004 - 106 2.997 - 106
CoV (%) 0.937 0.390 0.051
CELS cov [émm] 1.30-10~3 | 4.798-10~% | 1.096-10—4
Pp (tmin) 3.883-107° | 3.729-107° | 3.574-107°
CoV (%) 6.686 3.582 1.238
N, 1.07 - 104 1.1-10% 1.39 - 104
CoV (%) 4.514 0.0 5.308
Ny 3.21-10% 3.3-10% 4.17-10%
CoV (%) 4.514 0.0 5.308
Tmin 0.566 1.265 4.0
Analytical Comin 2.993 - 106 2.993 - 106 2.993 - 106
Pr (tmin) 3.167-1075 | 3.167-107% | 3.167-107°
n = 100
tnin 0.057 0.127 0.40
CoV (%) 1.071 10.392 3.088
Chnin 3.034 - 106 3.002 - 106 2.994 - 106
CoV (%) 0.286 4.497 1.347
CELS cov [C‘min] 3.565. 1019 | 6.222.10-19 | 6.488-10~19
Pr(tmin) 3.173-1075 | 3.147-107% | 3.121-107°
CoV(%) 14.497 31.248 11.047
N, 4.83 - 104 2.95-10% 3.0-10%
CoV(%) 1.397 2.397 0.0
Ny 4.83 - 10% 8.85 - 104 9.0-10*
CoV(%) 1.397 2.397 0.0
Tmin 0.057 0.127 0.40
Analytical Cumin 2.993 - 106 2.993 - 109 2.993 - 106
P (tmin) 3.167-107° | 3.167-107° | 3.167-107°

LS method is selected to point in the direction of the design point, along the
axis of the standard normal space corresponding to u;. The constant of the
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performance function is selected to be a = 1 for m = 2 and m = 10, and
a = 0.1 for m = 100 in order to obtain the failure probability at the optimum
in the range between 107° and 10712

The results of the CE-LS algorithm are validated numerically with a double-
loop algorithm, where the optimization problem is solved with the CE method,
while the reliability problem is solved with the LS method. The CE algorithm
is applied with the convergence limit €, = 0.01. The convergence limit for

the LS estimate of the failure probability is specified by CoV {PF} <0.1.

Additionally, the performance of the CE-LS method is compared to the RO
algorithms that implement approximate reliability methods with the imple-
mentation of the RIA algorithm. The RIA algorithm is implemented with
the MATLAB™ implementation of the Sequential Quadratic Programming
(SQP) optimization algorithm for the minimization of the cost function and
the determination of the design point for FORM-based reliability estimates.
The performance and numerical stability of the CE-LS algorithm are exam-
ined by evaluating the RO problem ten times. The CE-LS results in Tables 4,
5, and 6 correspond to the average values among the runs of the algorithm.
The variability in the estimates is examined with the corresponding CoV val-
ues. The CoV values are calculated empirically as a ratio of the standard
deviation of an estimate over its average value. The average value among the
components of the CE-LS estimate of the minimizer is denoted by tin. The
comparison of the results in Tables 4, 5, and 6 reveals a good agreement
between the estimates of the minimizer with the CE-LS and the double-loop
algorithms. A large relative variation (often relatively low in absolute terms)
in certain CE-LS estimates of the minimizer can be attributed to the highly
nonlinear optimization problem and averages that approach near-zero values.
The comparison between the CE-LS and RIA estimates shows a significant
disagreement. This is considered to be an outcome of the inadequacy of the
FORM approximation of the reliability problem defined by the parabolic per-
formance function in Eq. 26. The adequacy of the FORM reliability estimates
is examined by comparing them with the corresponding LS reliability estimates
in Tables 4, 5, and 6. The comparison of reliability estimates often reveals
a difference of several orders of magnitude, which can significantly affect the
ability of an RO algorithm implementing approximate reliability estimates in
locating the minimizer and satisfying the reliability constraints.

Figure 7 presents the mean values of the random search distribution, p;-; 7 =
1,...,n (n =10 and m = 2) with the iterations of the CE-LS algorithm, i, to
illustrate the convergence of the minimizer. It can be observed that the CE-LS
algorithm locates the area in the proximity of the minimizer within eleven it-
eration steps, but continues to iterate until satisfying the convergence criteria.
Figure 8 displays the convergence of the mean values of the random search
distribution with the iterations of the the double-loop algorithm (n = 10 and
m = 2). The convergence criteria in Eq. 18 is satisfied after ten iterations
of the algorithm. The comparison between the results of the CE-LS and the
double-loop algorithm for n = 10 and m = 2 in Table 5 and in Figures 7 and 8
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Table 4: Results for the RO problem in Eq. 24 with the parabolic failure limit

and n = 2.
m
2 10 100
tmin 1.891 1.381 1.402-10—4
CoV(%) 1.50 12.445 64.882
Chin 1.437-106 1.693 - 10° 7.45 1072
CoV (%) 0.838 51.306 153.75
cov [émm] 3.909-10-3 | 5.024-10-3 | 2.214.10-2
CE-LS L
Pr(tmin) 2.393-107° 1.887-1076 6.759 - 1012
CoV(%) 14.865 170.28 164.35
No 1.2 - 10% 1.6 - 10% 1.96 - 104
CoV(%) 17.123 19.764 7.295
Ny 3.6-10% 4.8-10% 5.88 - 10*
CoV (%) 17.123 19.764 7.295
timin 1.956 1.002 5.310- 1075
Cmin 1.420 - 106 9.563 - 10* 8.610-10~2
Double-loop | Pp(tmin) 1.368 - 105 3.206 - 10~ 7.082-10~12
N, 4.0-103 4.0-103 3.0-103
Ny ~1.2-107 ~2.1-108 ~3.3-108
timin 2.080 2.256 2.489
Chin 1.607 - 106 3.727 - 10° 4.467 - 104
L 21.590-10"% | @3.201-10"% | 23.224.10"7
RIA )
Pp (tmin) v4.992.10~6 | %6.055-10"11 | b2.772.10~27
N, 65 65 68
Ny 1.179 - 103 4.323 - 103 4.121-10%

Fig. 7: Mean values of the random search distribution of the CE-LS algorithm
for the RO problem in Eq. 24 with the parabolic failure limit for n = 10 and

m = 2.

reveals that both algorithms estimate the minimizer in a similar region of the

design space.

The comparison of the CE-LS and the double-loop estimates of the min-
imal total cost, Chin, in Tables 4, 5, and 6 shows a good agreement. The

Note: * FORM estimate, ® LS estimate.

8 10 12 14 16 18 20 22
Iteration step ¢
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Table 5: Results for the RO problem in Eq. 24 with the parabolic failure limit
and n = 10.

m
2 10 100
tmin 0.377 0.159 0.028
CoV(%) 3.369 23.714 29.687
Cmin 1.545 - 108 1.282-10° 2.70 - 102
CoV(%) 1.706 24.112 70.401
cov [émm] 5124-1073 | 1.506-10-2 | 7.623.10~6
CE-LS L
Pr(tmin) 3.450 - 10~° 6.445 - 10~6 3.675- 10712
CoV(%) 8.073 39.463 128.15
No 2.19 - 104 1.51 - 104 1.29 - 104
CoV(%) 16.457 10.564 9.052
Ny 6.57 - 10% 4.53 - 10% 3.87-10%
CoV (%) 16.457 10.564 9.052
tmin 0.388 0.208 0.024
Cmin 1.436 - 106 1.004 - 10° 3.592 - 102
Double-loop Pr(tmin) 1.725-1075 2.139-106 2.341 - 1012
N, 9.0-103 8.0-103 8.0-103
Ny ~ 2.70 - 107 ~ 4.57 108 ~ 8.80 - 108
tonin 0.416 0.451 0.498
Chin 1.607 - 106 3.727 - 10° 4.467 - 104
L 21.590-10"% | @3.201-10"% | 23.224.10"7
RIA )
Pp (tmin) b4.971.10~6 | v5.721-10"11 | b5.360.1026
N, 498 549 441
Ny 8.97 - 103 3.630 - 10* 2.675 - 10°
Note: * FORM estimate, ® LS estimate.
1.2 , , , , , , , ,
1
0.8
=~
5
0.6
0.4
02 1 1 1 1 1 1 1

4 5 6

7 8 9

Iteration step ¢

10

Fig. 8: Mean values of the random search distribution of the double-loop algo-
rithm for the RO problem in Eq. 24 with the parabolic failure limit for n = 10
and m = 2.

divergence between the RIA and the CE-LS estimates of C,;, is caused by the
inadequacy of the FORM approximation of the reliability problem defined by
the performance function in Eq. 26. Similar to the estimates of the minimizer,
a relatively large relative variation of CA'min in certain conditions can be par-
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Table 6: Results for the RO problem in Eq. 24 with the parabolic failure limit
and n = 100.

m
2 10 100
tmin 0.031 0.014 0.002
CoV(%) 61.826 139.86 245.21
Crnin 4.186 - 10 7.866 - 10° 4.608 - 103
CoV (%) 10.125 15.289 17.089
cov [émm] 2.009-103 | 3.170-10-3 | 8.453.10-11
CE-LS L
Pr(tmin) 8.260 - 10~ 7 2.566 - 10~7 9.950 - 1011
CoV(%) 102.54 93.150 130.93
No 2.82-10% 2.74 - 104 2.75- 10
CoV(%) 2.166 1.885 1.917
Ny 8.46 - 10% 8.22 - 10% 8.25 - 104
CoV (%) 2.166 1.885 1.917
tmin 0.042 0.017 0.006
Crin 4.583 - 106 8.477 - 10° 1.157 - 10*
Double-loop Pp(tmin) 3.752- 1076 8.660 - 10~ 2.824 - 10712
N, 2.9-10%* 2.8-10% 2.7-10%
Ny ~ 8.7 107 ~ 1.60 - 10° ~ 2.97 - 10°
tmin 0.042 0.045 0.050
Crin 1.607 - 106 3.727 - 10° ] 4.467 - 104 ]
IR 21.590-1073 | 23.201-10~ a3.224.10~
RIA Pp (tmin) b5.003-10~6 | v5.953.10~!! | ©3.091.10—27
N, 1.577 - 104 1.589 - 104 1.672 - 104
Ny 2.838 - 10° 1.049 - 108 1.013 - 107

Note: @ FORM estimate, ? LS estimate.

tially attributed to the highly nonlinear optimization problem and averages
that approach near-zero values. The values of the coefficient of variation for

the CE-LS total cost estimates, CoV {C‘min}, in Tables 4, 5, and 6 indicate a

relatively accurate approximation of the total cost based on the LWA model of
the reliability problem. The accuracy of the LWA model can be also examined
by comparing the CE-LS and the corresponding double-loop estimate of Pg
at the minimizer, Pp(fmin), in Tables 4, 5, and 6. The variation in the values
of Pp(fmin) increases as the effect of the risk term on the total cost reduces.

The computational costs of different approaches are examined in terms of the
total number of objective function evaluations, N,, and the total number of
performance function evaluations, N,. The CE-LS algorithm was executed
with a single line search per design state, which required three performance
function evaluations. The double-loop algorithm required significantly larger
number of line searches per design state to satisfy the target CoVyy, = 0.1,
ranging approximately from 3-10% for m = 2 to 1.1-10° for m = 10. The com-
putational expenses of the RIA algorithm increase with the dimensionality of
the optimization problem in terms of both N, and N,. As the dimensionality
of the optimization problem increases, the computational expenses of the RIA
algorithm become comparable or surpass the expenses of the CE-LS algorithm.
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5.4 RO of a monopile foundation

An RO of a monopile foundation for offshore wind turbines is conducted to
examine the performance of the CE-LS algorithm on a design of an engineering
structure. The goal of the RO is to guide the selection of the monopile design
parameters such that the total cost is minimized, while satisfying safety criteria
specified by a reliability constraint. The response of a monopile is simulated
by a finite element pile-soil model, and it is subject to uncertainties in lateral
load and soil properties.

5.4.1 Numerical pile-soil model

The response of a pile to lateral load is commonly simulated by a finite ele-
ment model, known as the p-y model [31]. The p-y model is based on Winkler’s
beam on elastic foundation, where the response of soil is simulated by a series
of elastic springs. The p-y formulation extends the Winkler model by incor-
porating nonlinearities in the soil response. The nonlinearities are modeled by
p-y curves, where p is the soil reaction per unit length of a pile, and y is the
lateral displacement of a pile. The p-y curves were developed by backcalculat-
ing a series of field test on laterally loaded piles in different soil types (e.g.,
31).

The monopile, in this study, is a hollow tube specified by length Lp, diameter
D, and a constant pile wall thickness w. Basic elements of the monopile model
are presented in Figure 9. The pile material is steel with Young’s modulus of
Es=2.1-10° MPa, Poisson’s ratio of v5=0.3, and density ps = 7850 kg/m?>.
The material behavior of the pile is assumed to be linear elastic. On the other
hand, the material behavior of soil is nonlinear, defined by the p-y curves for
medium stiff clay. The monopile is laterally loaded with a random load, con-
sisting of H and M = H -30 m applied at the sea bed level. H is assumed to be
distributed according to the Gumbel distribution, H ~ fg(pm, pum - CoV(H)),
where pg = 2500 kN is the mean and CoV(H) = 0.2 is the selected coefficient
of variation.

5.4.2 Soil Variability

A parameter of the p-y curves for medium stiff clay, known as the undrained
shear strength, s,,, is considered as uncertain to account for variability of soil
properties. Other parameters of the p-y curves are assumed to be determin-
istic with the following values; unit weight y=18.0 kN/m3, empirical model
parameter J=0.25, strain corresponding to one half of the maximum principal
stress difference y50 = 0.005.

The variability of s,, is expected to significantly influence the pile-soil response
due to the formulation of the p-y curves for clay, where s, is directly related
to the peak value of soil resistance [31]. The variability of s, is modeled by
means of a one-dimensional random field:

{su(d);d € G CR'} ~ fs,(5) (27)
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Fig. 9: Laterally loaded monopile foundation.

where G is the studied soil domain, d is soil depth or the reference variable
{de G:0<d< Lp}, while fs,(sy) is the lognormal marginal pdf of s,(d).
The mean function of s, (d) is:

s, (d) = as, + Bs, - d (28)

with parameters a,, = 50 kPa and (s, = 3 kPa/m. The covariance structure
of the logarithm of the random field is determined by a given coefficient of
variation CoV(s,) = 0.4, and the Markov correlation function:

d — d"
Pln Su (d/7 d”) = exp (_2 . |0d> (29)

where {(d’,d"”) € G}, and 0, is the correlation length of In s, = 2 m, as in [20].
Realizations of the random field in Eq. 27 are generated with the midpoint
method (e.g., [45]) by discretizing the domain {d€ G:0<d< Lp} in P =
40 equal intervals, with interval length of d;, = Lp/P. The derived random
variables are denoted with X . The intervals are selected to correspond to
the discretization of the finite element mesh of the numerical pile-soil model.

5.4.8 Reliability analysis

The ultimate limit state is defined by the monopile steel yield stress, o}, = 235
MPa, being exceeded. A transformation of random variables X = [X,,, H]"
to a set of independent standard normally distributed random variables, U,
is applied to implement the LS method. For a given realization of random
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parameters u and a combination of design parameters t, which are introduced
in the following section, the performance function is defined as:

g(u,t) = opim — o(u, t) (30)

where o(u,t) is the maximal stress along the monopile for a given u and t.

5.4.4 RO problem

The RO is performed to optimize the monopile total cost, C(t), with respect
to the design parameters t = [D,w, L p]T € (%. The total cost is composed of
the design cost, C'p(t), and the failure cost, Cr. The design cost approximates
the cost of production, transportation, and installation of a monopile with an
expense of Cy = 2 € /kg of the monopile weight.The cost of failure is Cr = 107
€.

The RO is employed to guide the selection of the design parameters such that
the total cost is minimized while satisfying certain safety criteria, specified
by a limiting failure probability, PE™ = 10=*. The value of Pi™ = 10~% is
selected based on the analysis of the consequences associated with failures of
offshore wind turbines in [43]. The RO problem is defined as follows:

minimize C(t) = Cp(t) + CrPr(t) (31a)
where
Cp(t) = CqLppsm [(D/2)* — (D/2 — w)?] (31b)
subject to '
Pr(t) < Pim (31c)
[5,0.05,25]" <t < [10,0.1,40]" (31d)

The CE-LS algorithm is applied to the RO problem in Eq. 31 with the fol-
lowing parameter values; No = 20, Ng = 500, p = 0.1, €, = 0.01 and
CoViim = 0.1. Due to a dominant influence of H on the monopile response,
the important direction of the LS method is selected to point approximately
in the direction of the design point, parallel to the axis assigned to H in the
standard normal space. The reliability constraint in Eq. 31c is approximated
by a penalty function which modifies the total cost as follows:

C(t) = C(t) + Cp - max [0, Pr(t) — PE™] (32)

where Cp > 0 is a term penalizing the reliability constraint violation. The
value of C'p is selected to increase iteratively from Cp = 0 € at the first
iteration up to Cp = 10?° € at Np = 20.

To evaluate the performance and numerical stability of the CE-LS method,
the RO problem in Eq. 31 is evaluated ten times with the CE-LS algorithm.
The CE-LS results in Table 7 correspond to the average values among the ten
runs of the algorithm. The variability in the estimates is examined with the
corresponding empirical CoVs. The results in Table 7 indicate that the region
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of the design space with near-optimal total costs is found in the proximity of
the parameter values i, = [5.528,0.051, 33.575]T m with a cost of Cpiy =
4.616 - 105 €. A relatively low variability in the CE-LS estimates with CoV
values of ~ 1%.

The results of the CE-LS algorithm are validated with a double-loop algorithm,
where the optimization problem is solved with the CE method, while the
reliability problem is solved with the LS method. Due to the computationally
demanding finite element pile-soil model, the CE algorithm is implemented
with Ng = 100 design states per iteration and the same convergence criteria as
the optimization component of the CE-LS algorithm. The convergence criteria
for the LS estimate of the failure probability is defined by the coefficient of

variation CoV [I:’F} = 0.1. The comparison of the results in Table 7 shows

similar estimate of the minimum total cost between the two approaches.

Table 7: Results for the RO problem in Eq. 31.
’ H CE-LS \ Double-loop ‘

D (m) 5.528 5.797
CoV (%) 0.235 -
W (m) 0.051 0.054
CoV (%) 1.135 -
Lp (m) 33.575 30.512
CoV (%) 1.452 -

Pp 9.830-107° | 5.065-107°
CoV (%) 1.715 -
Conin (€) || 4.616-10° | 4.679-10°
CoV (%) 1.035 -

N, 4.70 - 10° 1.0- 103
CoV (%) 12.487 -

Ny 2.714-10* | 9.515-10*
CoV (%) 12.487 -

Although the double-loop algorithm was implemented with fewer design
states per iteration step, Ng = 100 compared to the CE-LS algorithm with
Ng = 500, the CE-LS algorithm was able to provide reductions in compu-
tational efforts. An evaluation of the CE-LS algorithm required on average
27136 simulations of the finite element pile-soil model, while an evaluation the
double-loop algorithm required 95145 finite element simulations.

6 Discussion

A coupling between the CE optimization and the LS reliability method for RO
of engineering structures is developed in this study. In contrast to the straight-
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forward double-loop coupling of the two methods, the CE-LS coupling relies on
an LWA approximation of the probability of failure to avoid repeated evalua-
tions of the reliability problem throughout the optimization process. The LWA
approximation of the probability of failure is constructed with the Nadaraya-
Watson nonparametric regression model and adaptively refined throughout
the optimization process to provide information on the regions of the design
space minimizing the objective function. Due to the LWA approximation of
the probability of failure, the reliability and the total cost estimates are biased.
However, as the algorithm localizes the region of the design space with near-
optimal solutions, the extent of averaging is reduced, thus limiting the bias in
the reliability and the total cost estimates. It is expected that the bias in the
estimates will not affect the performance of the algorithm significantly since
the CE-LS algorithm requires information on the relative optimality of sam-
ples within the population at each intermediate sampling step, and not highly
accurate estimates of the absolute optimality. The updating mechanism of the
CE algorithm is based on the identification of the relative difference in the
optimality of the samples at each sampling step. This means that although
the averaging of the LWA model results in a certain bias in the total cost
estimates, the optimization process is not expected to be significantly affected
as long as the relative differences in optimality between the samples can be
correctly identified.

The CE-LS algorithm was validated on several RO problems including a
monopile foundation design for offshore wind turbines. The algorithm demon-
strated efficient performance with good agreement between the estimates of
the minimizer and the validation results for a range of numbers of design pa-
rameters and random variables. Only a slight decrease in the accuracy of the
CE-LS estimates of the minimum is observed with increasing number of de-
sign parameters. The decrease in the accuracy is likely to be attributed to the
reduced convergence of the Nadaraya-Watson model with the increase in the
dimensionality of the model [49]. The Nadaraya-Watson model was found to
provide satisfying approximation of the reliability problem, with the CE-LS
estimates of failure probabilities usually found within one order of magnitude
of the validation results for the studied range of dimensions of the optimization
and reliability problems.

More advanced local weighted approximation models (e.g., local polynomial
regression, penalized regression, splines [49]) are not considered here. The im-
plementation of such models is expected to further improve the approximation
of the probability of failure (e.g., local polynomial regression reduces bias on
the boundary), but also increase the computational demands of the CE-LS
algorithm. In reliability problems where the important direction is unknown,
the approximation of the probability of failure furthermore depends on the
selection of the important direction for the LS method. This is a consequence
of the convergence rate of the LS method being dependent on the accuracy
of the approximation of the important direction (e.g., [26]). The approxima-
tion of the reliability problem, in situations where the important direction
is unknown, might be improved by implementing the Advanced Line Sam-
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pling method [13]. The Advanced Line Sampling method provides improved
convergence when compared to the LS method by adaptively refining the ap-
proximation of the important direction throughout the analysis.

The acceptance-rejection algorithm was applied to enforce deterministic con-
straints, commonly defined with computationally inexpensive functions. The
reliability constraints were modeled by the penalty method, which prevented
severe constraint violations and guided the optimization algorithm in locat-
ing a region of the design space with near-optimal solutions in problems where
the optimum is located on the boundary of reliability constraints. In situations
where the optimal solution is found at the constraint boundary, a detailed local
search is advised at the final iteration step to locate the minimizer. Otherwise,
the mean value of the random search distribution can be selected as the esti-
mate of the minimizer.

7 Conclusion

A coupling between the CE optimization method and the LS reliability method
for RO of engineering structures or systems, referred to as CE-LS, is proposed
in this study. The CE-LS coupling relies on an LWA approximation of the
probability of failure to avoid repeated evaluations of the reliability prob-
lem throughout the optimization process, associated with the corresponding
double-loop coupling of the methods. The LWA approximation of the prob-
ability of failure is refined throughout the optimization process to guide the
optimization process to the region of the design space with near-optimal solu-
tions and provide total cost estimates with relatively low bias and variance.
The CE-LS algorithm was validated on several analytical ROs and on a prac-
tical RO of a monopile foundation for offshore wind turbines. The algorithm
demonstrated efficient performance with accurate estimation of the minimizer
for a range of dimensions of the optimization and reliability problems.

Based on the demonstrated performance, it is expected that the CE-LS method
has a considerable application potential for ROs of engineering structures. The
method performs optimally in ROs with moderately nonlinear reliability prob-
lems and medium dimensional (n < 100) design parameter spaces.

A Nadaraya-Watson kernel estimator

The Nadaraya-Watson kernel estimator [32,50,49] is constructed on N pairs of observations
(t1,Y1), ..., (tn, YN), where a response variable Y is related to the covariate t = [t1, ..., tn]T
with the following model:

Y; :r(ti)'i_a'(ti)”ii; t=1,.,N (33)

such that 7 is the regression function, while o (t;)x; is the residual with location dependent
variance, o2 (t;).
The Nadaraya-Watson kernel estimator of r(t) is defined by:

N
PN () =D wi(t)Y; (34)
=1
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where w;(t) is a weight:

wi(t) = NKH(ti_tz) (35)
> Ku(t—t;)
j=1
with kernel function: 1
_ —1/2
Kin(v) = i K(H) (36)

K is a function defined to provide higher weights to observations closer to v = 0, while H
is a nonsingular positive definite bandwith matrix. Often the covariates are scaled so that a
one-dimensional kernel with bandwidth, h > 0, can be employed:

Kn(v) = h™*K(||[v]|/h) (37)
The variance of the estimator in Eq. 34 is [49]:

N

Var [fy ()] = 0% () Y wy (t) (38)

i=1

An estimate of 02(t) is evaluated based on a vector of fitted values, & = [Fx (1), ..., Px (tx)] T,
which is calculated as:
Pn = WY (39)

where Y = [V1, ..., Y] is the vector of observed response variables, while W is a N x N
’hat’ or ’smoothing’ matrix with entries W;; = wj;(t;). Starting from the expression in
Eq. 33, a second regression model is introduced to estimate o2(t) [49]:

Z; = In(Y; — 7 (t:))?
= In(o2(t:)2)
=In(c?(t;)) + In(k2) (40)
From Eq. 40 it can be observed that an estimate of In(c2(t)) can be obtained by regressing

Z;i’s on t;’s. For example, a non-parametric regression model can be employed to obtain an
estimate D(t) of log o2 (t). The estimate of the variance then becomes:

&2 (t) = exp((t)) (41)

A value of h for the kernel function in Eq. 37 is commonly selected by minimizing the
leave-one-out cross-validation score (e.g., [49]):

co 1N (Y — v ()
R(h)_ﬁg<7l_wii ) (42)

where W;; = w;(t;) is the ith diagonal element of the smoothing matrix.

B Analytical solution to the linear optimization problem

The RO problem in Eq. 24 can be solved analytically, based on the fact that g(u,t) is a
linear combination of independent standard normally distributed random variables. Con-
sequently, this leads to g(u,t) being a normally distributed random variable with mean,
tg, and standard deviation, o4. The mean and the standard deviation are calculated to be,

n
respectively, pg = > ¢; and o4y = v/m. The failure probability is calculated as:
i=1

Pe() =@ (-22) —o <—jm Zn) 0 (13)

9 i=1
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where @ is the standard normal cumulative density function. With the analytical solution
of the reliability problem in Eq. 43, the total cost is formulated as:

C(t) = ; Cit? + Cpd (—\/lm éh) (44)

The minimum of the total cost is located by differentiating the cost function with respect to
the design parameters, setting it equal to zero, and solving for the design parameters. The
derivative of the cost function with respect to t; is:

ocw) . Cr [ 1 Is
o = 2Cits m¢< mzt> (45)

=1

where ¢ is the standard normal probability density function. After setting the derivative
equal to zero, the following expression is obtained:

— CF L S .
e (Vm th> (46)

Since Eq. 46 contains t; on both sides, the ith component of the minimizer is defined by
specifying a desired reliability index, Bmin at the minimizer.

Ntmin

1 n
min = t; = 47
B e ; N (47)

where all the design parameters have the same value at the minimum, ¢,,;,. From Eq. 47 it
follows:

1
tmin = 7ﬁmin vm (48)
n

In order for Eq. 46 to be consistent, the values of the design cost parameters, C;, are defined
based on the values of Bmin, tmin, and Cg:

2tminyv/m

An additional requirement for the results in Egs. 47 to 49 is that &(—fmin) < Pll,im. Other-
wise, the minimum is found at the reliability constraint.

Ci (b(_ﬁmin) (49)

References

1. Aoues, Y., Chateauneuf, A.: Benchmark study of numerical methods for reliability-
based design optimization. Structural and Multidisciplinary Optimization 41(2), 277—
294 (2010)

2. Au, S.: Reliability-based design sensitivity by efficient simulation. Computers & struc-
tures 83(14), 1048-1061 (2005)

3. Basudhar, A., Missoum, S., Sanchez, A.H.: Limit state function identification using sup-
port vector machines for discontinuous responses and disjoint failure domains. Proba-
bilistic Engineering Mechanics 23(1), 1-11 (2008)

4. Beck, A.T., Gomes, W.J., Lopez, R.H., Miguel, L.F.: A comparison between robust and
risk-based optimization under uncertainty. Structural and Multidisciplinary Optimiza-
tion 52(3), 479-492 (2015)

5. Beck, A.T., de Santana Gomes, W.J.: A comparison of deterministic, reliability-based
and risk-based structural optimization under uncertainty. Probabilistic Engineering
Mechanics 28, 18-29 (2012)



40

Ivan Depina et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Botev, Z., Kroese, D.P.: Global likelihood optimization via the cross-entropy method

with an application to mixture models. In: Proceedings of the 36th conference on Winter
simulation, pp. 529-535. Winter Simulation Conference (2004)

. Botev, Z.I., Kroese, D.P., Rubinstein, R.Y., LEcuyer, P., et al.: The cross-entropy

method for optimization. Machine Learning: Theory and Applications, V. Govindaraju
and CR Rao, Eds, Chennai: Elsevier BV 31, 35-59 (2013)

. Bucher, C., Bourgund, U.: A fast and efficient response surface approach for structural

reliability problems. Structural safety 7(1), 57-66 (1990)

. Chen, X., Hasselman, T.K., Neill, D.J., et al.: Reliability based structural de-

sign optimization for practical applications. In: Proceedings of the 38th
ATAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials con-
ference, pp. 2724-2732 (1997)

Chen, Z., Qiu, H., Gao, L., Li, X., Li, P.: A local adaptive sampling method for
reliability-based design optimization using kriging model. Structural and Multidisci-
plinary Optimization 49(3), 401-416 (2014)

Cheng, G., Xu, L., Jiang, L.: A sequential approximate programming strategy for
reliability-based structural optimization. Computers & structures 84(21), 1353-1367
(2006)

Ching, J., Hsieh, Y.H.: Local estimation of failure probability function and its confidence
interval with maximum entropy principle. Probabilistic Engineering Mechanics 22(1),
39-49 (2007)

De Angelis, M., Patelli, E., Beer, M.: Advanced line sampling for efficient robust relia-
bility analysis. Structural Safety 52, 170-182 (2015)

De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Annals of operations research 134(1), 19-67 (2005)

Depina, I., Le, T.M.H., Fenton, G., Eiksund, G.: Reliability analysis with metamodel
line sampling. Structural Safety 60, 1-15 (2016)

Der Kiureghian, A., Zhang, Y., Li, C.C.: Inverse reliability problem. Journal of engi-
neering mechanics 120(5), 1154-1159 (1994)

Du, X., Chen, W.: Sequential optimization and reliability assessment method for efficient
probabilistic design. Journal of Mechanical Design 126(2), 225233 (2004)

Dubourg, V., Sudret, B., Bourinet, J.M.: Reliability-based design optimization using
kriging surrogates and subset simulation. Structural and Multidisciplinary Optimization
44(5), 673-690 (2011)

Enevoldsen, 1., Sgrensen, J.D.: Reliability-based optimization in structural engineering.
Structural safety 15(3), 169-196 (1994)

Fenton, G.A., Griffiths, D.V.: Risk assessment in geotechnical engineering. John Wiley
& Sons Incorporated (2008)

Gomes, W.J., Beck, A.T.: The design space root finding method for efficient risk opti-
mization by simulation. Probabilistic Engineering Mechanics 44, 99-110 (2016)
Hohenbichler, M., Rackwitz, R.: Improvement of second-order reliability estimates by
importance sampling. Journal of Engineering Mechanics 114(12), 2195-2199 (1988)
Jensen, H., Valdebenito, M., Schuéller, G., Kusanovic, D.: Reliability-based optimization
of stochastic systems using line search. Computer methods in applied mechanics and
engineering 198(49), 3915-3924 (2009)

Jensen, H.A.: Design and sensitivity analysis of dynamical systems subjected to stochas-
tic loading. Computers & structures 83(14), 1062-1075 (2005)

Jensen, H.A., Catalan, M.A.: On the effects of non-linear elements in the reliability-
based optimal design of stochastic dynamical systems. International Journal of Non-
Linear Mechanics 42(5), 802-816 (2007)

Koutsourelakis, P., Pradlwarter, H., Schuéller, G.: Reliability of structures in high di-
mensions, part i: algorithms and applications. Probabilistic Engineering Mechanics
19(4), 409-417 (2004)

Kroese, D.P., Porotsky, S., Rubinstein, R.Y.: The cross-entropy method for continuous
multi-extremal optimization. Methodology and Computing in Applied Probability 8(3),
383-407 (2006)

Kuschel, N.; Rackwitz, R.: Two basic problems in reliability-based structural optimiza-
tion. Mathematical Methods of Operations Research 46(3), 309-333 (1997)



Coupling the cross-entropy with the line sampling method for RO 41

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Lee, 1., Choi, K., Zhao, L.: Sampling-based rbdo using the stochastic sensitivity analysis
and dynamic kriging method. Structural and Multidisciplinary Optimization 44(3),
299-317 (2011)

Liu, P.L., Der Kiureghian, A.: Multivariate distribution models with prescribed
marginals and covariances. Probabilistic Engineering Mechanics 1(2), 105-112 (1986)
Matlock, H.: Correlations for design of laterally loaded piles in soft clay. Offshore
Technology in Civil Engineering Hall of Fame Papers from the Early Years pp. 77-94
(1970)

Nadaraya, E.A.: On estimating regression. Theory of Probability & Its Applications
9(1), 141-142 (1964)

Nikolaidis, E., Burdisso, R.: Reliability based optimization: a safety index approach.
Computers & structures 28(6), 781-788 (1988)

Pradlwarter, H., Schueller, G., Koutsourelakis, P., Charmpis, D.: Application of line
sampling simulation method to reliability benchmark problems. Structural Safety 29(3),
208-221 (2007)

Rackwitz, R.: Optimization-the basis of code-making and reliability verification. Struc-
tural safety 22(1), 27-60 (2000)

Rosenblatt, M.: Remarks on a multivariate transformation. The annals of mathematical
statistics pp. 470-472 (1952)

Rosenblueth, E., Mendoza, E.: Reliability optimization in isostatic structures. Journal
of the Engineering Mechanics Division 97(6), 1625-1642 (1971)

Royset, J., Kiureghian, A.D., Polak, E.: Reliability-based optimal design of series struc-
tural systems. Journal of Engineering Mechanics 127(6), 607-614 (2001)

Royset, J., Polak, E.: Reliability-based optimal design using sample average approxi-
mations. Probabilistic Engineering Mechanics 19(4), 331-343 (2004)

Royset, J.O., Der Kiureghian, A., Polak, E.: Optimal design with probabilistic objective
and constraints. Journal of Engineering Mechanics 132(1), 107-118 (2006)

de Santana Gomes, W.J., Beck, A.T.: Global structural optimization considering ex-
pected consequences of failure and using ann surrogates. Computers & Structures 126,
56-68 (2013)

Schuéller, G., Pradlwarter, H., Koutsourelakis, P.: A critical appraisal of reliability es-
timation procedures for high dimensions. Probabilistic Engineering Mechanics 19(4),
463-474 (2004)

Sgrensen, J.D., Tarp-Johansen, N.J.: Reliability-based optimization and optimal reli-
ability level of offshore wind turbines. International Journal of Offshore and Polar
Engineering 15(02) (2005)

Spall, J.C.: Introduction to stochastic search and optimization: estimation, simulation,
and control, vol. 65. John Wiley & Sons (2005)

Sudret, B., Der Kiureghian, A.: Stochastic finite element methods and reliability: a state-
of-the-art report. Department of Civil and Environmental Engineering, University of
California (2000)

Taflanidis, A., Beck, J.: Stochastic subset optimization for optimal reliability problems.
Probabilistic Engineering Mechanics 23(2), 324-338 (2008)

Valdebenito, M., Schuéller, G.: Efficient strategies for reliability-based optimization in-
volving non-linear, dynamical structures. Computers & Structures 89(19), 1797-1811
(2011)

Valdebenito, M.A., Schuéller, G.I.: A survey on approaches for reliability-based opti-
mization. Structural and Multidisciplinary Optimization 42(5), 645-663 (2010)
Wasserman, L.: All of nonparametric statistics. Springer Science & Business Media
(2006)

Watson, G.S.: Smooth regression analysis. Sankhya: The Indian Journal of Statistics,
Series A pp. 359-372 (1964)

Yang, R., Gu, L.: Experience with approximate reliability-based optimization methods.
Structural and Multidisciplinary Optimization 26(1-2), 152-159 (2004)



