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aSINTEF Digital, Mathematics and Cybernetics, PB 124 Blindern, 0314 Oslo, Norway

Abstract

We use simplified methods to investigate how uncertainty in geological models affects practical CO2 storage
capacities in large-scale saline aquifers. Our focus is on uncertainties in top-surface elevation, rock properties
(porosity, permeability), fault transmissibility, and aquifer conditions (pressure and temperature). To quantify
the statistical characteristics of static trapping capacity and dynamic estimates of plume migration, we create
hundreds of possible realizations of the geomodel by applying Gaussian-type perturbations to the spatially
correlated properties. Two different simplified methods are introduced to reduce the computational cost of sim-
ulating migration over thousands of years in all the model realizations, which each spans hundreds of kilometers.
First, we use vertical-equilibrium (VE) modelling, which is orders of magnitude faster than solving the 3D flow
equations. Second, we introduce a fast look-ahead algorithm that enables us to exit the VE simulation once a
pseudo-steady state is reached. This algorithm uses a spill-point analysis of the top-surface’s trapping structure
to forecast how much CO2 will eventually become trapped and how much will leak through open boundaries of
the formation. This reduces the computational cost significantly, since we seldom need to simulate long-term
migration past a few hundred or thousand years.

Keywords: CO2 storage, Sensitivity analysis, Parameter uncertainty, Spill-point analysis, Vertical-equilibrium
simulation, Migration forecast

1. Introduction

Geological storage of carbon dioxide is viewed as a promising and necessary strategy to combat climate
change. Estimating the static and dynamic storage capacity is an important step when ranking or selecting
aquifers as potential storage sites. Simple volumetric calculations are sufficient to bound the available pore
space (static capacity). To obtain more realistic bounds on the actual storage volume that can be achieved in
a practical storage operation (dynamic capacity) one also needs flow simulations of specific or representative
storage scenarios. Injectivity and pressure build-up will in many cases be the main limiting factors, but for
dipping, open aquifers containing relatively few structural closures, the practical capacity of certain storage sites
could equally well be bounded by the long-term migration of the CO2 plume (Chadwick et al., 2008). Estimating
pressure buildup and the extent of plume migration in the aquifer is therefore crucial when evaluating which
storage strategy poses the least amount of risk (preserves caprock integrity, minimizes CO2 leakage, avoids
ground water contamination, etc). Long-term migration can either be simulated by standard flow equations, or
forecast using the trapping structure of the formation’s top-surface obtained from a spill-point analysis.

To provide value in decision making, estimates of both storage capacity and plume dynamics need to account
for the significant uncertainty inherent in geomodel parameters. Standard methods to quantify this uncertainty
rely on considering many possible realizations of the geomodel (known as a statistical ensemble), and quantifying
the statistical measures of the ensemble such as mean and standard deviation (Bear and Cheng, 2010). Esti-
mating static/volumetric capacity is computationally inexpensive, and can be performed for a large ensemble
without difficulty. On the other hand, performing highly resolved simulations on all members of a large model
ensemble can quickly become computationally intractable. Solutions to this problem include either reducing
the number of ensemble members, or speeding up the simulations required for each geomodel realization.

Previous work has examined how parameter uncertainty influences CO2 storage modelling. A wide range of
parameters that control geological heterogeneities have been considered, such as porosity (Manceau and Rohmer,
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2014; Han et al., 2011; Sarkarfarshi et al., 2014), permeability (either absolute, relative, anisotropy) (Manceau
and Rohmer, 2014; Han et al., 2011; Sarkarfarshi et al., 2014; Lothe et al., 2016), seal permeability (Birkholzer
et al., 2009), presence of faults and their transmissibility (Birkholzer et al., 2011; Lothe et al., 2014, 2016; Ashraf
et al., 2013), ratio of sand to shale content (Flett et al., 2007), and top-surface morphology (Nilsen et al., 2012;
Shariatipour et al., 2016; Goater et al., 2013; Gasda et al., 2012, 2013). Other parameters considered include
pore compressibility (Birkholzer et al., 2009), capillary pressure (Manceau and Rohmer, 2014; Sarkarfarshi
et al., 2014), and the residual saturations and densities of CO2 and brine (Han et al., 2011; Sarkarfarshi et al.,
2014). Variability has been represented stochastically, or treated in a homogeneous sense by testing only N
homogeneous permeability values, for example. Broadly speaking, studies have assessed parameter sensitivity
on trapping mechanisms, plume migration, and risk of leakage. More specifically, studies have measured model
responses such as moment of inertia of the CO2 plume (Sarkarfarshi et al., 2014); pressure (Ashraf et al., 2013;
Birkholzer et al., 2009); boundary fluxes (Ashraf et al., 2010); mass of CO2 in mobile, residual, or other phases
(Ashraf et al., 2013; Han et al., 2011; Flett et al., 2007); distance of upslope CO2 plume migration (Manceau and
Rohmer, 2014; Gasda et al., 2012, 2013); connected CO2 volumes (Ashraf et al., 2010); and structural trapping
volumes (Nilsen et al., 2012; Gasda et al., 2013). Various geomodels have been used, including synthetic models
intended to represent realistic storage sites (e.g., a 2D box model (Han et al., 2011), a stratified model (Birkholzer
et al., 2009), multiple plausible realizations of shallow-marine reservoirs (Ashraf et al., 2010), a dipping box
model with a surface topography containing buried beach or offshore sand ridges combined with four different
fault patterns (Nilsen et al., 2012)), as well as models of real sandstone formations (e.g., the Paris basin in
France (Manceau and Rohmer, 2014), the Southern San Joaquin Valley in California, USA (Birkholzer et al.,
2011)).

The outcome of the studies listed above is not always definitive in determining which parameters influence
model response the most for a few reasons. First, the characteristics of CO2 storage can vary significantly from
site to site. Second, some of the models considered are hypothetical or synthetic versions of real aquifers. Third,
only a selection of uncertain parameters is usually evaluated, not an exhaustive list, thus the “most influential”
parameter on the model response is only relative to those considered. Indeed, in most of these studies, the
main point has been to develop general methods for ranking the importance of uncertain parameters and not
providing specific rankings; e.g., Manceau and Rohmer (2016); Sarkarfarshi et al. (2014).

The main objective of our study is to present computational methods for examining how selected model
parameters influence structural trapping capacity and plume migration in large-scale aquifers systems of the
types seen on the Norwegian Continental Shelf. In doing so, we demonstrate how the use of simplified methods,
namely vertical-equilibrium modelling and migration forecasting, can make sensitivity analysis studies more
computationally tractable. The focus of this work is not about providing a robust uncertainty analysis, however
based on our observations we analyze and discuss how each parameter influences storage capacity estimates.
The parameters we focus on are heterogeneous rock properties, top-surface elevations, initial conditions, and
fault transmissibilities. These parameters are considered to be a good starting point for a thorough sensitivity
analysis because they are highly uncertain in large-scale aquifers, for which data are generally scarce. Of
course, many other parameters could be investigated, but our objective is not an exhaustive sensitivity study.
Given this limitation, we will not definitively conclude which parameters are most influential in CO2 storage
modelling, rather we will only state the impact observed in the particular cases we consider. To illustrate the
methods in a semi-realistic setting, we apply them to models of top-seal topologies derived from public data of
real aquifers, possibly accompanied by representative petrophysical properties of the underlying sands, taken
from the CO2 Storage Atlas of the Norwegian Continental Shelf (Halland et al., 2014). We emphasize that any
actual storage capacity estimates we present should not be interpreted literally as being representative of named
aquifers. Many of the parameters and uncertainty ranges entering our model simulations are pure guesstimates
and need to be replaced by site-specific and quality-assured numbers. However, once this is done, we believe
the methodology can be used to explore the impact of parameter uncertainty on storage capacity estimates.

2. Method

In this section, we first explain how we have chosen to represent parameter uncertainty or variability in our
geomodels. We present the similarity index used to quantify the difference between plume migration simulated
with a base geomodel and perturbed versions thereof. We also explain how structural trapping capacity is
computed based on geometrical trap volumes, porosity, and CO2 density at aquifer conditions and thereafter
briefly outline vertical-equilibrium modelling and our new migration forecast method.

2.1. Representing parameter uncertainty

To assess how uncertainty in the topography of the caprock and the porosity and permeability of the aquifer
impacts storage capacity estimation and long-term plume migration, we start from a base model and perturb
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Figure 1: Various Gaussian-type perturbations that could be scaled and applied to top-surface elevations, porosity, and permeability.
Blue to yellow colors represent the range of values between a specified minimum and maximum.

these parameters one at a time by adding an approximate Gaussian random field. For each parameter, one
hundred realizations are used to form an ensemble. Figure 1 shows example Gaussian fields with different spatial
correlations. Caprock elevations are perturbed using a field similar to the first plot, while porosity and perme-
ability are perturbed using anisotropic fields similar to the second and third plots. Various interval extremes
of these fields are tested and are reported with the results. These perturbations are arbitrary and intended to
be illustrative rather than representative of actual uncertainty ranges. For simplicity, the perturbations were
generated on the rectangular bounding box of the aquifer, and hence the extremal values of the perturbed fields
will not necessarily coincide with the prescribed min and max values when the aquifer does not completely fill
its bounding box. However, in our results section, we state the original min/max values used to generate the
perturbation fields rather than the actual extremal values since the difference is small.

Uncertainty in the aquifer temperature and pressure are also important to consider since these affect the
CO2 density, which further impacts estimates of plume migration and storage capacity. For example, a publicly-
released geomodel of the Sleipner storage site initially came with a list of parameters that suggested a CO2

density of 760 kg/m3, presumably based on an aquifer temperature calculated using a thermal gradient of
35.6◦C/km (Singh et al., 2010). However, recent studies have explored the possibility of a warmer aquifer that
results in a lower CO2 density (Cavanagh and Nazarian, 2014; Cavanagh et al., 2015), which in turn opens the
possibility of obtaining a better match between seismic observations and the simulated plume outline (Nilsen
et al., 2017). Herein, the sensitivity of the capacity estimate to initial aquifer conditions is assessed by altering
the thermal gradient used to compute caprock temperature, and deviating the initial hydrostatic pressure P by
a specific percentage of the mean hydrostatic pressure in the aquifer. More specifically, initial caprock pressure
P0 is computed by

P = (ρwgz + Ps) , (1)

P0 = P +

∑n
i (pviPi)∑n

i pvi
d/100, (2)

where ρw is water density, g gravitational acceleration, z caprock depth, Ps surface pressure, pvi pore volume
of cell i, and d the deviation in percent. Equation (1) is caprock pressure assuming hydrostatic conditions. In
the second term on the right hand side of (2), d is being multiplied with the pore-volume weighted average
of the caprock pressure. In this work, we assume a water density of 1020 kg/m3, and a surface pressure of
one atmosphere. For initial caprock temperature T , a linear relationship between seafloor temperature Tb and
depth below seafloor (z − zb) is assumed, i.e.,

T = Tb +∇T (z − zb) , (3)

where ∇T is the thermal gradient in the vertical direction. For the North Sea formations we consider herein,
we assume a seafloor depth of 100 meters, a seafloor temperature of 7◦C, and a thermal gradient of 35.6◦C/km.
These values are similar to those used in the Sleipner benchmark model (Singh et al., 2010). All of the afore-
mentioned values are uncertain, and hence we investigate the impact of assuming warmer or cooler geomodels
simply by varying the thermal gradient. In our simulations, the aquifer temperature is assumed to remain
constant (i.e., an isothermal model).

2.2. Quantifying impact on flow and migration

Previous literature suggests a few different ways to quantify the discrepancy in plume migration between
two different geomodel realizations. One approach is to compute the center of mass for each plume at a given
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point in time, and then compare these locations relative to a point of reference (e.g., the center of mass in a base
case, or the injection point); see e.g., Manceau and Rohmer (2014, 2016); Han et al. (2011). Another approach
is to compute the Sørensen–Dice coefficient,

S =
2C

A+B
, (4)

which was originally formulated to quantify the coincidence of two different species found in nature (Dice, 1945),
but has recently been used as a similarity index to compare simulated and observed CO2 footprints at the Ketzin
storage site (Lüth et al., 2015). For our purposes, A and B are the plume footprints produced by two different
geomodels (e.g., the base case and a perturbed case), and C is the overlapping footprint. If two geomodels
produce identical plume footprints, the coefficient S is equal to unity. As the discrepancy between plumes A
and B becomes larger (or the footprint overlap becomes smaller), S tends to zero. The disadvantage of the
above two approaches is that they do not capture the degree of similarity between two migration pathways,
rather they only reflect the similarity of the plume position at a given instance in time. Nonetheless, (4) provides
us with a simple way to quantify the similarity between simulated CO2 plumes in two different geomodels.

2.3. Geomodels

The geomodels we consider in this work are publicly available from the Norwegian Petroleum Directorate
(NPD), as part of their CO2 Storage Atlas of the Norwegian Continental Shelf (Halland et al., 2014). Out of
over 20 formations, we select Utsira, Sandnes, and Stø to study. Real CO2 storage projects are taking place in
Stø and Utsira. Stø is also one of the (few) aquifers for which fault information is available. We use Sandnes to
compare results against those from Utsira since their top-surfaces are quite different. We emphasize that we have
not taken the geological history of these formations into consideration such as erosion and uplift, but simply use
the datasets provided in the atlas, which in the simplest case consists only of top-surface and thickness maps
and average rock properties. Given these simplifications, the numbers we produce should not be taken literally
as true estimates for these specific formations.

Utsira and Sandnes are located in the Norwegian North Sea, and Stø is in the Barents Sea; see Figure 2.
Utsira is from the uppermost middle Miocene to Quaternary age, and has an average top-surface depth of
almost 800 meters (ranging from 300 to 1400 meters). Sandnes is from the lower Jurassic age, and has an
average top-surface depth of approximately 2000 meters (ranging from 300 to 3400 meters). Stø is from the
lower Jurassic age, has an average top-surface depth of approximately 2300 meters (ranging from 1400 to 3600
meters), and is part of the Hammerfest basin. Data quality for Utsira is considered good, Sandnes is considered
limited, and parts of Stø are considered limited to good. (“Good” implies 3D seismic and well data are available
from the actual formation, and “limited” implies 2D seismic is available, and well data comes from similar
geological formations only (Halland et al., 2014)). The depth and thickness maps of Stø and Utsira come with a
resolution of 500 by 500 m2, while those for Sandnes come with a resolution of 1000 by 1000 m2. Boundaries of
the aquifers are considered open, unless information is given to indicate otherwise (e.g., a fault line exists along
the southern and part of the northern boundaries of Stø, illustrated later in Figure 13). An open boundary
means there is communication between the aquifer and whatever lies adjacent to it, be it another aquifer or the
sea bottom.

For most of the aquifers, the atlas only reports average petrophysical properties; the average permeability
and porosity of Utsira is reportedly 1000 mD and 0.2112, while that for Sandnes is 150 mD and 0.0875. However,
we obtained heterogeneous rock data for the Stø aquifer of the Barents Sea via personal communication with
the NPD. To formulate plausible heterogeneities for Utsira, we first derive a porosity-permeability relationship
that fits the rock data for Stø; see Figure 3. As shown in the figure, porosity is approximately a linear
function of depth, and permeability is a logarithmic function of porosity. Modifying Stø’s porosity model to
φ = φ0 − 5× 10−5 (z − z̄), where z̄ is the average aquifer surface depth, yields a plausible porosity model for the
Utsira aquifer with an average porosity close to φ0 = 0.2 (i.e., the average porosity given in the atlas). Then,
using Stø’s permeability model, the corresponding permeabilities in the Utsira geomodel range from 0.5 to 2.5
darcys, with an average of around 1 darcy (i.e., the average permeability given in the atlas). We note that a
study on sand properties in Utsira has suggested that permeabilities could range from 1.1 to 5 darcys (Singh
et al., 2010).

2.4. Storage capacity estimation

A standard approach for estimating storage capacity in saline aquifers involves multiplying the aquifer’s pore
volume by a storage efficiency factor (U.S. Department of Energy, Office of Fossil Energy, 2015). This factor can
be obtained by combining geological and laboratory measurements, past experience, and statistical techniques
based on simplifying assumptions on the injection process. Another useful quantity to compute is the amount

4



Sandnes

Utsira

Stø

N

km

Utsira

km

Sandnes

km

Stø

Figure 2: Formation geomodels considered in this work (Utsira, Sandnes, and Stø). Left plot : Approximate location along the
Norwegian Continental Shelf. Right plots: Maps of geomodel depths (left) and thicknesses (right) in meters.
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of CO2 that may be stored in structural traps found within the aquifer’s undulating caprock. For example,
Zweigel et al. (2004) illustrates a structural trap and associated spill-point near the Sleipner injection site in
the Utsira formation. Structural traps are analogous to inverted ponds or lakes found within a watershed: they
each have their own catchment region that collects rainwater (CO2) and channels it toward a body of water
(local trap). As the pond or lake (trap) fills up to its spill-point, water (CO2) will flow via rivers to an adjacent
catchment region, until it becomes full and over-flows, and so on. These catchment regions, local traps, and
connecting rivers can be identified by spill-point analysis; see Nilsen et al. (2015b) for algorithmic details. This
concept is similar to secondary migration modelling of hydrocarbons presented in Sylta (2004), which has been
applied to CO2 storage modelling, e.g., Lothe et al. (2016). Once the geometric volume (Vtrap) of each trap is
found, the structural trapping capacity in terms of CO2 mass is calculated by,

M =

∫
Ω

ρCO2Vtrapφ (1− Srw) , (5)

where ρCO2
is CO2 density at aquifer conditions, φ is porosity, and Srw is the residual water saturation; see

e.g., Bachu et al. (2007). All terms in the integrand can be spatially varying fields. This is important since
CO2 found in a relatively shallow structural trap will have a much lower density than CO2 found in a deep
structural trap, and two traps with the same pore volume (Vtrapφ) can thus have vastly different mass storage
capacities. While CO2 is likely to also become trapped within the aquifer through residual, solubility, mineral
trapping, using (5) to provide a static estimate for storage capacity is sufficient for the purposes of our work.

2.5. Forecasting CO2 storage

The trapping structure of an aquifer’s top surface was briefly introduced above. Knowledge of this trapping
structure can be used for more than just static capacity estimation. Consider, for example, the top-surface of
a hypothetical, open aquifer shown in Figure 4 (top left plot). Imagine a plume of CO2 located within the
deeper elevations of this aquifer. If this plume were to be driven by buoyancy forces only, which is a reasonable
assumption to make some time after injection has stopped and the induced pressure rise around the injection
zone has dissipated, the trapping structure indicates that the plume will migrate up into trap X. Once trap X
is filled, any more incoming CO2 would spill over trap X and migrate into trap Y. By tracking this so-called
CO2 spillage along each spill-tree, we can predict how much CO2 will remain stored within the aquifer and how
much will eventually reach the boundary edge and then leak out of the open system. This forecasting method
can also be used to estimate how CO2 distributes in a closed system, but in this case, CO2 will not leak across
the boundary edges and global pressure buildup will impact the capacity within the traps (i.e., as pressure rises,
CO2 density increases, and thus traps can contain more CO2 mass).

The rest of Figure 4 illustrates a migrating plume under a sloping and wavy top-surface. The CO2 inventory
reports how much is trapped, free, or leaked at any given time, as well as the amount of CO2 predicted to remain
trapped within the aquifer (blue dashed line). It takes some time before the forecast converges, for the following
two reasons. First, aquifer pressure rises during the injection period, and takes some time to dissipate during
the migration period. So, before migration is driven only by buoyancy forces, CO2 can be driven by pressure
gradients. This can cause additional spillage (or migration) from one spill-path to another and consequently
structural trapping that cannot be predicted by a spill-point analysis from the injection point only; see bottom
row in Figure 4. Second, as the plume migrates along a spill-path, it leaves behind an amount of residually
trapped CO2 within the pore space, which was unaccounted for by the forecast. The forecast does not account
for solubility trapping either, so if we had included dissolution in our illustration, it is possible that we would
need to simulate plume migration for a longer time before the forecast converges.

Once the forecast has converged, the simulation of plume migration can be exited. However, in this work, all
model realizations are simply run for the same number of years which is sufficient for the pseudo-steady state
to be reached. Further details of the trapping forecast can be found in Allen et al. (2017).

2.6. Fluid flow simulation

As mentioned earlier, 3D flow simulation in large-scale aquifers is too time consuming when hundreds of
simulations need to be performed for uncertainty or parameter sensitivity studies. To reduce computational
time, we make a few simplifying assumptions. Because of large differences in fluid densities, strong buoyancy
forces will cause the CO2 and the formation fluid to segregate into two vertical layers almost instantly after CO2

has been injected: lower density CO2 is on the top and higher density brine is on the bottom. Secondly, because
of the long time period and the large differences in horizontal and vertical extent of the aquifer, fluid flow in
the vertical direction can be considered negligible compared with the horizontal flow. These two assumptions
are the basis of vertical-equilibrium (VE) modeling, which is a method that dates back several decades, e.g.,
Martin (1958); Coats et al. (1971), and has more recently been re-introduced as a computationally efficient way
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of studying long term migration in the context of CO2 storage (e.g., Hesse et al. (2008); Gasda et al. (2009);
Bandilla et al. (2012); Nordbotten and Celia (2012); Cihan et al. (2015); Nilsen et al. (2016a)). Herein, all
simulations are performed using a VE model implemented in the open-source software MRST (MRST, 2017b),
particularly the MRST-co2lab module (MRST-co2lab, 2017b). This VE model is formulated as a standard black-
oil model, except that actual closure relationships like capillary pressure, etc., have a different interpretation.
Details of the model formulation can found in Lie et al. (2016).

We now present the vertically-averaged flow equations to help explain the impact of a few parameters on
the plume migration. We omit the full derivation here and refer readers to Nilsen et al. (2011); Bandilla et al.
(2014); Nilsen et al. (2016b) for more details. Using CO2 height (or plume thickness) h under the caprock as a
variable in the incompressible limit, the fractional-flow formulation of the mass conservation equation reads

∂

∂t
(φh) +∇ ·

(
f(h)ut +

λgλw
λt

k∆ρg∇ (z + h)

)
= qt. (6)

Here, φ, k, and z denote porosity, permeability, and top-surface elevation respectively, ∆ρ is the density differ-
ence between the fluids, and g is gravitational acceleration. Individual and total fluid mobilities are given by λg,
λw, and λt = λg +λw, respectively, ut is the total flux, and qt are total sinks/sources. Assuming negligible fluid
injection qt ≈ 0 and no background flow, and hence negligible total velocity ut ≈ 0, setting λgλw/λt = h/µg

and ∂z
∂x = sin θ, where θ is the top-surface tilt, and assuming ∇2h << 0, (6) is reduced from 3D to 1D in the

direction x of the main aquifer slope:

∂h

∂t
+

∂

∂x

(
k∆ρgsinθ

µgφ
h

)
= 0, (7)

where φ was assumed to be constant. These approximations are valid for thin plumes moving upwards under a
sloping top-surface and when gravity is the dominating driving force. Equation (7) is a prototype of a transport
equation, where fluid velocity is given by

v =
k∆ρgsinθ

µgφ
. (8)

The above relationship indicates how the ratio among certain parameters will affect the speed of the migrating
CO2 plume. This is also illustrated in Figure 5, which shows the impact that permeability, porosity, and
caprock tilt have on plume migration in two different synthetic aquifers. After 10 years of injection followed
by 100 years of migration in the smooth top-surface aquifer, the position of the plume front is farther upslope
(from the injection point) when permeability or caprock tilt has been increased, and nearer to the injection point
when porosity has been increased. The same observation can be made in the wavy top-surface aquifer, however
geometric trapping retards plume migration and contains the CO2 within the aquifer even after 300 years. On
the other hand, the plume under the smooth top-surface has already left the (open) aquifer boundaries after
300 years because there is nothing to hinder its upslope migration.

The results illustrated in Figure 5 are consistent with previous findings from a number of studies on the
topic. The impact of caprock tilt has been discussed in e.g., Gasda et al. (2006); Taku Ide et al. (2007); Espie
and Woods (2014); Shariatipour et al. (2016). Also, the influence of caprock topography has been studied in
e.g., Nilsen et al. (2012); Goater et al. (2013); Gasda et al. (2012, 2013), and a typical observation is that
smooth top surface models underestimate capacity. In particular, Goater et al. (2013) demonstrated that in
migration-limited storage cases, up to two times as much CO2 could be stored when top-surface topography
was introduced to an otherwise smooth caprock.

For the parameter uncertainty evaluations we perform in this work, (8) explains the main effects caused
by changes in permeability and porosity. Perturbations in the top-surface topography of the type considered
herein, will generally introduce additional small-scale traps. The effect of traps like this, appearing on a smaller
scale than the CO2 plume, are studied in detail in models in Gasda et al. (2012). Rugosity in the top surface will
lead to local geometric trapping of CO2, which is analogous to small-scale residual trapping; this local trapping
retards the plume migration and eventually stabilizes the plume. The effect of this top-surface roughness is
evident when plume heights are small.

3. Results and Discussion

In this section, we demonstrate the sensitivity of storage estimates to changes in porosity, permeability,
caprock elevations, and aquifer conditions using a geomodel of the Utsira aquifer. The sensitivity of storage
estimates to caprock elevations is also assessed using a geomodel of the Sandnes aquifer, and compared against
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Figure 5: Impact of individual parameters on a migrating CO2 plume in two different synthetic aquifer systems, one having a planar
top surface and the other containing several structural traps. Plume position is shown after 300 years and 100 years of migration
in the wavy and planar case, respectively. Red-dashed and blue lines depict simulated plume outlines given the base geomodel and
modified geomodel, respectively.

Utsira. Likewise, we use a model of the Stø aquifer to demonstrate how plume migration and pressure buildup
is sensitive to changes in fault transmissibilities. The discussion is subdivided into subsections that each focus
on how the uncertainty of a particular parameter impacts either storage capacity estimation, plume dynamics,
or the trapping forecast.

3.1. General setup

Before discussing specific parameters, we explain the general set-up used to generate our results. Figure 6
shows how uncertainty in rock properties and caprock elevation impacts plume migration and trapping in the
southern portion of the Utsira aquifer. The setup consists of a single injection point located in the south, from
which 719 Mt are injected over a period of 30 years (i.e., CO2 injection rate is 1 m3/s given a reference density
of 760 kg/m3). The left plot shows the trapping structure for the base model, with structural traps colored in
light red, spill-paths shown as light red lines, and catchment regions associated with each trap colored in shades
of gray. Heterogeneous porosity and permeability values were set using the method explained in Figure 3. The
parameters were perturbed one at a time to investigate their individual impact on model responses. Porosity
was first perturbed by a Gaussian field with values spanning the interval ± 0.05. The same perturbations were
then applied to the permeability by using the logarithmic relationship between permeability and porosity, while
porosity was reset to its original value. Caprock elevations were perturbed within an interval of ± 5 meters.
For each perturbation, we performed a forward simulation for all hundred members of the ensemble to capture
the final CO2 plume after 3000 years of migration. (If the simulation period had been prolongated further, we
would eventually notice more CO2 exiting the domain’s lateral boundaries.) The top row of Figure 6 shows the
final plume outlines as blue lines for all perturbed realizations, with the plume outline predicted for the base
case shown in red. The trapping inventory shows wedges for the base case, with error bars indicate the 10th
and 90th percentile values of the ensemble. The forecast curve is shown by the blue dashed line, along with its
error bars.

The magnitude of the perturbations will obviously impact the sensitivity of the plume dynamics to a par-
ticular parameter. Thus, we consider two additional perturbation levels for each parameter, which we refer
to as low and high (the perturbation level just considered is referred to as medium). Results are presented in
Table 1. Perturbation extremes (or corresponding range of permeability) are shown, along with the evolution
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Figure 6: Impact of parameter uncertainty (permeability, porosity, and caprock elevations) on plume migration and trapping
inventory. Top row : Ensembles of plume outlines after 3000 years of migration, compared to the base case (red dashed line).
Bottom row : Trapping inventory with error bars along each trapping wedge, indicating 10th and 90th percentile wedge values of
ensemble at a given point in time.

of the Sørensen–Dice coefficient computed using (4). More precisely, the curves illustrate the evolution of the
ensembles’ averaged values and standard deviation. The perturbation intervals are chosen somewhat arbitrarily,
and are not meant to suggest the actual uncertainty ranges associated with this specific aquifer.

Static capacity estimates are also influenced by parameter uncertainty. In Table 2, we summarize the
stochastic characteristics of the structural trapping capacity for Utsira-South in light of uncertain caprock
elevations and porosity. Different perturbation levels were applied to these parameters. The resulting stochastic
characteristics are reported in Figure 7 for a particular perturbation, which essentially shows a bell-shaped
distribution in the ensemble space. Computing structural trapping capacity is not computationally intensive,
thus a total of 1000 realizations were used for each ensemble space. Permeability is not included in this list
because it only plays a role in plume migration and does not influence static capacity. Further discussion of
these results is presented in the following subsections.

3.2. Porosity

For a fixed volume of CO2, variations in porosity will impact the total rock volume that the plume comes
in contact with. Increasing the pore volume reduces the total rock volume the plume occupies, which slows
down the migration so that the plume does not travel as far upslope. We illustrate this in Figure 5. Increasing
porosity also impacts the amount of CO2 that will become residually trapped within the pore grains as the
plume moves through the pore space.

The situation is a little different when the porosity is perturbed by a random Gaussian field. In some
regions, the plume migration will slow down because of increased porosity, whereas the plume will migrate
faster in other regions where the porosity is decreased. In general, the combined effect may lead to significant
changes in migration. In our particular case, however, a porosity perturbation of ± 0.05 barely changes the
plume outline as shown in Figure 6. Regardless of the realization, the plume outline consists of a region that
has been swept on its way to fill traps, as well as a few filled or semi-filled traps (traps number 5, 8, and 9 in
the plot). Whereas Traps 8 and 9 are fully filled in every realization, Trap 5 varies from being 60% to almost
90% filled. This implies that the injected plume does not have a sufficient amount of CO2 to completely fill the
upslope traps, and hence the footprint of the plume remains almost identical irrespective of Trap 5’s degree of
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Table 1: Perturbation level versus impact on flow and migration in Utsira South. Inset figures show the evolution of the mean (µ)
and one standard deviation (σ) of the Sørensen–Dice coefficient (y-axis) from 30 to 2800 years (x-axis) for 100 realizations for the
geomodel.

Perturbation level (or parameter range) and results

Parameter Low Medium High

caprock depth (meters) ± 1

     

 

0.8

0.9

1

 ± 5

     

 

0.8

0.9

1

 ± 15

     

 

0.8

0.9

1

 

porosity (unitless) ± 0.02

     

 

0.8

0.9

1

 ± 0.05

     

 

0.8
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1

 ± 0.10

     

 

0.8
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1

 

permeability (darcy) [0.32, 2.18]

     

 

0.8

0.9

1

 

[0.15, 4.96]

     

 

0.8

0.9

1

 

[0.03, 25.67]

     

 

0.8
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1

 

Table 2: Impact of parameter uncertainty on structural trapping capacity estimate. Symbols: mean (µ), one standard deviation (σ),
coefficient of variation (cov=σ/µ), 10th percentile (P10), 90th percentile (P90). Each ensemble space consists of 1000 realizations.

Structural trapping capacity (Mt)

Parameter µ median σ cov P10 P90 max min spread

caprock depth
± 1 meter 608 607 5.4 0.9% 601 615 624 591 34
± 5 meters 607 607 25.5 4.2% 576 639 691 526 165
± 15 meters 614 612 68.2 11.1% 529 702 831 402 429

porosity
± 0.02 592 592 6.1 1.0% 584 600 612 571 41
± 0.05 592 593 15.2 2.6% 573 612 643 540 103
± 0.10 592 592 30.1 5.1% 554 632 694 488 206
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Figure 7: Histogram and cumulative distribution function of an ensemble of structural trapping capacities, corresponding to a
porosity and caprock elevation perturbation of ± 0.05 and ± 5 meters, respectively.
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filling. Table 1 shows that increasing the perturbation level to ± 0.10 results in a slightly worse similarity index
(Sørensen–Dice coefficient) during the migration years; this implies that perturbing the porosity does indeed
influence the migrating plume, even if only to a very small degree.

Regarding static capacity estimates, we notice from Table 2 that uncertainties in porosity has a slight effect.
Since the average porosity in the base geomodel was around 0.2, a perturbation level of ± 0.10 implies an
uncertainty of up to ≈ 50% of the base case. Despite such a high uncertainty, the ensemble’s coefficient of
variation is only 5%.

3.3. Permeability

Permeability affects the dynamics of the system by changing the speed of a migrating plume, resulting in a
thinner plume that reaches farther upslope; see Figure 5. Its influence on the direction of a migrating plume is
expected to be less significant compared to caprock topography, which influences traps and the direction of the
spill paths.

Manceau and Rohmer (2016) assessed the sensitivity of CO2 migration to several input parameters including
porosity and (absolute) permeability. For the case they studied, permeability was found to be more impactful
than porosity on the total mass of mobile CO2 (i.e., the free plume) and on how far this free plume migrates
away from the injection point. While their approach accounted for interaction effects and here we perturb
one parameter at a time, Figure 6 illustrates how, when using the logarithmic relationship between porosity
and permeability observed in Figure 3, variations in permeability impact plume migration much more than
the variations in porosity. Not only are the perturbed plumes visually different from the base case, but the
trapping inventory also shows a larger spread in wedge values, such as the amount of CO2 in the free plume.
These wide error bars do not necessarily indicate that the final storage amount will differ as much from the base
case, rather it simply means different amounts of trapping are occurring at different points in time. Indeed, the
forecast curve exhibits a very small spread (between the 10th and 90th percentile values), and the majority of
the forecasts in the ensemble suggest that approximately 600 Mt of CO2 will remain in the aquifer (or 119 Mt
will eventually leak), similar to the base case forecast.

In Table 1, a parameter range is given for permeability. Recall that we perturbed permeability by first
perturbing porosity and then using a logarithmic relationship between these two rock properties, before setting
porosity back to its original value. As such, we state the minimum and maximum value of the perturbed
permeabilities since the maximum changes are not centered around an average value. Note that the use of a
logarithmic relationship to compute the permeability field leads to some unrealistically high values (25 darcys),
but these are limited to a few isolated grid cells. Perturbing permeability results in a wider spread in the
Sørensen–Dice coefficient (SDC) curves for all three perturbation levels, compared to perturbing porosity or
caprock elevations. Also, the mean SDC value of the ensemble at 30 years is below 1, indicating that plumes
are already dissimilar from the base plume by the end of the injection period.

3.4. Caprock elevations

Because of the large density difference between CO2 and brine, CO2 behaves like a thin plume traveling
underneath the aquifer’s undulating caprock. As such, the topography of the aquifer’s top surface is the main
parameter dictating the migration direction and the overall plume shape. For example, Figure 6 illustrates that
caprock perturbations in the Utsira geomodel can have a significant impact on plume migration. Also, the error
bars on the trapping inventory wedges suggest that plume migration becomes more dissimilar as time goes on.

Table 1 shows that by approximately 3000 years, the mean values of the caprock and permeability SDC curves
are quite similar. Since the slope of the SDC curves for caprock and permeability are different, it is possible
that we would eventually notice larger dissimilarity due to caprock perturbations than due to permeability if we
studied a longer migration period. This observation agrees with a finding made in Manceau and Rohmer (2016)
regarding how the impact of an individual parameter (especially absolute permeability) on plume migration can
evolve over time, becoming either more or less important than other parameters.

Caprock topography is determined using seismic surveys, and thus the real uncertainty in top-surface ele-
vations is likely related to aquifer depth. Without knowledge of the uncertainty associated with a particular
geomodel, we have chosen to apply an arbitrary degree of perturbation to a given surface model. (This per-
turbation is applied to the entire top-surface, although we recognize that there is likely more uncertainty in
one part of the study area than in other areas.) Obviously, the same level of perturbations can have largely
different effects on migration, depending upon the topography of the top surface. To illustrate this point, we
compare the static trapping capacity of two aquifers that have very different caprock topographies: the full
Utsira geomodel and the Sandnes geomodel. For computational efficiency, we used coarsened versions of these
geomodel grids, at a resolution of 2 × 2 km2 for both grids. A range of perturbation levels from ±1 meter to
±30 meters were applied to the respective top surfaces. The mean trapping capacity and standard deviation
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Figure 8: Impact of perturbation level on CO2 trapping capacity. Plots (a) and (b): Solid black line denote mean trapping capacity
(µ) and width of gray shaded area is one standard deviation (σ) of the ensemble at each perturbation level. Red dashed line is
trapping capacity of base grid (no perturbation applied). Plot (c): Coefficient of variation (COV=µ/σ) versus perturbation level.

of each ensemble are plotted in Figure 8. The Sandnes aquifer contains dramatic slopes and a high degree of
variation in the top surface. Increasing the perturbation level therefore only resulted in a very slight divergence
between the base capacity and the mean trapping capacity of each ensemble. The Utsira surface model is rel-
atively smooth compared to Sandnes, and its structural traps are sparsely distributed throughout the aquifer.
Once perturbations reach approximately ±8 meters, the mean trapping capacity in the Utsira grid therefore
diverges significantly from the base. Whereas a perturbation level of ±30 meters is not enough to produce a
noticeably different trapping structure in the Sandnes geomodel (see Figure 9), it is easy to notice new traps in
the Utsira geomodel, especially in areas where the elevation gradient is relatively smooth.

As mentioned, the grids used in the example discussed above were coarsened. Coarsening the grid affects the
number of structural traps found in the top surface model and the storage capacity estimate. More specifically,
small traps will disappear from the top surface when the grid is coarsened, as demonstrated in Nilsen et al.
(2015a) for another North Sea geomodel. As such, we recognize that the storage estimates we presented in
Figure 8 and 9 are specific to our grid resolutions, and we can expect higher storage estimates if finer grids were
used.

We now look more closely at how uncertainty in caprock elevation affects long-term plume migration; see
Figure 10. Here, we used a perturbation level of ± 15 meters, but instead of heterogeneous rock properties, a
homogeneous porosity and permeability of 0.21 and 1 darcy, respectively, were used to emphasize the impact of
topography. Also, instead of simulating an injection period (to reduce CPU time), the aquifer is initialized with
hydrostatic pressure and a circular plume of 18 km in diameter containing 680 Mt CO2. The migrating plume
in the base geomodel is shown as red dashed lines, and the perturbed cases as solid blue lines. The discrepancy
between the base results and the perturbed realizations increases as the plumes evolve. As shown in the figure,
the Sørensen–Dice coefficient equals unity at t = 0, which indicates a perfect match, and becomes smaller than
unity as the plumes evolve. Histograms taken at selected times (100, 1000, 5000, and 15 000 years) show a
decreasing mean value as well as a larger standard deviation (and larger spread in values). It is interesting
to note that the Sørensen–Dice coefficients for all realizations generally decrease in value. However, in some
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Figure 9: Impact of ± 30 meter perturbation on the trapping structure. Left : Trapping structure in Utsira’s base grid and in
the grid that gives a trapping capacity equal to the ensemble’s mean trap capacity. Right : Sandnes base grid and the mean trap
capacity grid. All contour lines are drawn at 50 meter intervals, and all grids are drawn using the same scale (scale bar indicates
25 km).

realizations the coefficient decreases and then increases over time. This implies that the plume migration may
be very different from the base case at a given point in time, but then the discrepancy decreases as the migrating
plume converges towards that of the base case. The Sørensen–Dice curve for two different realizations can cross
over each other, which again indicates nonlinear and dynamic plume behavior.

The trapping inventory in Figure 10 shows that there still exist free (mobile) plumes in the base geomodel
after 15 000 years (orange wedge in inventory). However, the total amount trapped shown as green residual and
yellow structural wedges is hardly increasing at this point in time. Thus, it is safe to assume that the remaining
free plume will simply migrate towards the open boundary and leak from the aquifer, i.e., the free plume
(orange wedge) will be depleted as the amount leaked (red wedge) increases. In fact, after about 3000 years,
the trapping forecast could adequately predict that approximately 615 Mt of CO2 would ultimately remain
trapped within the aquifer, and the remaining 100 Mt would leak. (Note that this study neglects both solubility
and mineral trapping, but if they had been included in our example, it is likely that the amount that could
eventually leak would be significantly reduced, potentially to zero.) We thus continue our investigation of how
caprock uncertainty effects the model response by simulating only 3000 years of migration to capture long-term
trapping/boundary leakage. Forecast results are shown in Figure 11 for four different perturbation levels: ± 1,
5, 15, and 30 meters. These forecasts correspond to the injection of 719 Mt of CO2 through one fixed injector,
over a period of 30 years. From the results, we first notice that a perturbation of ±1 meter does not produce
noticeably different plume outlines in comparison to a perturbation of 15 or 30 meters. The forecasts for the
±1 meter predict that between 608 to 627 Mt of the injected CO2 will remain in the aquifer. A perturbation
level of 30 meters, on the other hand, suggests that between 518 to 715 Mt will remain trapped. Despite this
wider variation, we notice from the histogram of final forecast values in the bottom right corner that the values
do not take on a bell-shaped distribution, rather a larger percentage of the forecast values are towards the
upper limit of 719 Mt (i.e., no CO2 will leak). This skewed distribution indicates that a perturbation level of
±30 meters has created new traps and thus enhanced the storage capacity in most of the realizations. In other
words, a higher degree of top surface rugosity leads to more structural trapping, which has been demonstrated
in previous work, e.g., Nilsen et al. (2012); Gasda et al. (2013), and which we alluded to in Section 2.6.

Once again, grid resolution plays a role in our long-term migration results. For computational efficiency, the
simulations discussed above were performed using a coarsened version of the geomodel (i.e., 2000 × 2000 m2).
With the full resolution (500 × 500 m2), more small-scale traps are resolved and somewhat higher structural
trapping will be observed. Likewise, the increased rugosity of the top surface will retard plume migration and
potentially increase residual trapping. As noted in Nilsen et al. (2012), coarsening produces a smoother top
surface that overestimates plume migration.
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Figure 10: Impact of uncertainty in caprock elevations on plume migration and trapping inventory. Top row : snapshots of plume
outlines simulated using perturbed geomodels (blue lines) and original geomodel (red dashed line). Middle row : wedges of trapping
inventory with error bars showing 10th and 90th percentile values from all realizations, and evolution of the Sørensen–Dice coefficient
from all realizations. Bottom row : histograms of Sørensen–Dice coefficients for all realizations taken at selected times.
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Figure 11: Impact of caprock elevation perturbations on trapping forecast. Left to right columns: results given perturbations of 1,
5, 15, and ± 30 meters. Top row : CO2 plume outlines after 3000 years for base case (red) and perturbed cases (blue). Second row :
Forecast curves of perturbed cases (blue) and base case (red). Third row : Cumulative distribution function of forecasts taken 100,
200, 400, 600, . . . , 3000 years after the start of simulation. Fourth row : Histogram of forecasts taken at 3000 years.
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Figure 12: Representations of pressure and temperature uncertainty. The reference pressure (hydrostatic) is uniformly deviated by
a percentage of its pore-volume weighted average, and the temperature gradient used to compute caprock temperature is varied.
Left : Pressure and temperature conditions in the base model. Middle: Impact of pressure or temperature on structural trapping
capacity. When pressure is varied, thermal gradient is fixed at 35.6◦C/km, and when thermal gradient is varied, pressure is fixed
as hydrostatic (i.e., no pressure deviation). Right : Trapping capacity of formation for select aquifer conditions. Colorbars are in
units of megatonnes of CO2. Red shading indicates conditions where CO2 is not in its “dense” phase.

3.5. Initial aquifer conditions

The influence of aquifer conditions (pressure and temperature) on CO2 density and storage suitability has
been discussed previously, e.g., Bachu (2003); Metz et al. (2005). Here, we investigate the impact uncertainty in
aquifer conditions has on static capacity estimates for the Utsira aquifer. While we do not know the exact level
of uncertainty associated with the initial conditions, we note that Gasda et al. (2017) calculates a maximum
sustainable over-pressure of 15 bars for Utsira based on horizontal stress, and that Cavanagh and Haszeldine
(2014) consider a temperature of 31 and 37◦C for an Utsira layer (i.e, Sleipner layer 9) at 800 meters deep. This
temperature range equates to a temperature gradient of 34 and 43◦C/km, respectively, based on our assumed
values for seafloor depth and temperature. In light of these pressure and temperature values reported by others,
we first deviate hydrostatic pressure uniformly from -20% to 20% of its pore-volume weighted average, which
corresponds to a deviation of roughly -15 to 15 bars since the average pressure for this geomodel is approximately
80 bars (recall (2)). Then, we deviate the caprock temperature by considering thermal gradients ranging from
34 to 43 C/km (recall (3)). Such a temperature deviation could be a result of variations in seafloor depth (which
is assumed to be constant) and uncertainty in seafloor temperature and subsea thermal gradient. Deviating the
pressure implies the aquifer is either under or over-pressured relative to the hydrostatic condition. An under-
pressured or over-pressured aquifer could be a result of geological events such as burial or uplift, respectively.
Also, production of fluids from the formation can cause under-pressure. The pressure and temperature deviation
range we introduce here are intended as examples, and should not be understood as an in-depth assessment of
actual geological conditions at Utsira. For some perspective, Alnes et al. (2011) presents formulas for Utsira’s
pressure and temperature profiles with an error range of ±0.2 bars and ±0.5◦C, which is a much smaller window
of variability than we are investigating here. Results are shown in Figure 12.

A few things can be said based on the results shown in Figure 12. Firstly, the base model suggests that
approximately 608 Mt of CO2 could be contained within the structural traps when pressure is purely hydrostatic
and when aquifer temperature is based on a temperature gradient of 35.6◦C/km. As pressure increases from a
hydrostatic condition, CO2 density increases and thus the structural traps can contain more CO2. For example,
when pressure deviates from hydrostatic conditions by approximately +11.5 bars, (or +15% of its pore-volume
weighted average), the structural capacity of the geomodel increases to 1224 Mt. The opposite is true when
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pressure drops lower than its hydrostatic state. Likewise, the structural storage capacity increases when a cooler
geomodel is assumed (e.g., a temperature gradient of 34◦C/km and hydrostatic pressure yields a structural
storage capacity of 634 Mt), and decreases when a warmer geomodel is assumed, a finding that agrees with
previous work, e.g., Bachu (2003). Secondly, we notice that structural storage capacity is nonlinearly related to
either a change in pressure or a change in temperature. The reason for this is attributed to the fact that CO2’s
phase diagram shows a nonlinear relationship between CO2 density and Utsira-South’s aquifer conditions that
range from 15 to 50◦C and 20 to 160 bars. Within these intervals, the CO2 density increases with increasing
pressure and a fixed temperature, whereas the CO2 density decreases with increasing temperature and a fixed
pressure; see variation of CO2 density with pressure and temperature given in Bachu (2003). Close to the
critical point (31◦C and 73.8 bars), slight changes in either pressure or temperature lead to significant changes
in density. Thirdly, Utsira-South’s aquifer conditions do not always cause CO2 to be found in its “dense” phase
(notice areas shaded in red in Figure 12), which we define as the combined liquid and supercritical regions in
the phase diagram. Aquifer conditions have essentially been computed as a function of depth. The southern
portion of the Utsira geomodel is located between depths of approximately 395 to 1040 meters. Within this
range of depths, there is a point at which CO2 changes from non-dense (i.e., gaseous phase) to its dense state.
At any elevation deeper than this point, CO2 will exist in its dense form.

3.6. Faults

We use fault information that is available for the Hammerfest Aquifer Basin (provided to us by the Norwegian
Petroleum Directorate) to investigate the impact that fault uncertainty has on plume migration. Figure 13 shows
the faults present in this aquifer, which contains the Stø formation. A close-up view of the Stø geomodel, which
was constructed based on top surface elevations and formation thickness, is shown on the right. The fault data
are given as line coordinates, and had to be projected onto the Cartesian grid representing the geomodel. Thus,
the line coordinates of the faults are represented discretely in the geomodel, and appear as stair-step fault lines
corresponding to a continuous segment of cell faces in the right plot. While this is admittedly a simplistic
representation of faults, we consider it adequate for illustrating our methodology here.

For this example, we treat the faults in Stø as either sealing, semi-sealing, or fully conducting. This treatment
is achieved by multiplying the transmissibilities of the fault faces by a factor α = 0 for sealing faults, α = 0.01
for semi-sealing faults, and α = 1 for conducting faults (i.e., leaving the transmissibilities unchanged). To
emphasize the role of the faults, an array of injection wells are placed on the deeper side of two specific faults.
We assume the aquifer has open boundaries, however the southern boundary and a portion of the northern
boundary are fault lines. We simulate an injection period of 50 years with various injection rates followed by a
post-injection period of 3000 years.

Figure 14 illustrates over-pressure and CO2 saturations for the three fault cases, given an injection rate of
approximately 0.25 Mt/year per well. The top row plots show over-pressure at a particular year during the
injection period when the maximum over-pressure was reached. As expected, faults that limit the transmission
of fluid cause pressure to buildup much more than in the case when faults are neglected, and the pressure
becomes compartmentalized in parts of the aquifer. Approximately 3000 years after the end of injection, the
pressure in all three cases has dissipated enough that it almost resembles the initial hydrostatic condition (not
shown for brevity). This is not surprising, given our assumption that the aquifer has open boundaries along
most of its perimeter. The bottom row plots show CO2 saturations after 3000 years. There is only a slight
difference between the CO2 plumes in these fault cases. In the conducting fault case, CO2 is not hindered and
thus migrates upward and southward from Wells 1 to 5 where it collects in the shallow traps. In the sealing
fault case, CO2 migration is more hindered and thus does not reach these higher elevations. CO2 migration in
the semi-sealing fault case is somewhere in between.

Figure 15 shows the effect of injection rate on the maximum over-pressure simulated in the aquifer during
the simulated period. Injection rates were varied from approximately 0.25 to 2.5 megatonnes per year. We note
that some of these injection rates lead to an over-pressure that is likely not sustainable in the aquifer since they
would cause stress induced rock failure. The minimum overburden pressure of this aquifer is calculated to be
roughly 220 bars (using a formula presented in Nordbotten and Celia (2012) and assuming a sea-depth of 330 m,
sea and formation water density of 1000 kg/m3, and that the media lying above the aquifer is comprised of
sandstone with a dry bulk density of 2000 kg/m3 with a porosity equal to that of the aquifer’s). The minimum
initial (hydrostatic) pressure of the aquifer is 150 bars. As such, a conservative limit for the over-pressure should
be less than 70 bars, otherwise the overburden pressure would be reached. This limit means the injection rates
should be less than 0.4, 0.7, or 1.1 Mt/yr for a sealing, semi-sealing, or conducting fault assumption, respectively,
which corresponds to a storage capacity of no more than 20, 35, or 55 Mt for this hypothetical 50 year injection
scenario. These numbers should not be taken literally as true capacity estimates, but rather this example
demonstrates how much estimates can vary given the uncertainty of faults.
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Figure 13: Faults in and surrounding the Stø aquifer (left), and implemented in the Stø geomodel (right). Coordinates in left plot
are in ED50 UTM32, and scale in right plot is in meters. Colored edges in right plot: blue indicates fault faces, and green indicates
open formation boundaries. Injection wells drawn in black with labels “W1”, etc. Note that faults appear uneven on the figure as
we are plotting the grid cell faces nearest to the continuous fault lines.

While our example illustrates the presence of sealing faults in an aquifer can limit the storage capacity, this
is not always the case. Lothe et al. (2014) found the presence of sealing faults in a Norwegian aquifer (Garn)
actually increased storage capacity while open faults lead to a lower capacity estimate. The reason their finding
is different from ours is because their sealing faults acted to enhance the aquifer’s structural trapping. In our
example, sealing faults lead to high over-pressures which limited sustainable injection rates.

4. Concluding Remarks

To conclude, we have used two simplified methods to explore the impact that parameter uncertainty can
have on CO2 plume migration and storage capacity estimation. The parameters we focused on in the Utsira
geomodel were porosity, permeability, caprock elevation, and aquifer conditions (pressure and temperature).
We also considered the uncertainty of faults in the Stø geomodel, in terms of whether the fault is considered to
be sealing, semi-sealing, or conducting (open). The purpose of this work was not to provide accurate storage
capacities or plume behavior in the Utsira or Stø aquifers, rather, we wanted to illustrate the magnitude to
which capacity estimates or plume dynamics can change in light of parameter variation due to uncertainty. We
summarize a few of the interesting observations made in this work below.

First, we found that uncertainties in caprock elevation and permeability can have a greater impact on plume
dynamics than uncertainties in porosity. Of course, the level of perturbations applied to these parameters
controls the degree of impact on the system. However even after increasing the uncertainty range to ≈ ±50% of
the original average porosity, differences in plume migration were minimal; recall Table 1. On the other hand,
the influence of porosity on plume migration was made clear for the idealized case in Figure 5; increasing the
homogeneous porosity in the sloping aquifer by 30% noticeably reduced the speed of a migrating plume and
its degree of upslope migration. Also evident in Figure 5 was the role that structural traps have in terms of
containing CO2 and effectively stabilizing the plume from migrating farther upslope and out of the domain.

Second, we found that average plume mismatch between the base Utsira model and a set of perturbed caprock
surface models generally becomes worse over time as the plume continues to migrate; recall Figure 10. However,
the plume mismatch for some of the perturbed surface models can actually improve over time, indicating the
nonlinear behavior of the plume dynamics. Also, the trapping forecasts of an ensemble of highly perturbed
caprock elevations in the southern part of Utsira revealed that the majority of the perturbed realizations had
enough capacity to contain almost all the injected CO2; recall Figure 11. This observation was due to the
enhanced trapping capacity caused by high levels of caprock perturbation.

Third, we illustrated that variations in aquifer conditions can yield different structural storage capacity
estimates; recall Figure 12. Pressure and temperature have a competing effect on CO2 density and dictate
whether it is found in its dense (i.e., liquid or supercritical) or non-dense (gaseous) form. For reasons related
to storage efficiency, capacity estimates should be computed based on dense phase CO2 amounts only.

Fourth, by simulating a range of injection rates in the faulted-geomodel for the Stø aquifer, we illustrated
that the over-pressure induced when faults were treated as sealing limited the storage capacity more so than
when faults were treated as open. While this may sound intuitive and has been shown to be the case for a
sandstone basin in Birkholzer et al. (2011), we note that Lothe et al. (2014) found the presence of sealing
faults in another Norwegian Continental Shelf formation could actually increase storage capacity due to more
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Figure 14: Comparison of fault case simulations given an injection rate of approximately 0.25 Mt/yr for each well. Top row :
Over-pressure in bars at the year when the maximum over-pressure was reached. Bottom row : CO2 saturation after 3000 years.
(Saturation values range from 0 to 1 minus the residual saturation of water, and we have plotted all values above 0.01.) Faults are
shown in red.
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structural trapping. As such, the final impact of faults on capacity is likely to be site specific. Similar to other
geological heterogeneities, faults are a source of uncertainty in the geomodel, yet are easy to neglect in CO2

storage modelling especially when data are scarce. However, since their influence on pressure buildup may limit
sustainable injection rates, their presence and uncertainty ought to be represented in the geomodel.

A key component of this work was the use of rapid simulations and a reduction in the number of years
to simulate, which was made possible through vertical-equilibrium modelling and a forecasting algorithm. We
took the one-factor-at-a-time (OFAT ) approach, in which the sensitivity of model responses to one parameter
was evaluated at a time, and all other parameters where kept fixed to their base values. We recognize that this
approach may not fully span the uncertainty space, and that it is rarely the case that a geomodel contains only
one uncertain parameter. As such, future work should focus on cross-correlation effects of several geomodel
parameters. Since this task would likely involve performing many more simulations than what were run in the
present study, use of vertical-equilibrium modelling and migration forecasting in large-scale aquifers becomes
even more valuable.

Whereas we simulated the injection and migration process for a fixed injection strategy only, future work
could involve investigating the impact that parameter uncertainty has on plume migration in light of various
injection scenarios (e.g., multiple injection sites, different injection schedules, etc.). Our analysis was focused
primarily on plume migration and the trapping forecast. However, pressure buildup is also an important
aspect of CO2 storage, especially to ensure caprock integrity is not compromised by large-scale injection, and
is deserving of future work.
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