
July-September 2010, Vol. 1, No. 3

 Special Issue on Software Security

 Guest Editorial Preface

i Software Security
 Martin Gilje Jaatun, SINTEF ICT, Norway
 Per Håkon Meland, SINTEF ICT, Norway

 Research Articles

1 Katana: Towards Patching as a Runtime Part of the Compiler-Linker-Loader Toolchain
 Sergey Bratus, Dartmouth College, USA
 James Oakley, Dartmouth College, USA
 Ashwin Ramaswamy, Dartmouth College, USA
 Sean W. Smith, Dartmouth College, USA
 Michael E. Locasto, University of Calgary, Canada

18 Monitoring Buffer Overflow Attacks: A Perennial Task
 Hossain Shahriar, Queen’s University, Canada
 Mohammad Zulkernine, Queen’s University, Canada

41 CONFU: Configuration Fuzzing Testing Framework for Software Vulnerability
 Detection
 Huning Dai, Columbia University, USA
 Christian Murphy, Columbia University, USA
 Gail Kaiser, Columbia University, USA

56 Towards Tool-Support for Usable Secure Requirements Engineering with CAIRIS
 Shamal Faily, University of Oxford, UK
 Ivan Fléchais, University of Oxford, UK

71 Agile Software Development: The Straight and Narrow Path to Secure Software?
 Torstein Nicolaysen, NTNU, Norway
 Richard Sassoon, NTNU, Norway
 Maria B. Line, SINTEF ICT, Norway
 Martin Gilje Jaatun, SINTEF ICT, Norway

InternatIonal Journal of Secure
Software engIneerIng

Table of Contents

jtravers
Highlight

International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010 71

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Agile, Information Security, Scrum, Secure Software Engineering, Security

1. intRoduction

A decade or so ago, the waterfall model was
the favored way of managing/building projects,
resulting in a very formal approach where
security was handled both implicitly and spe-
cifically. Due to the rigid and formal nature
of the waterfall model, there was a place for
security in specific parts of the process. This
does not automatically mean that the waterfall

agile Software development:
the Straight and narrow path

to Secure Software?
Torstein Nicolaysen, NTNU, Norway

Richard Sassoon, NTNU, Norway

Maria B. Line, SINTEF ICT, Norway

Martin Gilje Jaatun, SINTEF ICT, Norway

abStRact
In this article, the authors contrast the results of a series of interviews with agile software development orga-
nizations with a case study of a distributed agile development effort, focusing on how information security is
taken care of in an agile context. The interviews indicate that small and medium-sized agile software develop-
ment organizations do not use any particular methodology to achieve security goals, even when their software
is web-facing and potential targets of attack. This case study confirms that even in cases where security is
an articulated requirement, and where security design is fed as input to the implementation team, there is no
guarantee that the end result meets the security objectives. The authors contend that security must be built as
an intrinsic software property and emphasize the need for security awareness throughout the whole software
development lifecycle. This paper suggests two extensions to agile methodologies that may contribute to
ensuring focus on security during the complete lifecycle.

model will make the software secure; it still
requires skilled people and determination to
create secure software.

Agile software development has become
a buzzword, and most modern IT-companies
brag about how they are using it. Scrum (Scrum
Alliance, 2009) is a popular and widely used
agile software development methodology,
which contains no specific techniques or help
for handling critical elements like security.
As Scrum is more of a project management
methodology, it might not be up to Scrum to

DOI: 10.4018/jsse.2010070105

72 International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

handle all aspects of security, but it does define
how the requirements are elicited and how to
communicate with the customer. If done by the
book, the customer has to request security and
then prioritize it. If neither the customer nor the
developers are concerned with security, it will
most likely never end up in the product backlog,
and therefore it will be neglected.

This article refers to software security as
the resistance against misuse and/or attacks.
Specific security features such as login func-
tionality and encrypted communication are part
of this, but even more important is secure code
features, aiming at making the code unexploit-
able, preventing attacks like buffer overflow,
XSS and similar.

The big question is how software security
fits into software development projects where
agile methodologies are used. Can agile meth-
odologies be mixed with the rigid and formal
processes associated with software security,
and if so, how?

This article presents an empirical study of
how agile software developers include security
in their projects. It also presents a case study
showing that software development without a
persistent focus on security results in software
with a number of vulnerabilities. Finally, the
article presents two possible extensions to agile
methodologies, intended to increase developers’
awareness of software security.

2. bacKgRound

Enabling information systems to communicate
via open networks such as the Internet will
always be associated with elements of risk.
(Mavridis, Georgiadis, Pangalos, & Khair,
2001) correctly state that “Security risks can-
not be entirely removed when transmitting
information over the Internet”. The European
Parliamentary Technology Assessment (EPTA)
network has made similar considerations and
specifically expressed concerns that privacy
is challenged by the increase in development
of ICT applications for the healthcare sector
(EPTA, 2006). Such concerns are also raised

by others, such as (Ilioudis & Pangalos, 2001)
and (van der Haak et al., 2003).

(Boström, Wäyrynen, Bodén, Beznosov,
& Kruchten, 2006) detail an extension to the
XP planning game that is intended to establish
a balance between the conventional (docu-
ment-centric and plan-driven) way of doing
security engineering, and the iteration-centric,
feedback-driven XP practices. This is relevant
as they try to solve a problem closely related
to ours. The main difference is that they are
specific to the XP methodology and only try to
integrate the security requirements engineer-
ing (software security) activity, whereas our
approach is more generic for Agile methods
and not focusing on just one specific security
activity.

(Beznosov & Kruchten, 2004) attempt to
find the pain points between agile methods and
security assurance, and suggest some means
on how to alleviate them. They group the
problems and evaluate how good they match
up against activities from security assurance.
They focus on a specific problem, like Boström
et al.’s approach, and do not seek to solve a
more general problem.

(Siponen, Baskerville, & Kuivalainen,
2005) provide an example on how to integrate
some security activities into agile development
methods. They focus on four key security
elements: security-relevant subjects, security-
relevant objects, security classification of
objects and subjects, and risk management. In
the provided example where they apply their
technique, it becomes apparent that it requires
a lot more effort than what can be expected
from an average developer. We therefore
consider this too heavy for general applica-
tions with agile software development. Their
result gives us an indication of what makes a
process too thorough.

(Keramati & Mirian-Hosseinabadi, 2008)
provide a semi-formal way of evaluating
the agility of an agile method. When adding
software security activities to an existing agile
method, their work can be used to calculate how
much the activity reduces the degree of agility.
They also introduce a parameter named agility

International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010 73

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

reduction tolerance, which indicates how will-
ing the organization is to accept heavyweight
security activities about to be integrated with
their agile methods.

3. empiRical Study

Six different software development companies
in Trondheim, ranging from consulting firms,
private enterprises and government-based
organisations, were interviewed. The six com-
panies were chosen due to their geographical
location and their usage of agile methodologies.
Each company was represented by a software
developer, and half of them had some experi-
ence with software security. Only one of the
companies had an extensive focus on software
security, and many of their projects are subject
to stricter security requirements than average.
Examples include tax submission and insur-
ance systems.

The interviews were carried out in order
to confirm or falsify the following research
hypothesis:

Software security is not a specific concern in
an agile software development setting.

We expected the interviews to confirm that
security is too often neglected during software
development. However, we also hoped to un-
cover some new or existing techniques, as a
“reality check” on how scientifically developed
methods actually work in practice regarding
how security can be ensured in agile projects.

In the following we present our findings
from the interviews.

3.1. functionality before Security

For most of the interviewed companies, func-
tional requirements are more important than
non-functional requirements. Only one of the
companies had a somewhat clear method for
software security. From a cynical business
perspective, it is not difficult to understand
why functionality is the priority, while security,

performance, availability and the other quality
attributes are neglected until they are needed.

It is difficult to calculate what is more
cost-efficient when faced with the option be-
tween securing or not. Securing has a 100%
certain price tag of <insert big number here>,
while being hacked might be a calculated risk
discounted down to <insert slightly smaller
number here>. The accepted wisdom (Boehm
& Basili, 2001) is that costs for fixing (secu-
rity) bugs rise exponentially toward the end of
the development process, so if the company is
unwilling to focus on security early, it is not
more likely to do it later. On the other hand, the
company’s reputation will be damaged, which
is discussed in more detail later. This part is
what makes it difficult to calculate the total cost.
Money lost due to loss of customers might not
be calculated into the initial risk analysis. Most
of those interviewed were honestly concerned
about this part, but some of the companies
were in a dominant market position allowing
them to take a punch from bad PR and loss of
customers. This did not necessarily mean that
they ignored security, but they did not have it
as their top priority.

Running a business is about making money.
Seen from a company’s viewpoint, up-front
securing a non-critical piece of software might
not seem like a good return on investment
right there and then. Functionality is what the
customer ordered, and it is naturally the top
priority, but it is still hard to comprehend that
the non-functional requirements are so utterly
neglected. Although the cases presented in the
interviews might not seem like they needed
security, there had rarely been conducted any
formal security activities up front (or during
the process for that matter), thus leaving a
possibility for major security issues that never
were considered.

3.2. agile versus Security

Of all the companies interviewed, only one
had tried to combine software security and
agile software development. The Norwegian
Data Inspectorate enforces strict policies and

74 International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

regulations when operating with sensitive data,
which makes it hard to work agile. A lot of
documentation has to be written. Each project
usually needs a specific permission to access
e.g. tax databases, involving routines for set-
ting up servers, authorizations and many other
activities that slow down agile methods. It would
be unfortunate if every Norwegian citizen’s tax
details, social security number and personal
information were available to all developers on
a project. However, the friction between such
routines and agile methods is noticeable. None
of the interview subjects had any ideas as how to
make that kind of processes more streamlined.
This said; none of them gave any examples of
how they had tried to. On the other hand, some
of the interview subjects were eager to discuss
what agile methods and software security had
to do with each other.

3.3. Securing with infrastructure

Many companies secure the software they
create by protecting it with infrastructure like
private networks, firewalls and restricted access
to resources. This results in a situation where
we end up with “crunchy shell around a soft,
chewy center” (Cheswick, 1990), which might
be viewed as an acceptable short-time solution
in cases where time-to-market is critical. Not
many of our interviewees had thought about
what would happen if the system were taken
outside the intended environment: If a new group
of system administrators decided to move one
of the servers outside the private intranet, data
might be exposed to the public.

Some servers containing files only meant
for internal use are completely open because
they are on a private intranet. Some use real
data sets for testing. They often contain semi-
sensitive information like addresses, phone
numbers and such. If the test-database is not
given the same security focus as the rest of the
system, it is probably an easy target for someone
who wants that information. These are issues
that infrastructure and routines cannot easily
protect against. It is important to note that while
a secure infrastructure is vital, it should always
be in addition to software security.

3.4. lack of formal Knowledge
about Software Security

Few of the interviewees had any formal knowl-
edge about software security. This is understand-
able as it is a relatively new concern, and not
everyone had the possibility of taking a class
during their education to learn about software
security. One company has software security
as their specialty, and it was important that all
employees knew the core principles of software
security. To assist the developers building se-
cure software, the company had created a set
of routines that they had to follow.

A reassuring thought is that some Nor-
wegian agencies possessing security critical
information have a security department with
formal knowledge and experience. They assist
the developers that are often without security
expertise in implementing the correct security
measures. This is often necessary to handle the
legal problems involved.

The lack of knowledge indicates that many
security problems might be undetected, and that
in some applications, the only form of “security”
is that which is acquired through obscurity.

3.5. untreated concern

Almost all companies were worried about how
their reputation would suffer if a vulnerability
in their software became wide known, but when
asked if it was enough to put an extra effort
into securing their software, the answers were
vague and non-committing. It is difficult to put
a price on how much the company will suffer,
but it is guaranteed to have a negative impact.

3.6. customers’ take on Security

Companies dealing with external customers
experience that about half of them are concerned
about security. This is an indication that there
are customers who are aware of some of the
dangers out there.

The general impression of customers of IT
services is that they are somewhat passive and
uneducated in the threats that lurk in their do-
main. Banking and finance is forced to consider

International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010 75

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

software security when taking their services
online. They have most certainly also learned
from experience. Customers in other sectors,
like the energy industry, are not too concerned
with security, even though there are threats.
Customers of software solutions will often opt
out of security features if given a choice. One
customer elegantly thwarted a security solution
that one company forced into a product just
because they did not like it.

3.7. the weirdest thing

Strangely, only a couple of the interview subjects
had experienced concrete security breaches.
The first critical idea was that the lack of audit
trails, logging and intrusion detection systems
(IDS) could have made it easy for a hacker to
penetrate a system without being noticed. It
is of course not something a company would
want to advertise to the public, and it is quite
possible that they take serious action to prevent
such news from reaching the media. We suspect
that security breaches are more prominent than
given in the interviews, and that hackers easily
can remove most of their traces.

3.8. Summary of
interview findings

None of the companies had found or created any
fully developed technique for integrating soft-
ware security into agile software development.
In our opinion it should have been an issue, but
it would be naïve to think that companies would
prioritize security over functionality without
seeing it as a good return of investment. It is
unknown whether upper management considers
the potential loss if something is compromised.

The general opinion is that few develop-
ers are concerned with security, even fewer
are formally trained. The organization is fully
capable of sending their employees to courses,
or encouraging learning software security in
work hours.

The trend with securing with infrastructure
alone seems to be recurring in most software
solutions shipped. Many rely too heavily on the

system administrators, assigning all responsibil-
ity for software security to them. The system
administrators are often informed orally on how
to protect the software. Make sure it stays on the
intranet could be one such rule. If the system
administrators all at once decided to leave, what
would happen to these rules? The replacements
might re-organize the infrastructure, and put a
server on a public LAN, where it was never
supposed to be.

As to how so many of the companies have
managed to go without any remarkable break-ins
or attacks, this is a mystery. As noted earlier, it
might just be that they have not noticed them
or that the media have not learned of them.
Increased media focus on attacks that do hap-
pen may be what it takes for companies to be
more concerned with software security. White-/
gray-hat hackers might need to alert the media
directly, as well as the company when they
find vulnerabilities. Unfortunately, such news
is probably not interesting for the mainstream
media, and therefore the effect might be lost.

4. caSe Study:
a diStRibuted
development effoRt

Our case study (Sassoon, Jaatun, & Jensen,
2010) is based on the results of a European
research project developing a healthcare plat-
form. Since the platform deals with sensitive
health data, it should comply with (“Directive
95/94/EC of the European Parliament and of the
Council of 24 October 1995 on the protection
of individuals with regard to the processing
of personal data and on the free movement
of such data,” 1995), which regulates the
handling of private data for the member states
of the EU. The Norwegian implementation of
this directive was studied in order to define a
set of security requirements to be included in
the security design. As part of the evaluation,
several components of the WS-* specifications
were reviewed, in search of proper ways to deal
with security for Web Services.

76 International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

4.1. project characteristics

The case study project was funded by the
European Commission’s 6th Framework Pro-
gramme, and thus had to satisfy a number
of constraints. The project partners had to be
diverse in geographical location and represent
industry, academia and research institutions.
EU research proposals all follow a set template,
and it is implicitly assumed that the work will
be organized in “Work Packages”.

Although an agile Scrum approach was cho-
sen for the project, the different work packages
were established in a conventional manner, and
developed independently. A separate security
WP was a part of the plan, which should have
been a good approach, since this would contrib-
ute to setting focus on the security aspects of
the project. Unfortunately, due to a serious lack
of continuity of key members in the project, the
security design was delayed for a long period
and it had to be elaborated in parallel with the
implementation, and thus the implementation
of the security mechanisms started before the
security design was finished.

Other early project decisions contributed
to the delay of the security design and the
resulting parallelism mentioned above: No
threat modeling was employed and no security
requirements were thought of. The latter had
to be done, finally, when the security design
document was being developed.

The development process followed a Scrum
approach for the most part. The security design
process, however, ended up having more in
common with a traditional waterfall approach,
which may have contributed to the security work
falling out of synch with the rest. In line with the
chosen Scrum approach, a backlog of functional
requirements was maintained. Somehow, only
the functional results of the security design made
it out of the backlog (e.g., the authentication and
token management services were implemented),
leaving most non-functional security aspects
alone in the dark.

4.2. assessment Results

The assessment proved that the proof-of-con-
cept application and the middleware platform
are vulnerable to common attacks targeting web
applications. Considering the OWASP Top 10
web application vulnerabilities (“Top 10 2007
- OWASP,”), seven of them are present in our
case study system:

1) Cross Site Scripting (XSS)
2) Injection Flaws
3) Information Leakage and Improper Error

Handling
4) Broken Authentication and Session

Management
5) Insecure Cryptographic Storage
6) Insecure Communications
7) Failure to Restrict URL Access

Based on our observations, we can infer that
SOA-based systems in general are expected to
suffer from the same problems if security is not
treated properly. While this is not surprising,
the fact that an organization that is concerned
with data confidentiality and integrity does not
implement basic security mechanisms makes
us wonder how many other similar cases might
exist.

Even though we evaluated a healthcare
system, we can extrapolate the results to other
domains since the vulnerabilities found are not
specific. Therefore, the findings presented are
relevant when considering the development
of secure applications, based on SOA or not.

5. SecuRity extenSionS
to agile methodS

Both the literature and our empirical study show
that there is a need for methods that ensure
security issues to be taken care of during agile
software development processes. In the follow-
ing two extensions are suggested, both fitting
well into an agile setting; Security backlog and
Security-oriented TDD.

International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010 77

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

5.1. Security backlog

When adding items to the backlog with the
customer, the developers should spot security
touchpoints and add them to a (possibly) sepa-
rate security backlog, where each of the items
has a reference to the product backlog items for
which it is relevant. Here a separate backlog
item is useful because a many-to-many relation
can exist. Each item should also contain one or
more misuse stories to describe how a person
with malicious intent could do harm. Each item
is prioritized according to risk1. The customer
should be a part of the risk analysis, i.e., as-
signing (based on experience and intuition)
H(igh), M(edium) or L(ow) to probability and
consequence. Items with the highest risks are
exposed to a more detailed and thorough process
if the developers consider it necessary.

The intention of this method is to involve
software security processes while not reduc-
ing the degree of agility (Keramati & Mirian-
Hosseinabadi, 2008), thus its techniques should
be lightweight. Exceptions are considered, and
there should always be room for special cases
on high-risk items. Consider using Microsoft
Azure (Microsoft) when creating a new financial
service on the web. At the time of writing, Azure
is still considered new, and little is written on the
security implications of having such services on
a cloud platform. If the customer demands that
the service should run on Azure, and none of
the developers know enough about the security
risks associated with cloud computing, then it
should be considered an exception and extra
effort should be put into making sure that the
developers can secure it. This would probably
involve having a spike2 if using Scrum, and just
learning as much as possible about the technol-
ogy and security risks before proceeding. Of
course, this reduces the degree of agility, but
on high-risk items, security should outweigh
functionality.

The following steps are based on how
many Scrum projects are performed, and mainly
contain extensions. Even though presented with
focus on Scrum, the ideas are generic and agile
enough to be used in other Agile methods.

5.1.1. Step 1: Requirements
Gathering Phase

The customer and the developers are gathering
requirements for a new system, and the customer
provides various requirements, such as The
user must be able to log in. This is a security
feature. A developer points out a security threat
he knows of, namely brute force attack. Stake-
holders agree that this is a security issue, and
the original requirement goes into the product
backlog, while the newly identified security
threats now go through a short detailing phase.
Developers involve the customer in such a way
that he/she understands the threat and is capable
of evaluating at least the consequence of an
exploit. The developers ask helpful questions
like “On a low/medium/high scale, how big is
the consequence of a non-authenticated person
gaining access to the system?” and “Are there
competitors interested in the information within
this system?” The customer often knows the
domain well, and is capable of giving an ac-
curate consequence, and the developers know
that the probability is linked to factors like
competition, value of data inside the system etc.
The customer and developers can now calcu-
late the risk for the new security backlog item.
Next step is to create at least one misuse story.
Based on information from the customer, the
developers are able to create an artifact like the
one in Figure 1. Here it is important to note the
artifacts are detailed as little as possible. They
are to serve as reminders of what the concern
was during the initial requirements phase. The
technical details come in a later phase.

A special case worth mentioning is how to
handle secure code. Another developer could
have pointed out that the user input could be
used to cause a buffer overflow, and that it is
important to write secure code. It is on a
higher level than a security feature, and it is
something that often relates to all backlog items
if the system is meant to be secure. We believe
that this belongs in some sort of general policy
that applies to the developers. The policy could
specify rules as how to treat user input, and

78 International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

should be updated when issues are spotted dur-
ing the various detailing phases.

5.1.2. Step 2: Iteration 0

In iteration 0 the project starts up, teams are
assembled and an initial architecture is laid out.
The architect goes through the list of items on
the product backlog to get an overview of the
system. The architect goes through the list of
items on the security backlog, and tries to form
a picture of any architectural security features
required. It is important that the chosen archi-
tecture does not impose restrictions on possible
security features that might be needed later.
For instance, the architect thinks it is a good
idea to have a single access point in order to
mitigate the brute force attack. This highlights
the need for security patterns. All developers
should evaluate the initial architecture together,
as well as discussing how it holds up against the
security requirements. There might be a need for
discussing potential implementation issues. One
developer might have spotted a problem with
product backlog item n, which might interfere
with security backlog item m. Discussing this
in plenum ensures that every piece of combined
knowledge is used, and many future problems
can be avoided. An important feature of this

method is the exception handling of high-risk
items. If an item is marked as high risk, it should
undergo an extra process where it is decided
whether it should be thoroughly evaluated. This
involves more rigorous security activities. Keep
in mind that this might be needed to uncover
everything about the item that is relevant in
order to make sure it is properly secured when
implemented. This requires that someone in the
team has knowledge of a security process, or
that someone is hired for this specific purpose.

5.1.3. Step 3: Sprint Planning
(Each Iteration)

When the development cycle starts, develop-
ers pick the top prioritized backlog items and
start detailing them in the beginning of each
iteration. In a Scrum process, this is called a
sprint-planning meeting. During this detailing-
phase, the developers know there are items on
the security backlog that is linked to the product
backlog items they have picked. For example,
one product backlog item may have a couple of
security backlog items linked to it. This means
that when creating more detailed user stories
and acceptance criteria for the backlog items,
they have to consider the security implications
as well. A simple solution is to integrate the

Figure 1. Example of security backlog item artifact

International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010 79

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

security backlog items into the sprint backlog
items. When integrating, create an acceptance
criterion that can be used to verify that the
threat is mitigated, and one or more security
focused user stories. The process of consciously
thinking of software security means that the
developers are more aware of the security
aspects of the tasks. The misuse stories from
the security backlog items should also extend
the sprint backlog item. The detail level on all
artifacts increases in this step, and elicitation
of misuse stories must be more precise and
detailed (Peeters, 2005).

The goal is to have a simple process with as
few extra artifacts as possible. If the developers
just become more aware of security, then there
is already a gain from the process.

5.1.4. Step 4: Implementation

During the implementation of the items on the
sprint backlog, developers now have a detailed
description of user stories, misuse stories and
acceptance criteria to help them correctly imple-
ment the item. What it comes down to now, is
the developer’s knowledge and experience when
it comes to software development and software
security. Testing should be used to verify that
the acceptance criteria are achieved during this
phase. Best practice would be to implement
each item using TDD and ensure that each
user story and misuse story are implemented.
This is good agile practice as it forces loosely
coupled design, which in time requires less
maintenance, is more robust and flexible. The
tests also serve as documentation in respect to
how things have been implemented. The idea
is that writing tests first forces the developer to
learn about the security threat he tries to protect
against. Of course, the test-code can be poorly
written, and not actually test that the system is
protected. Here the collective code ownership
rule might help. When having code-reviews,
poorly written tests should be detected, and
team members with more security expertise
might know a more effective test to confirm
that a given threat has been mitigated.

5.1.5. Step 5: Verification

When the system is nearing completion, pen-
etration testing should be used to verify that
it resists attacks as intended. A rigorous and
well-performed penetration test of the system
can expose parts that are not secure enough. If
the testing reveals vulnerabilities, one sprint
must be held to fix all these. All the tests written
previously should of course pass, and should
in theory be proof that the security backlog
items have been considered and implemented.
It should be confirmed that each item on the se-
curity backlog has been included in the process.
Use of static code analysis tools is encouraged,
since it can uncover common programming
mistakes and potential problems.

5.2. Security-oriented
tdd: Security tests

Robert C. Martin (Martin, 2008) provides a
short summary of the workflow in the three
laws of TDD:

• You are not allowed to write any produc-
tion code unless it is to make a failing unit
test pass.

• You are not allowed to write any more of
a unit test than is sufficient to fail [...].

• You are not allowed to write any more
production code than is sufficient to pass
the one failing unit test.

This workflow works very well for imple-
menting functional requirements. Our goal is to
adjust this workflow to suit testing of security
features, and attempt to keep it applicable to
most agile methodologies.

We assume that the planning phase has
resulted in functional requirements and security
requirements. In addition, all requirements are
already detailed, and the security requirements
(in form of misuse stories3) are placed in the
security backlog (see section 5.1). All these
items are required in order to write good tests.
Here it is again important to point out the

80 International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

difference between “security features” and
“secure features”; that the former should be
able to resist an attack might seem obvious, but
it will require significantly more imagination
and inspiration to describe misuse stories for
“ordinary” features.

What follows is an example of a workflow:
When a developer picks a task to work on, he
should at the same time retrieve and review the
related security backlog items. Not all tasks need
have security requirements, but in our example
they do. Usually, a developer would start work-
ing directly on the functional requirements, and
writing tests before implementing production
code. Depending on the type of feature that is to
be secured, the developer must decide whether
to write a unit test or a security test first. This is
something the developer can decide by intuition
with some training. The best thing would be to
always write the security tests first, and then
shape both implementation code and unit tests
to support the security tests. Unfortunately, this
is not always feasible. If developers were to
follow the standard TDD, they would need to
“break the rules” in order to make the test pass.
It is not always possible to write a security test
before there exists production code to secure.

A security test aimed at verifying that
only authenticated users have access to the
admin page will always pass if nothing has
been implemented. If the test tries to load a
non-existing page, the result could be an HTTP
code 404 (Not Found), and the user by defini-
tion does not have access to the admin page.
To mitigate this, the rules must be bent a bit.
The sequence in which the developer writes
unit and security tests must be adapted to the
situation. It is important that the developer try
to get back on TDD-track as soon as possible,
and follow the recommended workflow. The
problems only occur as the first tests for new
functionality are written.

Developers should strive to verify that
important security requirements are imple-
mented and that the functional requirements
are protected sufficiently. To ensure this, each
functional requirement has one or more security

tests. A security test attempts to verify that a
specific security requirement is implemented
and protects against an identified threat. This
includes one or more test attempts to exploit
parts of the systems for a vulnerability described
in the security requirement. Where applicable,
test-permutations (e.g., through use of fuzzing)
should be used to uncover weird boundary
conditions, possible overflows etc.

6. diScuSSion

The core idea of having a security backlog is that
security should become more of a concern for
the developers than it is today. This is a light-
weight method with very little overhead. The
intention is that it will not scare off developers
as some of the other humongous security pro-
cesses might. There are few new things to learn,
and the customer can easily be included. This
method depends on having at least one person
in the development team with software security
competence, or having a budget that allows
hiring in someone for the job. The efficiency
of this method depends on how quickly devel-
opers uneducated in software security can pick
up the new mindset, learn specific techniques
to avoid security holes, learn where to look up
known problems and learn how to learn from
others. If developers are unwilling to change
from their regular routine where programming
is just a straightforward task of “making things
work”, then this approach will fail.

Security-oriented TDD, like security
backlogs, is a way of getting developers more
engaged in software security. Being aware that
there are security touchpoints, and having de-
fined threats to protect against, might very well
give good results in practice. Developers can
verify that misuse stories are countermeasured.
These tests are readable for low-tech stakehold-
ers, and they can verify that they agree on how
the system is tested. Newcomers can quickly
read the tests and see what is tested (and how
it is tested).

There might not be a need for defining
security specific tests, as (Boström et al., 2006)

International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010 81

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

have shown that abuser stories can be translated
into security-oriented user stories, which in
theory should be testable. However, problems
occur when following a strict TDD workflow.
When there is no production code, writing tests
to protect it might be useless. Therefore, the
developer must choose his own way of solving
the problem.

When it comes to the case study, we have to
take into account that both the proof-of-concept
application and the middleware platform were
prototypes of an ongoing research project, and
are still not ready for production. Even so, this
is not an excuse for the apparent relaxed focus
on security aspects, considering that the for-
mal plans maintained a high security posture.
Nevertheless, the costs for fixing the issues at
this point in the project are certainly higher
than if the assessment was performed earlier,
or if security testing had been part of the secure
development lifecycle (SDLC).

We can wonder about the project aspects
that may have influenced the security achieved
and perceived. Is Scrum the problem? Is it Water-
fall? Or is it simply a communication problem?
As the original project plan did not comprise
testing, no problems could be discovered and
associated to a particular moment in time.

Is the idea to implement a separate security
work package a good one? Work packages are
typically enough unto themselves, evolving on
their own while ignoring other WPs. Is it bet-
ter to include security in every work package?
We have to consider that there are re-usable
security “components”, and these are probably
best developed in a separate work package. Fur-
thermore, a separate security WP gives security
the proper attention, avoiding a project falling
into the usual trap: “We’ll take care of security
AFTER everything else works”.

McGraw argues that security needs to be
in focus from the beginning (McGraw, 2006),
and that the focus should continue during the
whole project. The fact that the security design
was delayed and, therefore, other components
were developed without considering the security
work package, set the stage for a big hole in
the platform. Communication problems among

project members intensified the issues, by not
bringing word about the integration of the
results from the security WP and the conse-
quences related to their (non-) use. According
to (Lipner & Howard, 2005), there is a need
for a security push in the whole organization,
or project groups, in order to focus on security
and identify problems.

Security requirements were not part of the
project requirements. Partly using a Model-
Driven Development (semi-agile) approach,
the system design was based on models/dia-
grams, such as use cases, from which functional
requirements were derived. The use cases in
question did not cover security, and thus no
security requirements were generated (we
would have expected some obvious ones, such
as confidentiality-protection of a doctor-patient
message). Employing misuse cases would have
been a good idea in this setting, but they were
voted down early in the project.

Although agile methods make it difficult
to comply with the stringent documentation
requirements of, e.g., the Common Criteria
(Evaluation criteria for IT security Part 1:
Introduction and general model 2005)4, several
authors have argued that agility and security
need not be inversely proportional measures.
(Beznosov, 2003) opines that the agile XP meth-
odology can provide “good enough” security,
while (Wäyrynen, Boden, & Boström, 2004)
claim that the solution to achieving security in
an XP development is simply to add a security
engineer to the team. (Siponen et al., 2005)
advocate a solution that more or less can be
summed up as “think about security in every
phase”.

(Poppendieck & Morsicato, 2002) argue
that agile methods (specifically: XP) are just as
suitable as traditional development methods for
developing safety-critical applications. It may
not follow immediately that “safe” software is
also “secure”, but the former is required to pass
auditing procedures that should be customizable
to suit requirements for the latter.

Throughout the conducted interviews, we
noticed that many of the professionals within
the field of software security use several terms

82 International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

in an ambiguous fashion. For instance, when
some papers talk about Microsoft’s STRIDE
method, they refer to it as a risk analysis tool,
even though Microsoft themselves refer to it
as a threat modeling tool. There is also a lack
of clear definitions, even for something as
fundamental as “security requirements”. For
newcomers, this field gives an impression of
being immature and disorganized. This problem
has been recognized by academics and profes-
sional for quite some time, but they do not
know how to fix it. We believe that the secure
software engineering community must decide
on a clearly defined terminology as a first step
toward maturity.

Although it might be tempting to suggest
that a project where security is vital should be
performed using a formal top-down project
methodology, we have to face the fact that
software development is becoming more and
more agile, and there should be a way of miti-
gating the security drawbacks of using agile
methodologies. This might be projects where
security is vital (e.g., military, finance, health),
or projects where security is not a concern at
first, but emerges as the software evolves.

An excellent example is Adobe Acrobat
– a PDF-document editor/reader. The initial
version was intended for creation and read-
ing of PDF files, and not much else. Security
was probably not a big concern, because who
could exploit documents following the PDF-
standard? However, in version 3.02 of Adobe
Acrobat, JavaScript features were added to the
application. This new functionality was soon
exploited (Narraine, 2006), and was the first of
many security problems with Adobe Acrobat.
They have now added support for viewing 3D-
objects, playing Flash files, viewing CAD-files
and third-party plug-in support. CERT5 reports
25 security vulnerabilities related to Adobe Ac-
robat per Feb 17th, 2010. This example supports
the notion that all software should boast secure
features, i.e., even code without specific security
features should be un-exploitable.

Unfortunately, there is no silver bullet for
making software secure - it is all about knowl-
edge. There is no obvious way of ensuring

that security is taken care of in agile software
development, but an important fact many tend
to neglect is that most agile methods require
experienced developers for optimal perfor-
mance. With sufficient experience combined
with the concept of collective knowledge in
agile methods, project participants might spot
security issues as they occur if one or more of
them have training in software security. Another
important issue with agile software development
is that few of the methods have practices for
rigid testing of security. In the waterfall model,
there is a dedicated phase named verification,
which is used to verify that the software behaves
as the customer wants. This includes various
types of both automated and manual testing.

7. limitationS

Our empirical study was based on agile teams
working closely together in one location, while
the case study was a project performed by a
distributed agile team. This difference makes
it difficult to draw conclusions covering both
cases.

It is also difficult to generalize from the
case study as EU projects do not produce
production-quality code. However, there were
explicit security objectives in this project, and
that is why it is still an interesting project for
us to analyze.

The case study has been approached from
a single viewpoint, and should ideally have
been augmented with in-depth interviews of
more project participants.

The suggested method extensions have
not been tested and evaluated, which will be a
natural part of further work in this area.

8. fuRtheR woRK

There is a lack of empirical knowledge re-
garding the relative security benefits of agile
development vs. conventional (e.g., waterfall)
development practices. We would like to
conduct a larger study, comparing the degree
of software security resulting from different

International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010 83

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

development methodologies. This would entail
tackling several non-trivial problems, such as
defining how to measure “software security” in
a given piece of software, and how to compare
software products that by necessity must be
quite different.

In this project we have been studying
organizations using the Scrum methodology.
It would be interesting to study organizations
using the agile components of the Microsoft
Secure Development Lifecycle (Sullivan,
2008) to see whether this methodology changes
developers’ mindset and increases the focus
on software security throughout the complete
development cycle.

9. concluSion

The interviews and case study presented in this
article suggest that it is necessary that every
person involved in a project is aware of the
consequences of not thinking about, implement-
ing and testing security from the beginning.
Only then will it be possible to achieve more
secure systems.

Combining software security with agile
software development appears to be difficult
to do in an elegant way without any compro-
mises. Our suggested solution is to integrate
parts of security activities into any suitable
agile activities, while trying to figure out the
pain threshold for when the reduction of agility
becomes too large.

This article has suggested two possible
extensions to the agile Scrum method. These
extensions are an attempt to take the edge off
some of the incongruence between secure soft-
ware development and an agile mindset. Both
Security backlog and Security-oriented TDD
are lightweight methods that do not require
much documentation and artifact production.

acKnowledgment

Thanks to Jostein Jensen for his valuable input
on earlier phases of this research.

RefeRenceS

Beznosov, K. (2003). eXtreme Security Engineer-
ing: On Employing XP Practices to Achieve “Good
Enough Security” without Defining It. Paper pre-
sented at the First ACM Workshop on Business
Driven Security Engineering (BizSec).

Beznosov, K., & Kruchten, P. (2004). Towards Agile
Security Assurance. Paper presented at the New
Security Paradigms Workshop, Nova Scotia, Canada.

Boehm, B., & Basili, V. R. (2001). Top 10 list
[software development]. Computer, 34(1), 135–137.
doi:10.1109/2.962984

Boström, G., Wäyrynen, J., Bodén, M., Beznosov,
K., & Kruchten, P. (2006). Extending XP practices
to support security requirements engineering. Paper
presented at the Proceedings of the 2006 international
workshop on Software engineering for secure sys-
tems (SESS ‘06).

Cheswick, B. (1990). The Design of a Secure In-
ternet Gateway. Paper presented at the USENIX
Conference.

Directive 95/94/EC of the European Parliament and
of the Council of 24 October 1995 on the protec-
tion of individuals with regard to the processing
of personal data and on the free movement of such
data. (1995). Retrieved October 6, 2008, from
http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:31995L0046:EN:HTML

EPTA. (2006). ICT and Privacy in Europe, Experi-
ences from technology assessment of ICT and Privacy
in seven different European countries. Retrieved
September 23, 2008, from http://epub.oeaw.ac.at/
ita/ita-projektberichte/e2-2a44.pdf

Ilioudis, C., & Pangalos, G. (2001). A framework
for an institutional high level security policy for the
processing of medical data and their transmission
through the Internet. Journal of Medical Internet
Research, 3.

ISO. (2005). Evaluation criteria for IT security Part
1: Introduction and general model (Tech. Rep. No.
15408-1). Geneva, Switzerland: ISO/IEC.

Keramati, H., & Mirian-Hosseinabadi, S. H. (2008).
Integrating software development security activities
with agile methodologies.

Lipner, S., & Howard, M. (2005). The Trustwor-
thy Computing Security Development Lifecycle.
Retrieved from http://msdn2.microsoft.com/en-us/
library/ms995349.aspx

84 International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Martin, R. C. (Ed.). (2008). Clean Code: A Handbook
of Agile Software Craftsmanship. Upper Saddle River,
NJ: Prentice Hall.

Mavridis, I., Georgiadis, C., Pangalos, G., & Khair,
M. (2001). Access Control based on Attribute
Certificates for Medical Intranet Applications.
[JMIR]. Journal of Medical Internet Research, 3(1).
doi:10.2196/jmir.3.1.e9

McGraw, G. (2006). Software Security: Building
Security. Reading, MA: Addison-Wesley.

Microsoft. (n.d.). Windows Azure Platform. Retrieved
February 19, 2010, from http://www.microsoft.com/
windowsazure/

Narraine, R. (2006). Hacker Discovers Adobe PDF
Back Doors. Retrieved from http://www.eweek.
com/c/a/Security/Hacker-Discovers-Adobe-PDF-
Back-Doors/

OWASP. (2007). Top 10 2007. Retrieved July
10, 2008, from http://www.owasp.org/index.php/
Top_10_2007

Peeters, J. (2005). Agile Security Requirements
Engineering. Paper presented at the Symposium on
Requirements Engineering for Information Security.

Poppendieck, M., & Morsicato, R. (2002, Septem-
ber). XP in a Safety-Critical Environment. Cutter IT
Journal, 15, 12–16.

Sassoon, R., Jaatun, M. G., & Jensen, J. (2010). The
road to Hell is covered with good intentions: A story
of (in)secure software engineering. Paper presented
at the 4th International Workshop of Secure Software
Engineering (SecSE 2010).

Scrum Alliance, I. (2009). What is Scrum? Retrieved
March 23, 2010, from http://www.scrumalliance.org/
learn_about_scrum

Siponen, M., Baskerville, R., & Kuivalainen, T.
(2005). Integrating Security into Agile Development
Methods. Paper presented at the Hawaii International
Conference on System Sciences, HI.

Sullivan, B. (2008). Agile SDL: Streamline Security
Practices for Agile Development. msdn Magazine.
Retrieved from http://msdn.microsoft.com/en-us/
magazine/dd153756.aspx van der Haak, M., Wolff,
A. C., Brandner, R., Drings, P., Wannenmacher, M.,
& Wetter, T. (2003). Data security and protection in
cross-institutional electronic patient records. Inter-
national Journal of Medical Informatics, 70(2/3),
117-130.

Wäyrynen, J., Boden, M., & Boström, G. (2004).
Security engineering and eXtreme programming:
An impossible marriage? In Proceedings of the Ex-
treme Programming and Agile Methods - Xp/ Agile
Universe 2004 (Vol. 3134, pp. 117-128). Berlin:
Springer Verlag.

endnoteS
1 Risk = Probability x Consequence
2 A time-period set aside to experiment and

learn something unknown in a user story.
3 Similar to user stories, but consider them

textual versions of misuse cases.
4 Assurance level 4 and less can be verified

for legacy systems not developed with CC
evaluation in mind.

5 www.kb.cert.org

Torstein Nicolaysen is an MSc student in Computer Science at the Norwegian University of Sci-
ence and Technology (NTNU) . After the completion of his MSc thesis, he will start working for
BEKK Consulting. His research interests include making software security more agile, software
security in general, Agile methodologies, software development and craftsmanship.

International Journal of Secure Software Engineering, 1(3), 71-85, July-September 2010 85

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Richard Sassoon recently completed his MSc in Information Security as part of the Erasmus
Mundus NordSecMob programme at NTNU and the University of Tartu. His interests include
software engineering, software testing (including security testing), and software security with
focus on web security. He is currently employed as a software developer at MVisjon AS.

Maria B. Bartnes Line received her MSc degree from the Norwegian University of Science and
Technology in 2002, and has since been employed as a research scientist at SINTEF ICT in
Trondheim. Her research interests include software security, privacy, intrusion detection and
incident response. She is the manager of the information security research group.

Martin Gilje Jaatun graduated from the Norwegian Institute of Technology (NTH) in 1992, and
has been employed as a research scientist at SINTEF ICT in Trondheim since 2004. His research
interests include software security “for the rest of us”, information security in process control
environments, and security in Cloud Computing.

