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Abstract 

Global climate change may have serious impact on human activities in coastal and other areas. Climate change may affect the degree 
of storminess and, hence, change the wind-driven ocean wave climate. This may affect the risks associated with maritime activities such 
as shipping and offshore oil and gas. So, there is a recognized need to understand better how climate change will affect such processes. 
Typically, such understanding comes from future projections of the wind and wave climate from numerical climate models and from the 
stochastic modelling of such projections. This work investigates the applicability of a recently proposed nonstationary fuzzy modelling to 
wind and wave climatic simulations. According to this, fuzzy inference models (FIS) are coupled with nonstationary time series modelling, 
providing us with less biased climatic estimates. Two long-term datasets for an area in the North Atlantic Ocean are used in the present 
study, namely NORA10 (57 years) and ExWaCli (30 years in the present and 30 years in the future). Two distinct experiments have been 
performed to simulate future values of the time series in a climatic scale. The assessment of the simulations by means of the actual values 
kept for comparison purposes gives very good results. 
© 2018 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

In recent years it has become increasingly evident that the
climate is changing [1] . This fact, in turn, influences the ocean
wave climate, which is of great importance for the design
and operation of ships and marine structures. Thus, knowl-
edge and experience about the environmental forces and how
to handle them must be supplemented with simulations of
how the future climate will be. In particular, when structures
are designed with an expected operational lifetime of several
decades, the potential changes in the operating conditions due
to climate change must be taken into account in the design
stage of the structure. 
∗ Corresponding author. 
E-mail addresses: christos.stefanakos@sintef.no (Ch.N. Stefanakos), 
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Thus, there is an increasing need for very long-term wind
nd wave data, as climate projections require a baseline cli-
atology against which to compare, especially in future cli-
ate scenarios produced by coupled models. Third generation

pectral wave models [2,3] have been used for generating such
inds of reanalysis data sets [4–6] . See also [7] , where a num-
er of climatologies based on regional models are cited. A
horough review of wave climate hindcasts and future projec-
ions is given in [8] . A more recent review on North Atlantic
torminess [9] found that most model and reanalysis studies
gree on an increasing trend over the last 40–60 years, but
hat measured data over the last 100 years shows no general
rend in the overall storminess, although they conclude that
here may be an intensification of storms in the future climate.

In the present study, NORA10 [10] and ExWaCli
11] datasets are used. Especially the latter includes a num-
er of future wave projections obtained by running a WAM
mplementation [2,10] with wind forcing derived from several
 is an open access article under the CC BY-NC-ND license. 
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Fig. 1. Main steps in future wave climate projections (different modelling choices introduce uncertainties in each modelling step). 
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lobal circulation models [12] . A particular area in the North
tlantic Ocean is selected and the wave model has been run,

n each case, for a 30-year historical period (1971–2000) and
or a future period (2071–2100) assuming two different future
limate scenarios, i.e. RCP 4.5 and RCP 8.5 [13,14] . 

There are a number of sources of uncertainties in any cli-
ate projections into the future, and future projections of the
ave climate is a result of several modelling steps. Different
odelling choices introduce uncertainties in each modelling

tep. For example, to obtain future wave climate projections,
ne must first run global climate models to get large-scale cli-
ate projections related to atmospheric pressures, wind fields

nd ice extent. However, such large-scale projections will be
onditioned on projected external forcings, typically consis-
ent with an emission scenario or a Representative Concentra-
ion Pathway (RCP). Hence, the choice of emission scenario
nd global climate model, as well as the initial conditions
nd exact parametrization of the climate model will affect
he results, and are sources of uncertainties in these climate
rojections. Moreover, to obtain wave climate projections one
ypically needs higher resolution regional climate projections
f wind fields, and different downscaling methods can give
ifferent results. With regional wind projections, one may use
umerical wave models to obtain wave projections and there
re several different wave models that may give different re-
ults. For example, in the ExWaCli project, six CMIP5 models
ave been selected for future wave climate projections as pre-
ented in [11] . However, the variability of climate projections
rom CMIP5 experiments is large, as well as the variability
ue to different models and model set up; see, e.g. [15] for
inds, and [16,17] for waves. See also [18] . All this increase

he uncertainties of future wave climate projections leading to
 large variety of them. See, e.g. [19] for further discussions
n the uncertainties of future wave climate projections. If
ne is interested in the extreme wave climate, extreme value
nalysis of the projected waves adds further to the overall
ncertainty [20] . See also Fig. 1 . 
The Coupled Model Intercomparison Project Phase 5
CMIP5) promotes a set of coordinated global climate model
xperiments and forms the basis for the IPCC’s fifth assess-
ent report (AR5) [1,21] . It was completed in 2014 and
odel output from a number of different climate models have

een made available. The selection of model output to use in
xWaCli was partly pragmatic and partly based on an assess-
ent of the individual merits of alternative models from aca-

emic work. Recently, the successor of CMIP5, CMIP6 [22] ,
as been established, and even though there are many expec-
ations that these data will provide a significant improvement
ver CMIP5 data, there are still no wave climate projections
ased on CMIP6 model output to date, as far as the authors
re aware. 

However, and because the numerical implementation of the
ave models requires great computational power and high
PU time, there is an increasing interest for various soft com-
uting techniques. Some researchers utilize Artificial Neural
etworks (ANN); see, e.g. [23–27] . Some others use Fuzzy

nference Systems (FIS) in combination with Adaptive Neuro-
uzzy Inference Systems (ANFIS); see, e.g. [28–34] . These

echniques require less computational effort and they are easy
o be applied. 

In [35,36] , FIS/ANFIS models were applied for the first
ime to forecast future values of the whole wave field (North
tlantic and Pacific Oceans). Usually in Fuzzy Time Series

FTS) studies, the nonstationarity is neglected. In contrast, the
uthors in [35–37] consider that nonstationarity should be re-
oved from the initial time series, before starting the fuzzy

orecasting procedure; especially in time series of wind and
ave parameters where the nonstationary character is inher-

nt due to the seasonal effect. So, in these works, fuzzy tech-
iques were combined with an existing nonstationary mod-
lling of wind and wave parameters to improve the forecast-
ng procedure. 

According to this modelling procedure, the initial nonsta-
ionary series is decomposed into a seasonal mean value, and
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Fig. 2. Computational domains and data points used (blue: NORA10, red: 
ExWaCli). 

Fig. 3. Time span and duration of datasets. 
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a residual time series multiplied by a seasonal standard de-
viation. The seasonal components are estimated using mean
monthly values, and the residual time series is modelled as
stationary series; see, e.g. [38,39] . Then, the FIS/ANFIS mod-
els are applied only to the stationary part. 

In this way, the seasonal patterns, which contain all in-
formation concerning changing trends in the climate, are es-
timated separately from the FIS/ANFIS structure, which can
be estimated by only a single point. This greatly decreases
the computational time of the calculations without significant
loss of the accuracy. Nonstationary modelling is finally used
for the synthesis of the full simulated time series. 

The present work follows the methodology presented in
[35,36] but for a significantly larger forecasting horizon;
namely several years. Two distinct experiments with respect
to very-long (climatic) forecasting are performed based on the
two datasets mentioned above. Forecasting results are com-
pared with existing model values intentionally kept for vali-
dation of the methodology. Preliminary results of the present
work has been presented in [40] . 

2. Methodology 

2.1. Data used 

Two datasets have been used for this study, as also men-
tioned in Introduction, namely the NORA10 and ExWaCli
datasets. 

The 10-km Norwegian Reanalysis (NORA10) has been de-
veloped by the Norwegian Meteorological Institute [10,41] .
The atmospheric forcing is obtained by the 10-km High-
Resolution Limited Area Model (HIRLAM10) [42] , and the
model is run nested inside a WAM model at a 50-km resolu-
tion forced by ERA-40 winds. NORA10 covers the northeast
Atlantic, including the North Sea, the Norwegian Sea, and the
Barents Sea. 

According to [11] , ExWaCli has been produced by run-
ning WAM wave model forced by winds and with ice cov-
erage obtained from six global climate models (GFDL-CM3,
EC-Earth, HADGEM2, IPS-CM5A-MR, MRI-GCGCM3 and
MIROC5) by downscaling the wind fields from the climate
models to a 50 km grid. The model is set up on a rotated
spherical grid with approximately 50 km resolution, covering
the Northeast Atlantic. See also [43] . 

The referred area is in the North-eastern Atlantic Ocean,
west of the British Isles, and the computational domains par-
tially overlap; see Fig. 2 . At each datapoint, three-hourly
time series of significant wave height, wave period and wind
speed are available. The NORA10 dataset covers the period
1957.09.01–2014.08.31, i.e. approximately 57 years, while
ExWaCli dataset includes a historic period of 30 years (1971–
2000) and two future wave projections of 30 years for the
period 2071–2100 assuming two different future climate sce-
narios (RCP 4.5 and RCP 8.5). The span of the datasets is
depicted in Fig. 3 . 

Both datasets used in this study have been validated previ-
ously. A validation of NORA 10 data against measured data
as presented in [10] , where the model wave data were com-
ared to both in situ measurements and satellite observations.
ompared to e.g. the ERA-40 hindcast the NORA 10 data
xhibited a significant improvement in mean values and high
ercentiles. The near-surface wind profiles from NORA 10
ere compared against measurements in [44] . A more recent

omparison study of the NORA 10 wave data against mea-
ured data is presented in [45] , demonstrating good agreement
etween NORA 10 and measured data. The NORA 10 data
ave generally been acknowledged to be a good dataset for
he wave and wind conditions in the North Atlantic, and have
een used in several independent studies on the North Atlantic
ave climate, see e.g. [46,47] . The ExWaCli data have again
een validated against NORA 10 data, as outlined in [11,43] .
ence, no further validation of these datasets are deemed nec-

ssary and the focus of this paper is on nonstationary fuzzy
orecasting models and not in the actual data generation and
alidation. 
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Fig. 4. Schematic of the procedure followed in the two experiments (1: train- 
ing, 2: input, 3: simulated datasets). 
.2. Model setup 

The present work closely follows the methodology de-
cribed in [35,36] , according to which the initial nonstationary
ime series of wind and wave parameters are first decomposed
s follows: 

 (t ) = m(t ) + s(t ) W (t ) , (1)

here m ( t ) and s ( t ) are deterministic periodic functions with
 period of one year, and W ( t ) is a zero-mean, stationary,
tochastic process. The functions m ( t ) and s ( t ) are seasonal
ean value and seasonal standard deviation, respectively, and

escribe the exhibited seasonal patterns. The seasonal patterns
mean value and standard deviation) are obtained by means
f: 

 3 (m) = 

1 

J 

J ∑ 

j=1 

1 

K m 

K m ∑ 

k=1 

Y ( j, m, τk ) , (2) 

 3 (m) = 

1 

J 

J ∑ 

j=1 

√ √ √ √ 

1 

K m 

K m ∑ 

k=1 

[
Y ( j, m, τk ) − μ3 ( j, m) 

]2 
, (3) 

ith m = 1,2,...,12. Note that, Y ( j, m, τ k ) is a re-
arameterization of Y ( t ), where j is the year index, m rep-
esents the monthly index, τ k is the time within a month,
 = 1 , 2, . . . , K m 

, and K m 

is the total number of observations
ithin a month. In [35,48] , it has been shown that, periodic

xtensions of quantities ˜ μ3 (m) and ˜ σ3 (m) are good estimates
f periodic functions m ( t ) and s ( t ). 

In this way, the information contained in the time series
 ( t ) is decomposed into two parts: 

• one deterministic [ m ( t ), s ( t )], containing information about
features such as seasonal variability, interannual variability,
climatic trends, and evolving more slowly in time, and 

• one stochastic [ W ( t )], containing info about the dependency
(correlation) structure of the successive values of the series,
and evolving more rapidly in time. 

The simulation procedure is applied to the second one, as
nly this part has been modelled as a stochastic one. The
rst part (deterministic) is estimated by means of the existing
alues and is used in the end to reconstruct the simulated
ersion 

̂ Y (t ) of the initial nonstationary series. 
Further, model (1) can be generalized in the multivariate

ase as follows: 

(t ) 
(N×1) 

= M(t ) 
(N×1) 

+ ���(t ) 
(N ×N ) 

W(t ) 
(N×1) 

, (4) 

here N is the number of time series. The vector M ( t ) and the
atrix ���(t ) are deterministic periodic functions with a period

f one year, and the vector W ( t ) is assumed to be a zero-
ean, stationary, stochastic process. As in the univariate case,

he functions M ( t ) and ���(t ) describe the exhibited seasonal
atterns. Note that the seasonal standard deviation s ( t ) of the
nivariate case has been replaced in the multivariate case by
he square root of the covariance matrix, which introduces
nteractions among the various terms of the initial time series
ector Y(t ) = [ Y 1 (t ) Y 2 (t ) · · ·Y n (t ) · · ·Y N (t )] T . 

Representation (4) can be equally well used either for the
odelling of a multivariate time series of wind and wave

arameters at a specific location at sea or for the modelling
f the long-term field of a wind or wave parameter. Especially
n the latter case, if grid points are correlated only with some
f their neighbouring points, one can reduce the interactions
y keeping only those interactions as follows: 

(t ) 
(N×1) 

= M(t ) 
(N×1) 

+ ���(t ) 
(N ×N ) 

[
Q (n) 
(N ×N ) 

W(t ) 
(N×1) 

]
, (5) 

here { Q (n) , n = 1 , 2, . . . , N } is a set of diagonal matrices
epending on n . Thus, to each component Y n ( t ) of matrix
 ( t ) corresponds a different matrix Q ( n ). The diagonal of

hese matrices contains 1’s and 0’s, including in this way
nly those grid points that are correlated with point n . 

Then, the FIS/ANFIS forecasting methodology described 

n [35] , is applied to the stationary part W ( t ). The member-
hip functions to form the fuzzy input sets are simple linear
unctions and the FIS systems are established assuming the
ollowing IF-THEN rules: 

(a) wind speed W S : 

W S (t + 1) = f 1 
(
W S (t ) 

) = p 

(1) 

k W S (t ) + s ( 1) 

k , (6)

(b) significant wave height H S : 

 S (t + 1) = f 2 
(
W S (t ) , H S (t ) 

) = p 

(2) 

k W S (t ) + q 

(2) 

k H S (t ) + s ( 2) 

k ,

(7) 

here the parameters 
{

p 

(·) 
k , q 

(·) 
k , s ( ·) k 

}
in Eqs. (6) and ( 7 ) are

stimated using the ANFIS procedure. 
Finally, using Eq. (1) , the simulated time series ̂ W (t ) is

ombined with the estimated seasonal components m ( t ) and
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s ( t ) to give a simulated version 

̂ Y (t ) of the initial nonstation-
ary series. 

2.3. Measuring forecasting quality 

To evaluate forecasting performance, the following error
measures have been used: 

(a) Root Mean Square Error (RMSE) defined as 

RMSE = 

√ √ √ √ 

1 

I 

I ∑ 

i=1 

| e (t i ) | 2 (8)

(b) Mean Absolute Percentage Error (MAPE) defined as 

MAPE = 

1 

I 

I ∑ 

i=1 

∣∣∣∣ e (t i ) 

a(t i ) 

∣∣∣∣, (9)
Fig. 5. Setup of Experiment 1. 

Fig. 6. Setup of Experiment 2. 

F
f

F
f

where 

e (t i ) = a(t i ) − f (t i ) (10)

denotes the forecasting error at time t i between forecasts
f ( t ) and actual values a ( t ). 

(c) Mean Absolute Scaled Error (MASE) defined as 

MASE = 

1 

I 

I ∑ 

i=1 

| q(t i ) | , (11)

where 

q(t i ) = 

e (t i ) 
1 
N 

∑ N 
n=2 

∣∣X (t n ) − X (t n−1 ) 
∣∣ , (12)

where { X (t n ) , n = 1 , 2, . . . , N } are the existing values,
used for training of the fuzzy time series model. 
ig. 7. Relative difference of the two estimates with respect to actual values 
or scenario RCP4.5 (1: Exp1, 2: Exp2, A: actual values). 

ig. 8. Relative difference of the two estimates with respect to actual values 
or scenario RCP8.5 (1: Exp1, 2: Exp2, A: actual values). 
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(d) Root Mean Square Scaled Error (RMSSE) defined as 

RMSSE = 

√ √ √ √ 

1 

I 

I ∑ 

i=1 

| q(t i ) | 2 (13) 

(e) Bias: 

Bias = 

1 

I 

I ∑ 

i=1 

[ −e (t i )] , (14)

(f) Scatter Index (SI) in %: 

SI = 

√ 

RMSE ∑ I 
i=1 a(t i ) 

× 100, (15) 

(g) Correlation coefficient R 

2 : 

R 

2 = 

∑ I 
i=1 

(
f (t i ) − a 

)(
a(t i ) − a 

)
√ ∑ I 

i=1 

(
f (t i ) − a 

)2 ∑ I 
i=1 

(
a(t i ) − a 

)2 
, (16) 

where 

a = 

1 

I 

I ∑ 

i=1 

a(t i ) . (17) 
ig. 9. RMSE of the wind speed estimates for Experiment 1 with respect to 
ctual values for scenarios RCP4.5 and RCP8.5. 

F
a

Results from all error measures are calculated and given
n the next section, showing the accuracy of the proposed
orecasting methodology. 

. Numerical results 

First, results for a point-wise study are given in Sec-
ion 3.1 . Further results for the whole field are given in Sec-
ion 3.2 . 

.1. Point-wise results 

Two points from the two datasets have been chosen with
eighbouring coordinates, so that the results are directly com-
arable; see Fig. 2 . 

Two experiments have been designed. In both experiments
he following simulation procedure has been applied; see also
ig. 4 where the procedure is summarized. 

1. A dataset Y 1 is chosen as the Training set. 
2. Decomposition (1) is applied to Y 1 . 
3. Residual part W 1 is used as input for the estimation of the

structure and the parameters of the FIS/ANFIS system. 
4. A second dataset Y 2 is chosen as the Input dataset. 
5. Step 2 is applied to Y 2 . 
ig. 10. Bias of the wind speed estimates for Experiment 1 with respect to 
ctual values for scenarios RCP4.5 and RCP8.5. 
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6. Residual part W 2 is used as input for the simulation based
on the FIS/ANFIS system estimated in Step 3 to get the
output series ̂ W 3 . 

7. Series ̂ W 3 is combined with the deterministic part of Y 2 

estimated in Step 5 and the final simulated time series ̂ Y 3 

is obtained. 

In Experiment 1, the first part of the NORA10 dataset
(1957–1970) has been chosen as the Training set, based on
which the FIS/ANFIS structure is estimated. Then, one sim-
ulation is obtained for the historic period (1971–2000) and
two for the future one (2071–2100). See also Fig. 5 where
the setup of Experiment 1 is shown. The results of the three
simulations are compared with the three ExWaCli datasets
(ExHist, ExR45, ExR85). 

In Experiment 2, the historic part of ExWaCli dataset
(1971–2000) has been chosen as the Training set for the
estimation of the FIS/ANFIS structure. Then, one simula-
tion is obtained for the historic period (2001–2014) and two
for the future one (2071–2100). See also Fig. 6 where the
setup of Experiment 2 is shown. The results of the three
simulations are compared the first one with the last part of
NORA10 dataset and the other two with the two future ExWa-
Cli datasets (ExR45, ExR85). 
Fig. 11. MAPE of the wind speed estimates for Experiment 1 with respect 
to actual values for scenarios RCP4.5 and RCP8.5. 

Fig. 12. R 

2 of the wind speed estimates for Experiment 1 with respect to 
actual values for scenarios RCP4.5 and RCP8.5. 
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It should be stressed here that Steps 3 and 6 (forecasting
art) of the aforementioned procedure are applied to the sta-
ionary part of the series ̂ W . Thus, it is of essential importance
o remove the deterministic (periodic) character of the series
rst, namely Determ_1 and Determ_2 in Fig. 4 . In this way,
ata from different models can be combined in the estimation
rocess of future values, since only the probabilistic structure
f the series is taken into account. All future climatic trends
re included in the extracted part, which will be added again
t the end of the procedure (Step 7). 

In addition, although the deterministic part Determ_2 is
stimated in the present work by means of the existing time
eries, it could have been replaced by any other relevant es-
imates concerning the future trends of that time period, ob-
ained by any other appropriate climatic model. 

In Tables 1 and 2 , the error measures of wind speed and
ignificant wave height, respectively, are given for Experiment
. The corresponding measures for Experiment 2 are given in
ables 3 and 4 . 

In all cases, the results are very good. For example, there
s a very good correlation between the simulations and the
ctual values of the order 91–95% (wind speed) and 98%
wave height). The bias is almost zero and the root-mean-
quare is of the order of magnitude of some centimetres for
ave height and less than 2 m/s for wind speed. Experience
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Table 1 
Error measures for wind speed, Experiment 1. 

Dataset ExHist ExR45 ExR85 

RMSE 1.341 1.296 1.314 
MAPE 0.154 0.147 0.146 
MASE 1.003 1.002 1.003 
RMSSE 1.400 1.397 1.404 
R 

2 0.953 0.954 0.953 
SI (%) 13.715 13.512 13.643 
Bias −0.005 −0.006 −0.005 

Table 2 
Error measures for wave height, Experiment 1. 

Dataset ExHist ExR45 ExR85 

RMSE 0.269 0.268 0.263 
MAPE 0.047 0.046 0.046 
MASE 0.843 0.833 0.811 
RMSSE 1.321 1.364 1.324 
R 

2 0.990 0.989 0.990 
SI (%) 7.785 8.126 7.986 
Bias −0.003 −0.003 −0.003 

Fig. 13. SI of the wind speed estimates for Experiment 1 with respect to 
actual values for scenarios RCP4.5 and RCP8.5. 

Table 3 
Error measures for wind speed, Experiment 2. 

Dataset ExR45 ExR85 NORA10 

RMSE 1.290 1.308 1.802 
MAPE 0.140 0.139 0.187 
MASE 0.991 0.992 0.984 
RMSSE 1.391 1.398 1.389 
R 

2 0.954 0.954 0.913 
SI (%) 13.453 13.584 18.383 
Bias 0.000 0.001 −0.002 

Table 4 
Error measures for wave height, Experiment 2. 

Dataset ExR45 ExR85 NORA10 

RMSE 0.258 0.254 0.308 
MAPE 0.046 0.045 0.057 
MASE 0.826 0.808 0.865 
RMSSE 1.316 1.279 1.339 
R 

2 0.990 0.991 0.985 
SI (%) 7.836 7.714 9.142 
Bias 0.001 0.001 −0.008 

Fig. 14. RMSE of the wave height estimates for Experiment 1 with respect 
to actual values for scenarios RCP4.5 and RCP8.5. 
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with more data points will reveal if the slightly higher errors
in the case of wind speed are significant or not. 

By comparing the forecasting performance of the two ex-
periments for the future scenarios RCP4.5 and 8.5, one can
conclude that both are in a very good agreement with the
actual values of the datasets, which means that either dataset
(NORA10 and ExWaCli.historic) can be equally well used as
a Training dataset for the estimation of the parameters of the
FIS/ANFIS procedure after the appropriate deseasonalization.

As an example, the relative differences between the results
from the two experiments are calculated as follows. If S 1 ( t ),
S 2 ( t ) are the estimates of the two experiments, respectively,
and A ( t ) are the actual values retained for comparison, then
the relative differences are defined as 

Rdf (t ) = 

S 1 (t ) − S 2 (t ) 

A ( t ) 
× 100. (18)

In Figs. 7 and 8 , the histograms of Rdf ( t ) for H S are shown
for the two climatic scenarios. One can observe that Rdf , in
both cases, is nearly normally distributed around zero with the
main probability mass (99.5%) concentrated in the interval
[ −2%, 3%]. In addition, Rdf does not exceed in any case the
interval [ −5%, 10%]. 
Fig. 15. Bias of the wave height estimates for Experiment 1 with respect to 
actual values for scenarios RCP4.5 and RCP8.5. 

i  

F
t

The estimation procedure for each experiment is very quick
nd takes 30 s in a typical personal PC with Intel ®Core TM i5-
200CPU @2.20 GHz and 4.0 GB RAM. 

Finally, one can argue that the present results may not
eem in line with other published work in the climate com-
unity [17,49] , where higher uncertainty levels are present.
owever, this is due to the fact that the present results are
ot directly comparable with the other aforementioned ones,
ecause this simulation procedure analyses only the stochastic
art (containing the correlation structure) and not the deter-
inistic one (containing among others the long-term trends).
hus, the present methodology can be combined in the fu-

ure with other existing tools, such as the dynamical models
nd/or other statistical models, to enhance the accuracy of
he existing predictions of the wave climate by decreasing
he computational cost, which in turn allows for finer com-
utational grids. 

.2. Field-wise results 

The same simulation procedure described in Section 3.1 is
ow applied to the whole field of points, shown in Fig. 2 . 

According to [35] , since the remaining stationary W -part
s almost homogeneous in space [50] , only one datapoint is
ig. 16. MAPE of the wave height estimates for Experiment 1 with respect 
o actual values for scenarios RCP4.5 and RCP8.5. 
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2 of the wave height estimates for Experiment 1 with respect to 
actual values for scenarios RCP4.5 and RCP8.5. 
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Fig. 18. SI of the wave height estimates for Experiment 1 with respect to 
actual values for scenarios RCP4.5 and RCP8.5. 
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eeded for the fit of the FIS/ANFIS model; which greatly
ccelerates the calculations for the field forecasts. 

Following the terminology of Section 3.1 , W 1 -series is
aken from the point, already studied in Section 3.1 , to es-
imate the parameters of the FIS/ANFIS model; see Fig. 2 .
hen, the estimated model is applied to the W 2 -series of all
ther points of the field for the forecasting horizons of Ex-
eriments 1 and 2 given in Figs. 5 and 6 . 

Based on data kept for comparison purposes, all error
easures described in Section 2.3 have been calculated. In
igs. 9–13 the error measures RMSE, Bias, MAPE, R 

2 and
I for wind speed are depicted, while in Figs. 14–18 the same
rror measures are shown for significant wave height. 

In those figures, one can observe that the root-mean-square
rror of the forecasts is less than 1.35 m/s for the wind speed
nd 0.3 m for the significant wave height. Also, the bias is
ery small ( < −0. 0035 m/s and < −0. 002 m). The correla-
ion coefficient is very high (95% for wind speed and 98–
9%) for significant wave height). Finally, it is noteworthy
hat in most of the cases the spatial distribution of the vari-
us error measures is more or less uniform. 

Furthermore, in order to study the spatial distribution of
he maximum values, the following quantity is calculated for
ach grid point: 

AXdf s = 

| max (A ) − max (S) | 
max (A ) 

× 100, (19) 

here A is the actual value kept for comparison, S is the
imulation of the experiments, and s = 1 , . . . , 100 is the in-
ex of the grid points. An example of the results is given in
ig. 19 (a) and (b), where the quantity MAXdf for the sig-
ificant wave height is plotted for the two climate scenarios.
he larger part of the grid points has MAXdf-values between
% and 4% of the actual value, whereas there is a small part
ith values between 6% and 10% of the actual value. 

. Concluding remarks 

Climatic simulations of significant wave height and wind
peed have been obtained for the first time, based on a newly
ntroduced procedure [35,36] , where predictions were given
or shorter periods. According to this, the well-known Fuzzy
nference Systems (FIS) in combination with Adaptive Neuro-
uzzy Inference Systems (ANFIS), coupled with nonstation-
ry time series modelling, is applied to obtain the forecasts. 

Two datasets have been used; namely NORA10 (1957–
014) and ExWaCli (1971–2000 and 2071–2100), covering an
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Fig. 19. MAXdf of the wave height estimates for Experiment 1 with respect 
to actual values for scenarios RCP4.5 and RCP8.5. 
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area of the North-eastern Atlantic Ocean, west of the British
Isles, with partially overlapping computational grids. 

Two forecasting experiments have been designed and per-
formed. In the first one, the training set was the period 1957–
1970 of the NORA10 dataset and the forecasts cover the pe-
riods 1971–2000 and 2071–2100. In the second one, the pe-
riod 1971–2000 of ExWaCli dataset is the training set and the
forecasts cover the periods 2001–2014 and 2071–2100. 

The obtained forecasts are verified by means of actual val-
ues kept for comparison purposes. The calculated error mea-
sures show very good performance, demonstrating the feasi-
bility of this methodology. 

The present methodology makes it possible to explore the
stochastic information contained in different datasets for dif-
ferent data periods to obtain simulated forecasts both in future
and in past in climatic scales. In addition, the small amount
of computational time needed makes it an attractive comple-
mentary tool in the process of obtaining future simulations in
a climatic horizon, which is in line with the current demand
of using enhanced computational tools [51] . 
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