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1 Background and objectives
Daily travel activities are expected to be impacted by the climate change. In order to make
strategic long-term transport and urban planning decisions, the climate change needs to be
factored in. The proper way forward towards this direction is to start designing and testing
newer tools and methodologies on the available credible data. In this work we devise some
tools that are initially tested on available short-term weather data (which has more certainty
of being accurate) as compared to long-term climate data (which generally has less certainty).
This certainty in data helps in testing the proposed tools and methodologies. Later the tested
tools, methodologies along with many of the results can be ported to climate change analysis.
This makes sense as most of the variables defining atmospheric conditions in both the climate
and the weather studies remains the same (such as temperature, humidity, wind-speeds, etc.),
only their values and ranges may differ. The current work involves data-driven analysis of
travel frequency based on weather conditions (such as temperature, precipitation, humidity
and wind) using machine learning (which is an approach to artificial intelligence). For this
purpose, the transport mobility data (of car and bike counts) along various traffic routes in
Oslo, Norway for a period of one year have been considered. The weather data corresponding
to these counts have also been collected simultaneously. The main objectives of this work are
:

1. To compare and identify the best machine learning (ML) algorithms for the available
data, and

2. use it to infer about user-behaviour and usage of different transport modes (bikes, cars)
with regards to atmospheric conditions.

This usage and user-behaviour is analyzed at different locations (measured in terms of distance
of an observed route from the city centre) and at different times of the day with regards to
weather conditions. The research directions from climate change perspective that this work
will try to address and the existing knowledge gaps that this work will try to fill are :

1. Need for development and demonstration of novel methodologies for potential use in
transport planning with regards to climate change.

2. Inference about the user-behaviour (car-users and bike users) with regards to the existing
atmospheric conditions for possible planning with regards to weather and climate.

The next section describes the methodology with regards to data collection, data prepro-
cessing and model selection procedures. This is followed by the results and discussions.

2 Methodology
The methodology begins with collection of weather data and traffic count data for bikes and
cars at different locations. This data is then preprocessed for machine learning analysis.
Machine learning analysis will help us to identify the patterns in the data-sets. For the
machine learning analysis, several well-known machine learning methods will be compared
using standardized validation process for the pre-processed data. Then, the best performing
machine learning data will be used to analyze the patterns. The details are described below
in relevant sections:
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2.1 Data collection
The data in its raw form were received in three different files: one for the location of the sensors
in latitude and longitude, one for the data related to cars and another related to bikes. The
location file had columns including the sensor id, sensor name, latitude, longitude, address
of the location, format, sensor status, sensor type (counting cars or bikes) and measurement
intervals. The car data included columns corresponding to sensor id, year, month, day,
start hour, direction, measurement interval, total counts of the vehicles and average speed of
the vehicles. The bike data consists of sensor id, time, lane, count of bikes and measurement
intervals. The MET data consisted of the hourly recording of wind magnitude, wind direction,
precipitation, humidity and temperature. The duration for which the data was available was
from 01.02.2015 to 01.02.2016. The Appendix section provides some more information on
data collection.

2.2 Data preprocessing
The collected traffic data needs to be processed. Data preprocessing methodology involves
missing value detection and treatment, outlier detection and treatment, redundant and multi-
colinear data removal and feature scaling. These are explained below.

2.2.1 Missing value

Missing values in the collected data refers to the data that are not-available for some reasons.
They often get represented as blanks, NaNs or other placeholders in the data-set. Machine
learning algorithms will not work with such representations as they need a value to be assigned
to a variable in-order to unearth the pattern. In the current work, about 11% of the bike data
was missing. For cars, most of the dataset was available. There are different strategies to
deal with the missing data. One strategy is to avoid losing some information and to impute
the missing values using either the mean, the median or the most frequent value of the row or
column in which the missing values are located. This might create a bias in the data and alter
results. We have used another basic strategy which is to discard entire rows and/or columns
containing the missing values. However, this too comes at the price of losing the data which
may be valuable (even though incomplete) but then it does not introduce a bias.

2.2.2 Outliers

Outliers are data that are exceptionally far from the mainstream of data. They can either be
significant potential events/anomaly or irrelevant corrupted measurements. There are sev-
eral methods to detect an outlier such as - extreme value analysis using standard deviations,
probabilistic approaches, principle component analysis approach, proximity based modelling
approach involving cluster analysis. Our approach was based on simple extreme value ana-
lysis in which the outlier points as those points that deviates by more than three times the
standard deviation from the mean value, so outlierdata = [data > (Mean+3 ∗SD)ordata <
(Mean−3∗SD)] . In case of bike data, about 2% of data comes under the category of outliers.
However, the removal of even such small data-set has some influence on the bike count distri-
bution (Figure 1). Figure 1 shows that without outlier removal, we observe peak bike traffic
exceeds more than 200 counts (measured in a 15 minute duration) multiple times, but after
the application of outlier removal, these extreme peak counts are not seen. Generally, the
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outliers can be safely removed if they have, a) low frequency of appearance, b) are corrupted
measurements, c) do not correspond to potential events/failures. We currently do not know
whether these outliers are corrupted measurements or potential events (like, ongoing biking
competition event), but since these peaks are less frequent in appearance so their removal is
not expected to harm the analysis.

1 2 3 4 5 6 7 8 9 10 11 12
Month

100
0

100
200
300
400
500

No
. o

f B
ik

es
Bike count Vs Month

(a) Bike count with outliers
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(b) Bike count without outliers

Figure 1: Influence of outliers on bike count

2.2.3 Multi-colinearity and redundancy

Multi-colinearity refers to existence of high correlations between two or more predictor (inde-
pendent) variables. As a result, one independent predictor variable can be used to predict the
other variable. This leads to redundant information in the dataset, which may skew the results
in a regression model. Multi-colinearity is detected using the matrix of Pearson’s bivariate
correlation among all the independent variables (Figure2). Detecting multi-colinearity and
removal of redundant variables can lead to :

1. A successful machine learning algorithm in terms of accurate numerical computation of
matrix inversion,

2. A regression model that can better predict impact of an individual independent variable
when other variables are fixed,

3. Avoidance of over-fitted models.

Figure 2 reveals mild correlation between months (January-December) and temperature for
both the bike and car data, but this correlation value is not so high (<0.8) so as to deem the
variables as redundant. Hence, all the variables are kept intact for further analysis.
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Figure 2: Correlation Analysis
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2.2.4 Number of feature variables and data size

After removal of missing data, outliers and multi-colinearity check, the final data size for car
and bike variables are : bike dataset has 77075 number of observations and car dataset has
101661 number of observations - which forms the rows on an input data matrix. The columns
of this input data matrix comprises of a dependent variable (traffic counts) and several inde-
pendent variables such as - station location (represented as distance from centre), wind speed,
temperature, relative humidity, precipitation, lane direction, month, time, weekday.

2.2.5 Feature scaling and data standardization

Different variables used in the current work have different ranges for the variable values. If a
feature has a variance that is orders of magnitude larger than others, then it might dominate
the objective function and make the estimator unable to learn from other features correctly.
The objective functions used in different machine learning estimators assume that all features
are centered around zero and have variance in the same order. This assumption helps when
the objective function in the majority of estimators need the Euclidean distance - the distance
between two points (example - as needed by the radial basis function (RBF) kernel of Support
Vector Machines, or the L1 and L2 regularizer of linear models). If the range of all features are
normalized, then each feature contributes approximately proportionately to the final distance,
and none of the feature variables dominate the objective function. In practice we often ignore
the shape of the distribution and just transform the data - i.e. center it by removing the mean
value of each feature, then scale it by dividing the non-constant features by their standard
deviation. This transformation is termed as feature scaling, and this has now been done in
this work.

2.2.6 Feature Engineering

Feature engineering is the process of using domain knowledge of the data to create new feature
variables that make machine learning algorithms work. For applying feature engineering,
it is necessary to know the type of feature variable. The feature variables in the current
work can be categorized into categorical nominal variables (example - month, weekday),
cyclic variables (example - hours and wind direction) and rest of the variables are continuous
variables. The categorical variables will not be interpretable to machine learning codes and
assigning numerical values to them will impart an ordinal property to them, which will not
be correct. Hence, to make them interpretable, categorical variables are subjected to the
”one-hot encoding” procedure - where each categorical feature with m possible values is
converted into m binary feature variables, and for every observation, only one of these m
binary feature variable is active (with 1 as value) and rest are inactive (with 0 as value).
Hence, care is taken to see that the training data is not missing any categorical features. The
cyclic ordinal variables like ”hours” are also transformed into two newer variables in order
to preserve relevant information (like ’23’ and ’0’ hour are close to each other and not far
from each other). For a 24 hour clock, this is achieved through following transformation:
x = sin(2 ∗ hour/24), y = cos(2pi ∗ hour/24).

Another feature engineering process involves generating polynomial features for linear
regression analysis. This helps to add complexity to the model by considering nonlinear
features of the input data. For polynomial of order 2, say a feature variable X gets transformed
from (X1, X2) to (1, X1, X2, X2

1 , X1X2, X2
2 ).
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Next, this processed data is used for model selection as described below.

2.3 Model selection - Cross Validation and Learning curve
Cross-validation (CV) is a model validation technique for assessing the generalization ability
of a machine learning algorithm to an independent data set. In our work, we split the original
dataset into the training and the test dataset. The training dataset is subjected to a k-fold
cross-validation technique which is used to build and estimate the performance of a machine
learning algorithm and compare different machine learning algorithms. It helps to find the
machine learning algorithm with best generalization ability for the given data. By building a
machine learning algorithm, we mean finding suitable values of the parameters of a machine
learning algorithm so that it performs well. Here, we have selected a 3− foldCV procedure,
where the training set is split into 3 different smaller sets. The model prediction is learned
using 2 of these 3 folds at a time, and the 3rd fold left out is used for validation. Initially, a
machine learning model is chosen along with a set of values for the hyperparameters. Here, we
compare six machine learning models - linear regressor, random forest, decision tree, gradient
boosting regressor, support vector machine and artificial neural network. For each machine
learning algorithm and each parameter set, the following procedure is then applied over a
”loop” for each of the 3 folds :

1. The chosen machine learning model with a selected parameter is trained using a different
set of 2 folds each time ;

2. The resulting trained model is then validated on the remaining 3rd set (which is different
in each loop).

The final performance measure reported by our 3-fold cross-validation is then the average
of the values computed on the loop (over the 3 runs). This performance measure accuracy
along with the average learning curve for each machine learning algorithm is used to select
the best machine learning algorithm (and the best parameter set for it) for the given data.
This best model is then applied on the initial test data set. This test data has so far remained
hidden from the model during the model building and selection process. The matrix used for
measuring performance is called as score (Y axis of all figures 3-7). The score is related to
accuracy of the estimator. Best possible score is 1.0 suggesting a model with high accuracy
and the score can be negative if the model gives the worse performance. A constant model
that always predicts the same expected output disregarding the input features would get
a score of 0.0. The learning curve shows the variation of average score with training data
and validation data. Generally, training scores decreases with dataset (or the training error
increases) and the validation scores increases with data-set (or validation error decreases).
Learning curve for a given model estimator helps in its selection by showing the benefit from
adding more training data to the estimator and showing whether a given estimator suffers
more from a variance error or a bias error. Both these errors together serves to inform us
about the expected generalization ability of a learning algorithm to unseen data. The errors
are described below:

1. Bias Error - Bias of an estimator (machine learning algorithm) is the overall difference
between this estimator’s predicted value and the actual value of the parameter being
estimated over the training data. If both the validation score (accuracy) and the training
score (accuracy) converge to a value that is too low with increasing size of the training
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set, then the estimator is under-fitting (has high bias error) and we will not benefit
much from more training. We will then probably have to use a different estimator or
a parametrization of the current estimator that can learn more complex concepts (i.e.
has a lower bias) or add new features to the dataset.

2. Variance Error - Variance error refers to sensitivity of an estimator to data or new data
and accounts for variability in the model predictions. With different datasets, a learning
algorithm’s predictive ability changes. Variance is measured in terms of deviations in
the model’s predictions of the expected parameter from its predicted mean over the
training data. This error does not account for actual value of the parameter (as the
bias error). High variance models can start modelling noise in the data as well and lead
to overfitting. If the training score is much greater than the validation score for the
maximum number of training samples (i.e. we have higher validation error than training
error), then the estimator is over-fitting (has a higher variance error) and adding more
training samples will be beneficial. With additional training data, the model will most
likely increase generalization (i.e. reduce validation error). High variance errors can
also be reduced by introducing a regularization term in the objective functions. The
regularization term (also called penalty term) combats over-fitting by constraining the
size of the weights. Increasing regularization may fix high variance (over-fitting) by
encouraging smaller weights, resulting in a decision boundary plot that appears with
lesser curvatures. Similarly, decreasing regularization may fix high bias (under-fitting)
by encouraging larger weights, potentially resulting in a more complicated decision
boundary.

In this section, we compare the model performances based on the results from learning curve
and mean daily error on the test data. If both training and validation score are converging
to a higher value, then we can say that it is a good model.

2.3.1 Multivariate Linear Regression - Degree 1 and 2

In multivariate regression we seek a set of parameters (or weights) Θ associated with features
X for the hypothesis H.
Hypothesis is H = XΘ
with Θ as

Θ = [θ0 θ1 ... θi ... θm]T (1)

The parameters Θ are chosen so as to minimize the cost function. The cost function is
J(Θ) = 1

2m(XΘ−Y)T (XΘ−Y)
Generally for very large problems due to memory requirements gradient descent algorithm
is used for minimization but since here we are working with relatively small dataset with
smaller number of feature vectors X, we have used direct method for finding the minima.
This involves invoking the closed-form solution to linear regression

Θ = (XTX)−1XTY (2)

The advantages of linear regression are that they are computationally efficient, simple and
easy to interpret. However, the algorithm fails to capture non-linear behavior.
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Here, two different multi-variate linear regression models are tested, one with degree 1
and the other with degree 2 polynomial. With higher degree polynomial, the number of
features increases and the model becomes more complex. Higher degrees may reduce bias
errors but increase variance errors leading to overfitting. The degree 2 model is called a linear
model because in the feature space, it varies linearly with the new features (X2

1 , X1X2, X2
2 ),

even though the regression equation when viewed from perspective of its relationship with
original variables X1, X2 is non-linear. In machine learning, the linearity is viewed from the
perspective of parameters Θ associated with the feature X. Degree 2 polynomial is deemed
suitable as shown from results below.

Figure 3 shows both the learning curve on cross-validation dataset and the predicted fit
vs measured observation on hidden test dataset for degree 2 linear regression. The learning
curve and fit plots are shown for both the car and bike traffic count data. For car-data,
learning curve reveals that final validation and training scores have high values in range of
0.8-0.81. For car test data, linear regression with degree 2 polynomial is providing decent fit
between the predicted and observed (as seen in Figure3) and the corresponding mean absolute
error (MAE) in trip count is 222, while a higher MAE of 293 was obtained for degree 1 linear
regression. For the bike-data, learning curve reveals that the linear regression might be under-
fitting (or showing higher bias) as both validation and training scores have lower scores in
vicinity of 0.35-0.36, with the training score being slightly higher. For the bike test data,
linear regression is not able to provide a good fit and the corresponding mean absolute daily
error of bike trip count is 5.4 (for degree 2 polynomial regression). For degree 1 regression,
the MAE is higher at 6.381 daily error. For bike data, we will need to test with a different
estimator with more complexity. The linear regressor models are compared to other complex
machine learning models in the next sections.

2.3.2 Tree based Regression

If the relationship between dependent and independent variables has high non-linearity and
complexity, then a tree model is expected to outperform a classical linear regression method.
The following three tree models have been tested : Decision Tree, Random Forest and Gradi-
ent boosting. A brief description of these models along with the parameters that have been
used in them are given below :
Decision Tree
Decision Trees (DTs) are a non-parametric supervised learning method used for classification
and regression. The goal is to create a model that predicts the value of a target variable by
learning simple decision rules inferred from the data features. Some of the disadvantages of
decision trees are that the algorithm can be unstable because small variations in the data
might result in a completely different tree being generated. This problem is mitigated by
using decision trees within an ensemble. The problem of learning an optimal decision tree is
known to be NP-complete under several aspects of optimality and even for simple concepts.
Consequently, practical decision-tree learning algorithms are based on heuristic algorithms
such as the greedy algorithm where locally optimal decisions are made at each node. Such al-
gorithms cannot guarantee to return the globally optimal decision tree. This can be mitigated
by training multiple trees in an ensemble learner, where the features and samples are ran-
domly sampled with replacement. There are concepts that are hard to learn because decision
trees do not express them easily, such as XOR, parity or multiplexer problems. Decision tree
learners create biased trees if some classes dominate. It is therefore recommended to balance
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Figure 3: Linear Fit and Learning curve for car and bike data
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the dataset prior to fitting with the decision tree. The advantage of this algorithm is that
the results are highly interpretable. The important parameters in a decision tree model used
here are :

1. The maximum depth of the tree (higher the depth, lesser the bias related errors) - 8
selected here.

2. Maximum features - the maximum number of features selected here to consider for a
split = number of features.

3. Minimum sample leaf size - the minimal sample required to be at a leaf node - 3 selected
here.

4. Minimum samples for a node split to control overfitting.

5. Minimum samples for a terminal node.

Random Forest
Random forest model creates a set of decision trees from randomly selected subset of training
set and subset of features. At each branch in a decision tree, the Random Forest sub-samples
the features in addition to the training examples. This process further de-correlates the
individual trees reducing the variance errors. It then aggregates the votes from different
decision trees to decide the final outcome. This is supposed to control over-fitting. The
parameters used in this work are similar as decision tree with some additional parameters.
The additional parameter are :

1. Maximum number of trees in the random forest (higher the trees, lesser the variance)-
55 selected here.

2. The maximum depth of the tree (higher the depth, lesser the bias related errors).

3. Maximum features - the maximum number of features the Random Forest is allowed
to try in an individual tree is selected as square root of number of features. It helps
in variance reduction by reducing the correlation between trees in the ensemble. By
randomly selecting ’m’ attributes at each split, some randomness is fit in to the ensemble
and this reduces the correlation between trees.

4. Minimum sample leaf size = 3.

Gradient boosting
Gradient boosting tree based regression involves an ensemble of weak shallow decision trees.
The shallow decision trees have higher bias errors and lower variance errors, which suits
boosting procedure. Boosting procedure manipulates the training set to focus on areas of
high error. Initially, it trains the model on an original training data and initialize the overall
predictor as just this single model.It then assesses the error of the overall predictor and
modify the training data by redefining the supervised prediction target to be some kind of
residual between the ground truth and the overall predictor. It then trains a new model on
the modified training data, and add to the overall predictor. This process continues. The
parameters used here are:

1. Learning rate (0.12),
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2. Maximum number of estimators (150),

3. Maximum depth (8).

Performance of the tree based regression models
Amongst the tree based models, the performance of Random forest and Gradient boost are in
similar range in terms of accuracy (score range 0.95-0.985). Figure4 shows the learning curve
for the four models (random-forest,decision tree,gradient boost,ensemble model) obtained
from cross-validation, and Figure 5 shows the predicted fit vs measured observation on the
test data for the four models. From car-data random forest learning curve (Figure 4) , it
can be seen that random forest estimator have validation and training scores in range of
0.955-0.975. Performance of random forest is much better than that predicted by linear
regression with degree 2 polynomial (which has 0.8 score). For random forest, the training
score is mildly higher than the cross-validation score so a bit of over-fitting is there, which
is in acceptable limit. Random forest is also seen to be giving good fit with the observed
traffic count for the car test data (as seen in Figure 5) and the corresponding mean absolute
error (MAE) is 39. The Random forest with a MAE of 39 daily trips is better than Gradient
boosting (MAE=43), Decision tree (MAE=92) and Ensemble (MAE=53) models. But, these
test performance errors for all the four tree based regression models are much lower than that
reported by degree 2 linear regression (MAE of 222). So for the car traffic count, the random
forest is performing the best.

For bike data as well, the learning curve (Figure4) shows that the random forest validation
score (around 0.62) is much better than the linear regression validation score (around 0.35).
But, a bigger variation between the final training score (0.82) and the final validation score
(0.62). This suggests that the estimator is over-fitting (has a higher variance error) and adding
more training samples will be beneficial as it might help the model to generalize better (thus
improving the validation score). Like car, for bike test data as well, the Random forest is
seen to be giving good fit with the observed traffic count as seen in Figure 5. Performance
on bike test data reveals an mean absolute error in daily trips (MAE) of 2.04 (for Random
Forest), 2.08 (for Gradient boosting) , 2.33 (for decision tree) and 2.04 (Ensemble). This test
performance error is much lower than that reported by linear regression (MAE of 5.4 ). So
for the bike traffic count, the random forest is performing better and its generalizing ability
can be improved further with more data.

2.3.3 ε-Support Vector Regression (SVR)

Theory
The SVR performs linear regression in a higher dimensional space. It constructs a hyperplane
(decision surface) in a high or infinite-dimensional space. In SVR, the support vectors (SV)
are the data points that lie closest to this decision surface (or hyperplane) and in-fact the
support vector specifies the hyperplane. In ε-SVR, the hyperplane is found in such a way
that there can be utmost ε deviation from the actually obtained targets yi for all the training
data and at the same time is flat as possible in feature space. In other words we do not care
about errors as long as they are less than ε but will not accept any deviation larger than this.
By flatness in SVR, we mean small weights w which mean to minimize the Euclidean norm
wTw . Smaller values of weights mean that the constructed SVM model is less sensitive to
errors in measurement/random shocks/non-stationarity of the features. Mathematically, the
equations are represented as follows - Given a set of data points,{(x1, z1), . . . , (xl, zl)}, such
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Figure 4: Learning curves from four models for car and bike data
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Figure 5: Decision Tree, Gradient Boost, Ensemble Fit with Random Forest for car and bike
data
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that xi ∈ Rn is an input and zi ∈ R1 is a target output, the standard form of support vector
regression is:

min
w,b,ξ,ξ∗

1

2
wTw + C

l∑
i=1

ξi + C
l∑

i=1

ξ∗i

zi − wTφ(xi)− b ≤ ε+ ξi,

wTφ(xi) + b− zi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l.

To make the optimization feasible, we introduce slack variables ξ, ξ∗ which is analogous to
creating a soft-margin loss function. The constant C determines the trade of between the
flatness f and the amount up to which deviations ε larger can be tolerated. It also helps
in controlling overfitting and underfitting as mentioned below. To the equation above, two
procedures are performed -

1. Kernel trick - It helps in transforming the data to higher dimensions for accommodating
non-linearity. This involves replacing the dot product with a non-linear kernel function.

2. The representation of the solution/model in the dual rather than in the primal.

As a result of these two procedures, the final model is represented as combinations of the
training points rather than a function of the features and some weights (as shown in equations
below). In other words, w can be completely described as a linear combination of the training
patterns xi. In a sense, the complexity of SVR model is independent of the dimensionality of
the input space X and depends only on the number of SVs.

The dual is:

min
α,α∗

1

2
(α− α∗)TQ(α− α∗) + ε

l∑
i=1

(αi + α∗
i ) +

l∑
i=1

zi(αi − α∗
i )

l∑
i=1

(αi − α∗
i ) = 0, 0 ≤ αi, α

∗
i ≤ C, i = 1, . . . , l, (3)

where Qij = K(xi, xj) ≡ φ(xi)
Tφ(xj). The optimization will provide αi values. The SVMs

decision function thus depends on some subset of the training data, called the support vectors.
As noted, the weight is not explicitly obtained in this non-linear transformation. The decision
function is:

f(x) =
l∑

i=1

(−αi + α∗
i )K(xi, x) + b.

The performance of a SVM model (including overfitting/underfitting) can be controlled
by choosing the right hyper-parameters. These parameters are typically - the kernel func-
tions K(xi, x) (linear, gaussian, radial basis functions), regularization parameter (C). The
parameter C, common to all SVM kernels, trades off misclassification of training examples
against simplicity of the decision surface. A low C makes the decision surface smooth and
model can have high bias error (underfitting), while a high C aims at classifying all training
examples correctly with the model susceptible to high variance error (overfitting). When
training an SVM with the Radial Basis Function (RBF) kernel, additional γparameter must
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be accounted. γ defines how much influence a single training example has. The larger γ is,
the closer other examples must be to be affected. Hence, we select the parameters over a
grid-search space.

Parameter selection for best SVM model
The best SVM model in following parameter space has been explored - kernel types (Radial
basis function (RBF), linear), Penalty parameter C of the error term (C from 10 to 100) and
Kernel coefficient for RBF (γ from 0.1 to 50). The results from the cross-validation study
indicated that the best model fit for car data is for SVR parameters : RBF Kernel, C=100,
γ=1, and for the bike data, the best SVR parameters are: RBF Kernel, C=100, γ=0.1.

Performance of the best SVM model
For both car and bike data, Figure6 shows the learning curve obtained by applying the support
vector machine (SVM) model and the predicted SVM fit vs measured observation for the test
data. From learning curve plot for the car data (Figure 6) , it can be seen that SVM has
final validation and training scores in range of 0.84-0.86. Performance of SVM is not as good
as random forest (around 0.95) but is much better than that predicted by linear regression
with degree 2 polynomial (0.8 score). Even for SVM (like random forest), slight over-fitting
is there with training score more than validation score but it is acceptable. SVM is also seen
to be giving decent fit with the observed traffic count for the car test data (as seen in Figure
6) and the corresponding performance error in terms of mean absolute error (MAE) is around
83 daily trip errors, which is worse than that predicted by Random forest (39) and Gradient
boosting (43) but much better than linear regression (MAE of 222). So for the car traffic
count prediction too - considering the cross-validation accuracy and generalization ability, the
random forest is performing better than SVM and linear regression.

From learning curve plot for the bike data (Figure 6), it can be seen that SVM has final
validation and training scores in range of 0.46-0.48. The trend of models (Linear regression,
decision trees and now SVM) giving lower accuracies for the bike data continue. Amongst
these models, the performance of SVM is not as good as random forest (score around 0.62)
but SVM is much better than linear regression with degree 2 polynomial (which gives 0.35
score). Even for SVM (just like random forest), slight over-fitting is seen with training score
more than validation score but it is acceptable. For bike test data, the SVM predictions
are showing wide diversion from the observed bike traffic count (as seen in Figure 6) and
the corresponding performance error in terms of mean absolute error (MAE) is around 2.09
daily trips, which is slightly less than that predicted by Random forest (MAE=2.04) but
much better than linear regression (MAE of 5.4). So for the bike traffic count prediction too
- considering the cross-validation accuracy and generalization ability, the random forest is
performing better than SVM and linear regression.

2.3.4 Artificial Neural Network

Theory
An artificial neural network is a network of simple elements called neurons that can approx-
imate non-linear behaviour. It comprises an input layer, an output layer and many hidden
layers. The input layer, consists of a set of neurons x1, x2, ..., xm representing the input fea-
tures. Then, the neurons in the hidden layers, receives inputs from neurons in previous layer,
and transform these inputs using a weighted linear summation w1x1 + w2x2 + ... + wmxm
followed by an activation function g(·) : R → R, and thus an neuron output is generated
depending on the inputs, weights, and the activation. The weights here refer to the weights
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Figure 6: SVM Fit and Learning Curve for car and bike data
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associated with each connection, and the choice of activation function is responsible for im-
parting non-linearity to the function. These neuron outputs become the input of other neurons
in the next successive layer, thus forming a directed and weighted graph. The final output
layer receives the values from the last hidden layer and transforms them into output val-
ues. All the connections have weights associated with them. The weights and the activation
functions can be modified by a process called learning, which is governed by a learning rule.
For regression purposes, the objective function is defined below and it involves an average
sum-of-squares error term, while for classification purposes, the objective function involves a
Cross-Entropy loss function term. The regression objective function is below. Further, for
regression purposes, the ANN has no activation function in the output layer, which can also
be seen as using the identity function as activation function in the outer layer.

For a given a set of m data points,{(x1, y1), . . . , (xm, ym)}, we have to minimize the fol-
lowing objective function :

J(W, b) =

[
1

m

m∑
i=1

(
1

2

∥∥∥hW,b(x
(i))− y(i)

∥∥∥2)]+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2

The first term in the definition of J(W, b) is an average sum-of-squares error term (lossfunction).
The second term is a regularization term (R) (also called a weight decay term) that tends
to decrease the magnitude of the weights and helps prevent overfitting. The solving of this
objective function involves finding out the associated weights. The method involves stochastic
gradient descent and the gradients are calculated using the back-propagation technique, and
the weights are updated accordingly as shown below : w ← w − η(α∂R(w)

∂w + ∂Loss
∂w

where η is the learning rate which controls the step-size in the parameter space search.
The performance of an ANN model (including overfitting/underfitting) can be controlled

by choosing the right hyper-parameters. These parameters are typically - number of hidden
layers, number of neurons in each hidden layers, activation functions (logistic, RELU, tanh),
learning rate, etc. Hence, we select the parameters over a grid-search space.

Parameter selection for best ANN model
For Artificial Neural Network, the following parameter space was evaluated in order to identify
the parameters that will give the best Artificial Neural Network model : two different activ-
ation functions for the hidden layer (logistic sigmoid function to rectified linear unit func-
tion[RELU]); the L2 penalty (regularization term) parameter α varied from 0.1 to 10 ; and
the ANN architecture with number of layers (varied from 2 to 5) and varied the number of
neurons in the hidden layer (from 25 to 35). For both, the bike and car dataset, the best ANN
model was obtained with the following parameters : RELU activation, α= 0.1, 5 number of
layers, size of each hidden layer.

Performance of best ANN model
For both car and bike data, Figure7 shows the learning curve obtained by applying the
artificial neural network (ANN) model, and the predicted ANN fit vs measured observation
for the test data. From learning curve plot for the car data (Figure 7), it can be seen that ANN
has final validation and training scores in range of 0.7 and both the validation and training
score converge to the same value. This suggests that there is no over-fitting, and perhaps
to improve accuracy, we can add one or more layer to the architecture to make the model
more complex and reduce bias related error. Performance of ANN is not as good as random
forest (around 0.95) or SVM (around 0.85 score) or linear regression with degree 2 polynomial
(0.8 score). For test data, a wider deviation in ANN prediction and observed traffic count is
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seen (in Figure 7) and the corresponding performance error in terms of mean absolute error
(MAE) is around 205 daily trip errors, which is worse than that predicted by Random forest
(39) , Gradient boosting (43) and SVM (83) but slightly better than linear regression (MAE
of 222). So for the car traffic count prediction, the random forest is performing better than
SVM, ANN and linear regression.

From learning curve plot for the bike data (Figure 7) , it can be seen that ANN has final
validation and training scores in range of 0.42-0.43. The trend of all models tested so far giving
lower accuracies for the bike data continue. The performance of ANN is comparable to SVM
for bike data but it is not as good as random forest (score around 0.62) but is better than linear
regression with degree 2 polynomial (which gives 0.35 score). For bike test data, the ANN
predictions are showing much wider diversions from the observed bike traffic count (as seen in
Figure 7) and the corresponding performance error in terms of mean absolute error (MAE) is
around 3.82 daily trips, which is worse than that predicted by Random forest (MAE=2.04),
SVM (MAE=2.09) but much better than linear regression (MAE=5.4). So considering the
cross-validation accuracy and generalization ability, the random forest is performing better
than SVM,ANN and linear regression.
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Figure 7: ANN Fit and Learning Curve for car and bike data

2.3.5 Model selection results

Based on the cross-validation performances of six different models, the Random forest model
is able to provide the best accuracy. Hence, this model is chosen for predicting the traffic
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counts and its relationship with different variables. The next section discusses the most
important variables influencing traffic counts and the differences in sensitivity of car and bike
counts with regards to the weather related independent variables.

3 Results and Discussions
3.1 Differences in most important variables - Car and Bike count
Figure 8 shows the most important variables influencing the traffic counts of car and bike.
The car traffic count is influenced dominantly by variables like hour of the day (70% relat-
ive influence for combined xhour and yhour variables amongst other variables), followed by
weekday (10 % relative influence), followed by distance of location from centre (5 % relat-
ive influence), followed by month (2-3 % relative influence) but not so much by the weather
related variables (temperature, humidity, windspeed, winddirection, rainfall). The weather
related variables, all combined together in total has approximately 10% relative influence,
with temperature being the dominant ones among them (with around 2% influence). We had
seen earlier that temperature is mildly correlated with the month of the year. Considering
all this, the pattern suggests that weather is not as highly influencing factor in Oslo city for
car drivers, as compared to the bike riders. The bike count, in contrast to the car count, is
influenced more by weather (upto 30% relative influence amongst all variables, with temper-
ature influencing to the extent of 17%, followed by humidity 7% and wind speed 4%). The
most dominant influence even on bike count remains the houroftheday with closer to 40%
relative influence (combined xhour and yhour), but this influence is significantly lesser than
the influence of the same variable on car count (70% relative influence as mentioned earlier).
This pattern makes good sense as a bike rider is more likely to be exposed to weather than the
car driver. Machine learning tools has helped us to quantify this pattern. Next, we analyze
the influence of each of these variables on the observed counts one by one.

3.2 Variation with hour of the day and weekday - Car and Bike count
Figure 9 shows the variation in car and bike count with hour of the day for different weekdays.
Some commonalities as well as differences are seen in the variation of bike and car count. The
trends of variation with the hour of the day can be categorized into weekday trend and
weekend trend. On weekdays (from Monday to Friday), for both car and bikes, the highest
traffic counts are seen during the morning times (6-9 AM) and during the evening times
(around 3-4 PM for car count and around 4-5 PM for bike counts). The early peak-time for
car counts could be because of its usage in picking up school going kids on the weekdays.
The important difference is that for the bike count, the observed bimodal distribution is very
strong while it is milder for the car count. The pattern suggests that most of bike users are
commuting mostly during these bimodal peak times, most probably office-going and home-
coming trips. But for the car users, though they are also mostly travelling in these bimodal
peak times but a substantial car count is also seen in non-peak times between 10 AM to 2 PM
suggesting a more wider purposes for the car usage. Due to this, the bimodal distribution for
cars is not that strong during weekdays. During weekends, the trends are similar for both car
and bikes with less usage in the mornings and usage picking up to reach the peak at around
1230 PM to 1530 PM.
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Figure 9: Weekday and hour Influence
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3.3 Variation with distance from centre - Car and Bike count
Figure 10 shows the variation of car and bike counts with the location of counting stations
relative to the city centre (i.e. measured as distance from the centre (DTC)). For the car data
with five station locations, a drop in traffic count is seen as one moves away from the city
centre. For the bike count with only 3 stations, too nearer to the city (DTC=41.58), the bike
count is less, then it increases as DTC increases too 43.58 and drops down again as we are
too far from the centre (DTC=46.3). This pattern could be reflective of both the population
density as well as traffic rules and parking lots availability, which changes with distance from
city centre.
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Figure 10: Distance from centre influence

3.4 Variation with month - Car and Bike count
Figure 11 shows the variation of car and bike counts with month of the year. For the bike
counts, there is higher increase in bike count during summer season than during winter season.
As was seen in the correlation plot that month and temperatures are mildly related, so this
could be explained by favourable temperatures for biking during the summer time. People
tend to bike in summer season both for office commuting and as a leisure activity. For cars,
the count does not seem to be influenced much by seasons (and associated weather) but more
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by periods of vacations. The lowest car counts are seen during months of July and December.
These two months are mostly the vacation periods, which will see drop of office commuting
travellers. The car-counts are fairly constant during the months of February to May, and
August to November with a mild high seen in June month.
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Figure 11: Month Influence

3.5 Variation with Temperature and Month - Car and Bike count
Since we had seen a mild correlation between month and temperature, so we have re-plotted
violin plots of variation of bike counts with month and overlaid it with scatter-plot with each
data point colored by temperature level hues (as shown in Figure 12). As noted previously
in variation of bike count with month, the car count does not seem to change vastly as a
result of seasonal temperature variation, but the bike counts seems to do so. A higher bike
count is seen during the summer times (higher temperature period) than in the winter months
(lower temperature period). The bikers will feel thermally more comfortable to bike during
the summer time than during the winter time.

3.6 Variation with Humidity - Car and Bike count
Figure 13 shows the variation of car and bike counts with humidity percentage level. Bike
count seems to decrease with increasing humidity percentage levels. This pattern could be
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result of bikers feeling uncomfortable due to sweat while biking at high humidity. The car
count is also lowest at higher humidity level of 90-100% (signifying rainy conditions influencing
car trip plans) but the decrease in car count with humidity levels is not as strong as for the
bike counts.

(10, 20] (20, 30] (30, 40] (40, 50] (50, 60] (60, 70] (70, 80] (80, 90]
Humidity in percentage

0

500

1000

1500

2000

Ve
hi

cl
e 

Co
un

t

No. of vehicles Vs Humidity

(a) Car

(10, 20] (20, 30] (30, 40] (40, 50] (50, 60] (60, 70] (70, 80] (80, 90]
Humidity in percentage

0
5

10
15
20
25
30
35
40

Bi
ke

 C
ou

nt

No. of Bikes Vs Humidity

(b) Bike

Figure 13: Humidity Influence

4 Conclusion and future work
Following conclusions can be drawn from this analysis :

1. Amongst the six machine learning models compared, the random forest model has been
able to provide the highest accuracy as compared to the other five (linear regression,
decision tree, gradient boosting, support vector machine and artificial neutral network).

2. Bike traffic count is more influenced by the weather related variables than the car traffic
count, while the car traffic count seems to be highly influenced by the hour of the day.
Bike count seems to be varying strongly with humidity and temperature, while the car
count does not show any strong variation with them. This pattern is expected as bikers
are more directly exposed to the weather than the car drivers.

3. For the bike count variation on different weekdays at different hour of the day, a strong
bimodal distribution is seen with the highest traffic counts during morning times (6-
9 AM) and during evening times (around 4 PM). These bimodal peak times most
probably represents the office-going and home-coming bike trips. But for the car users,
a less strong bimodal distribution exists suggesting a wider-purpose for the use of cars
than the usual office-home routine.
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4. Variation of bike counts with different months is influenced more by the weather associ-
ated with the month (seasonal variations), while the monthly car counts are influenced
by the vacation periods in the month.

5. For the observed variation of counts with location of station - in regions nearer to and
far away from the city centre, both the bike and car counts are lower. The counts are at
a peak at the stations in-between. This seems to be representative of traffic rules and
parking availability in the city vicinity and population density away from the city.

There is scope to take this work further. The future work could involve developing the
predictor to guide municipal planners on road/bike-route planning and maintenance by giving
advice on which routes are most preferred during a given time. The predictor can also be
developed to encourage a cyclist to go biking often by giving alerts on possibility of conducive
biking circumstances for end-to-end destination travel. But for doing this, we will need
to create a larger biking traffic database. Also, there is scope for better car to cycle traffic
comparison and analysis if the future traffic data collection focusses on simultaneous collection
of cycle and bike data at similar locations (i.e. at bike lane location being located besides
the road with both traffic moving in same direction). For bigger dataset, more advanced
machine learning methodologies like deep learning can be employed to provide more accurate
predictions.
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6 APPENDIX
The car and cycle volume data which have been used in this project are extracted from the
dataset created for the following project run by the Institute of Transport economics (TØI):
Project number 4334 – Efficient and climate friendly urban transport systems for the future.

6.1 Car traffic counts
Data on car traffic volumes and bicycle traffic volumes was provided by The Norwegian Public
Roads Administration, The Norwegian Public Roads Administration, Eastern Region and
Municipality of Oslo (see figure 14). In most cases, data was collected from Level 1 counting
stations . Level 1 stations continuously register the traffic through the year. Additionally,
certain extra counting stations were set up to record the traffic data serving the purposes of
Project 4334. We used the cohesive dataset collected over a period of 1 year in this project.
Out of this only five stations were selected for analysis due to the quality of data (no missing
data). These five stations are : R3 Grefsen, R3 Taysentunnelen, R3 Nydalsbrua, R3 Ã˜kern-
Sinsen, R3 Smestad brannstasjon (Smestad V).

6.2 Cycle traffic counts
The Norwegian Public Roads Administration, Eastern Region and Municipality of Oslo have
assisted in collecting data on the cycle traffic volume (figure 15-16). Data was, wherever
possible, gathered from established counting stations which collected data throughout the
year. There are relatively few cycle counting stations in Oslo which deliver data for an entire
year’s period. In the following table, all the counting stations are presented, and the stations
with available yearly count which were further used in our analyses have been highlighted.
For the cycle data, the following four stations were selected as they did not have any missing
data : Maridalsvn, Ekebergvn, Akerselva and Ullevalsvn 19.
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Nr. Name of the 
counting station

Counting 
station nr.

Owner Nr. Name of the 
counting station

Counting 
station nr.

Owne
r

1 E6 Manglerud 300001 SVRØ 15 Hellerudveien 300350 BYM

2 E18 Kongshavn 300018

300141

SVRØ 16 General Ruges vei 305870 BYM

3 E18
Bjørvikatunnelen

300029 SVRØ 17 Ensjøveien 306540 BYM

4 E6 Helsfyr 300030 SVRØ 18 Ring 2 Marienlyst 306578 BYM

5 E6 Skullerud 300039 SVRØ 19 Enebakkveien 306630 BYM

6 Ring 3 Smestad 
brannstasjon

300083 SVRØ 20 Lambertseterveien 306632 BYM

7 Rv 163 Grorud 
stasjon

300086 SVRØ 21 Plogveien 306633 BYM

8 E6 
Svartdalstunnelen

300098 SVRØ 22 Tvetenveien 
v/Haugerud

306634 BYM

9 Ring 3
Tåsentunnelen

300099 SVRØ 23 Vekterveien 306635 BYM

10 E6 Bryn 300142 SVRØ 24 Østensjøveien 
v/Brynseng

306635 BYM

12 E6 Lodalen 300159 SVRØ 25 Rv 23
Oslofjordtunnelen

200244 SVRØ

13 Rv 150 Hovin 300165 SVRØ 26 E18 Ramstadsletta 200804 SVRØ

14 Rv 4 Ammerud 300231 SVRØ 27 E16 Brovoll 209570 SVRØ

(a) Car counting stations list

26

(b) Car counting stations location on the map

Figure 14: Car data counting stations and map of area covered
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Counting stations Area

Bryn sykkel Brynstunnelen

Grenseveien gang og sykkelbro Brynstunnelen

Trasop skole Brynstunnelen

Tvetenveien Brynstunnelen

Østensjøvn ved Brynseng Brynstunnelen

Østensjøvn ved Østensjøvannet Brynstunnelen

Bærumsveien 22 Smestad-/ Granfosstunnelen 

Hoffsveien Smestad-/ Granfosstunnelen 

Holmenkollvn 42 Smestad-/ Granfosstunnelen 

Jon Smestads vei 4 Smestad-/ Granfosstunnelen 

Maridalsvn ved Korsvollbakken Smestad-/ Granfosstunnelen 

Ullern gårdsvei 40 Smestad-/ Granfosstunnelen 

Vækerøveien 146A Øvrige områder i Oslo

Chr Michelsens gt nordside Øvrige områder i Oslo

Chr Michelsens gt sydside Øvrige områder i Oslo

Ekebergvn 160 Øvrige områder i Oslo

Kierschowsgate 10 Øvrige områder i Oslo

Kongsveien Øvrige områder i Oslo

Maridalsvn nord for Fredensborgvn Øvrige områder i Oslo

Monolittvn ved Frognerparken Øvrige områder i Oslo

Nordstrandveien 59 Øvrige områder i Oslo

RS Aker sykehus sykkel Øvrige områder i Oslo

RS Frognerstanda sykkel Øvrige områder i Oslo

RS Kong Haakon 5’gate sykkel Øvrige områder i Oslo

RS Ullevål sykkel Øvrige områder i Oslo

Thorvald Meyers gt. 10 Øvrige områder i Oslo

Torggata Øvrige områder i Oslo

Ullevålsvn 19 Øvrige områder i Oslo

Vaterlands bro Øvrige områder i Oslo

Åkebergveien 28 Øvrige områder i Oslo

Figure 15: Bike data counting stations list
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Figure 16: Bike data counting stations and map of area covered
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