)

Check for
updates

Towards Agile Scalability Engineering

Gunnar Brataasl(g), Geir Kjetil Hanssenl, and Georg Reader?

! SINTEF Digital, Trondheim, Norway
{Gunnar. Brataas, Geir. K. Hanssen}@sintef. no
2 EVRY Norway AS, Fornebu, Norway
Georg.Raeder@evry. com

Abstract. Scalability engineering is currently not well integrated into agile
development techniques. This paper extends agile development techniques so
that scalability can be handled in an incremental and iterative development
process. By scalability we mean the ability of a system to handle increasing
workload. We propose the ScrumScale Method which includes scalability
engineering in Scrum. This extension should also be applicable to other agile
techniques. For scalability testing, we indicate how quality thresholds should be
scaled up or down according to the degree of completeness of the product, test
hardware, test software, test data and test workload. Using action research, we
have conducted three pilots in three Norwegian software organizations. These
three pilots have different architectures and operate in different markets yet have
in common scalability challenges.

Keywords: Scrum - Software performance engineering (SPE)
Action research

1 Introduction

A scalable system can handle increasing workloads by utilizing more hardware or
software resources [4, 6]. A system with poor scalability is unable to extend its capacity
if demanded by unexpected workloads. A costly and time-consuming redesign is
required. Despite careful planning and design, scalability is still a “fragile” property
that can easily be jeopardized by carelessness or problems in inter-connected systems.
Hence, scalability is a pervasive property of a system.

Agile methods address a similar challenge. Agile methods target development
projects where requirements are not fully known in advance. Using agile methods,
software projects deliver parts of the solution with the intention of quickly validating
whether the deliverables meet user expectations. Many software organizations are
continuously challenged to reduce time to market for new solutions. Agile methods
help them to scope delivered solutions so that they can rapidly adjust to unpredictable
market needs.

At present, we lack conceptually sound approaches to incorporating scalability
engineering into agile software development. Many software organizations are faced
with a difficult balancing act when trying to accommodate both. Scalability is a

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 248-255, 2018.
https://doi.org/10.1007/978-3-319-91602-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_17&domain=pdf

Towards Agile Scalability Engineering 249

property of a system that accentuates the tensions between planning and agility to a
new level. Both scalability and agility seek to accommodate uncertainty. Both scala-
bility and agility are important to meeting the needs for software organizations’
competitiveness. It is therefore imperative that we find solutions to how scalability and
agility can be combined.

Babar et al. advocate a middle ground between agile development and incorpo-
rating elements of up-front planning [1]. We seek to develop more powerful concepts
for dealing with scalability to assist stakeholders and practitioners in their collaboration
on scalability engineering. In particular, we think that a more effective language for
scalability will assist in enabling collaboration among product owners, architects,
developers and testers on the construction of sound scalability requirements. Scalability
testing can be put to use in a more agile working practice where it contributes to
produce continuous feedback.

We are in the middle of the ScrumScale project that seeks to resolve this challenge.
The main objective of the ScrumScale project is to reduce the cost of handling scal-
ability using agile development practices. This cost may be reduced in three ways:
(1) Using care when developing software so that costly and time-consuming redesign is
reduced. (2) Less gold-plating of subsystems that scale “too well,” to reduce devel-
opment costs. (3) Reduced consumption of hardware (CPUs, disks, networks) and
software resources (with license and cloud service fees) as a result of improved
scalability.

The main result of ScrumScale will be an extension of agile techniques to
accommodate scalability. We have started with Scrum, but these extensions should also
be applicable to other agile techniques. The main contribution of this paper is a
Scrum-based process for how to handle scalability in Sect. 2. For scalability testing, we
indicate how quality thresholds should be scaled up or down according to the degree of
completeness of the product, test hardware, test software, test data and test workload. In
Sect. 3, conclusions and further work are outlined.

ScrumScale adopts the action research paradigm where researchers and practi-
tioners seek to solve problems in collaboration using cycles of the steps diagnosis,
planning, intervention, evaluation and reflection [5]. In addition to the research partner
SINTEF, ScrumScale has the three industrial partners EVRY, Powel and Altinn.
EVRY delivers financial services solutions, Powel energy and public software solu-
tions with related services, while Altinn is the largest Norwegian public portal.

We have completed the first pilot phase with one pilot for each industrial partner.
These pilots differ both in scope, domain as well as duration. Common to all these three
pilots were anticipated scalability challenges. The initial diagnosis before starting these
three pilots showed that the root cause of problematic scalability was vague scalability
requirements [2]. Clarifying scalability requirements has therefore been the focus in the
first pilot phase. Scalability testing has also been done. Monitoring during operations is
not handled yet. Apart from participating in the three pilots, we have arranged retro-
spectives and conducted structured interviews with main stakeholders in all three
organizations.

250 G. Brataas et al.

2 The ScrumScale Method

With the ScrumScale Method, we seek to combine scalability concerns with agility,
and so we work with scalability earlier in the development cycle than what is normally
the case, as illustrated in Fig. 1.

Sprint
Backlog

Prioritised
User
Stories
with

Internal
Stake-
holders

Product
Backlog
User
Stories
with

Scalability
Concerns

Scalability
Expert

Expert

Test-
driven

Product
Owner

Customers

“.. Evaluation !

Develop-

Functional
Team

Scalability Analysis Increment A
Without x

Increment B

23 Scrum- ¥
8 Scale,’ .
2o With [Increment C |
E ScrumScale .
= System
g Increment E Deployment ; Testing
12 3 4 5 i
Capacity of Service
Scalability
Monitoring

Fig. 1. ScrumScale vision

The ScrumScale Method has the following seven steps for each new product:

Scalability triage with a rough, intuitive expert evaluation and feedback

Extract business-related scalability requirements to get feedback on them

Derive testable scalability requirements to get feedback on them

Expert evaluation to get feedback on solution suggestions

Code review to get feedback on implementation

Scalability testing to get feedback on solution

Exploit monitoring data to improve the solution but also to get feedback on the
actual workload

Nk RN =

In all these steps, we get feedback, so they are applied iteratively and lend them-
selves to integration in an agile development process, such as Scrum. In fact, this
integration is driven by both sides: Modern, agile practice calls for scalability to be
handled likewise, but scalability also will benefit from a more light-weight, iterative
approach.

The product backlog is set up initially where the product owner in collaboration
with customers and other stakeholders defines and prioritizes user stories. Some user
stories may be associated with scalability concerns. In between each iteration, the
product owner may revisit the product backlog to add or change user stories based on
the outcome and new knowledge from the previous sprint. If needed, the product owner

Towards Agile Scalability Engineering 251

should include a scalability expert (champion) to evaluate whether a new or changed
story will impact the scalability of the solution. This evaluation may be supported by
scalability testing and monitoring of the solution as it is so far. Likewise, a scalability
expert may also assist the team that creates code to implement user stories. Sprints are
short and time-boxed work periods, typically 2—4 weeks, where scalability is evaluated
as part of the sprint review and the planning of the next sprint.

For code review (step 5) and monitoring (step 7) we build on existing practices. The
other five steps are described in more detail below.

2.1 Scalability Triage

This is a fast and informal step where scalability experts try to answer the question: Are
there scalability risks associated with the product? Work, load, and quality thresholds
are not analyzed explicitly. Therefore, this step requires extensive experience. Features
dealing with GUI or adding small details to an otherwise large computation will
probably not pose a threat to scalability. Only for features where there may be a threat
to scalability will we go further in the ScrumScale Method, where we start by working
with the scalability requirements. For the remainder of the features, we simply stop
here. This is important, since the remainder of the steps, even though they are light-
weight, involve some effort.

2.2 Extract Business-Related Requirements

Like other product requirements, scalability requirements originate from business
goals: What is the ambition and planned roadmap for the product? The first step in
scalability requirements elicitation is therefore, to engage product management and ask
questions such as:

What is the total number of users we want to support?
What types of users (roles) are there: the public, administrators, specialists, etc.

e What is the total number of objects the system should be able to handle (such as the
number of books in an on-line book store)?

e What are good quality metrics? Is a 90-percentile response time metric useful?

e What are expected magnitudes of quality thresholds —0.1 s, 1 s, 10 s, 1 min, 1 h, 1
day, etc.?

e What is the time horizon for the scalability requirements? Is there a planned
ramp-up of user load or objects handled? A time horizon larger than five years is
probably too much, but shorter than two years probably too small.

Product owners may also have an idea of the expected operating cost of the system
in terms of hardware and software license cost per user, per transaction, or similar. If
this is clear, it is recorded at this stage, but it cannot be validated until fairly late in the
process when resource demands become understood [2].

The requirements gathered at this stage are often imprecise, and not always con-
sistent or even relevant, but they capture the stakeholders’ expectations in a language
that they are comfortable with. The next step is to analyze this input and derive precise,
useful and testable scalability requirements.

252 G. Brataas et al.

2.3 Derive Testable Scalability Requirements

To derive systematic, testable requirements, we build on the conceptual model in [4]
which is used to understand scalability requirements in [3]. The system boundaries
define which services are included when measuring quality metrics. An operation
defines a unique and relatively similar way of interacting with a service. A quality
metric defines how we measure a certain quality and is a key part of an SLA
(service-level agreement). At an overall level, response times and throughput are tra-
ditional scalability quality metrics, but more details are required. Is it average or 90
percentile response times? Quality thresholds (QTs) describe the border between
acceptable and non-acceptable quality for each operation and is connected to a par-
ticular quality metric. With the 90-percentile response time quality metric some
operations may have a 0.1 s quality thresholds, while the threshold is 10 s for other
operations.

Load is how often an operation is invoked. In a closed system, load is specified by
the number of users (N) and the think time (Z). Since no users enter or leave the
system, the number of users is constant. Think time is the average time to compose
operation invocations to the system. For an open system, we use arrival rate (M),
measured in operations per time unit, for example 100 transactions per second. In the
context of scalability, we are interested in the highest load, i.e. the load during the
busiest hour, week, month, and year in our planning horizon.

Work characterizes the amount of data to be processed, stored or communicated
when invoking one operation. Ultimately, work describes the amount of hardware and
software resources consumed when invoking one operation. The set of operations is of
course an important part of work characterization, but so are also key data objects, like
documents and accounts. When considering scalability, we are interested in how the
work for one operation varies. This is connected to sizes of objects, e.g. number of
documents and the average size of these documents. Such parameters are work
parameters. For scalability, we focus on the highest values of the work parameters.
Whereas load typically go up and down during the day, week, and month, work
parameters typically only increase.

Together, work multiplied by load becomes workload. The highest workload ful-
filling quality thresholds is the capacity of a system.

The critical operations are the operations where the product of load and work poses
a risk of not fulfilling the quality thresholds. Of course, it would be beneficial to
establish the critical operations early, but this set is also a result of the analysis.
Therefore, iterations, a strong point in agile methods, are required.

As more knowledge is gained, the granularity may increase or decrease, when
operations are split or merged, more work parameters are introduced, or the quality
thresholds are defined for each individual operation instead of the same threshold for
several operations [2]. The system boundary may also change. However, as we learn
more, we see what we can simplify and leave out. This is a typical modeling experience
where the granularity (size) of the model increases because of increased understanding
before it decreases, when we understand what really matters.

At this step, it is useful to get information on the technical approach: system type
(e.g. three-tier web application or batch application) and platform (e.g. cloud).

Towards Agile Scalability Engineering 253

2.4 Expert Evaluation

The most important outcome of this light-weight expert evaluation is advice on good
design decisions and the identification of problem areas when systems are built step by
step. This will be part of the planning process and also give input to defining testable
scalability requirements, and it will only be performed for high-risk projects. Perfor-
mance patterns and anti-patterns are explicit and well-documented examples of this
knowledge [7], but experts have “silent” knowledge much beyond this. The experts
will try to answer the question “Will the product of work and load pose a threat to the
quality thresholds?”” This can have two outcomes: (1) No risk. (2) Potential risk so that
more investigation is required.

Scalability experts (champions) will be a limited resource in all organizations.
Therefore, one scalability expert will assist several teams and in this way transfer
experience across many different projects and technologies.

2.5 Scalability Testing
During scalability testing, we have partial information across many dimensions:

Solution: Only some increments are completed.

Test hardware: May not be as powerful as the production hardware.

Test software: The versions may not resemble the production environment.

Test data: Synthetic test data may not represent the details which make scalability
hard. Real data may be used, after obfuscation.

Test workload: It may be hard to anticipate all strange usage patterns for real users.
Time to do scalability testing: It is clearly a trade-off between how extensive
scalability testing can be performed with frequent iterations. A full, frequent scal-
ability test will simply not be feasible. It is an open question how many scalability
requirement violations can be detected by a simple automated test.

e Partial competence because of less-than perfect knowledge exchange between
scalability tester, architects and developer. To participate in the same Scrum team
will of course help. Moreover, selecting optimal configuration parameters for
software and hardware is challenging.

As a result, we should also scale the scalability requirements. When only parts of
the solution are completed, it cannot consume the complete quality thresholds. We do
not use models for unfinished parts of the system, but some kind of implicit modelling
is required to scale the requirements up or down, according to the degree of com-
pleteness of the other dimensions. We may, for example, assume that the basic platform
takes half of the time, whereas each of ten features share the rest. A system with two
features should then consume approximately 60% of the resources compared to a
complete product. Moreover, if the database server resembles the production envi-
ronment, while the application servers and the network are weaker compared to the
production environment, it becomes harder.

254 G. Brataas et al.

3 Conclusion

Half-way into the ScrumScale project, we see the contours of a profitable fusion of
scalability engineering and agile practices. To lay the foundation for such an approach,
we have described a series of method steps that can be applied in an iterative manner,
allowing an agile approach to scalability engineering.

ScrumScale extends Scrum by connecting functional requirements with scalability
requirements to enable evaluation of scalability after each sprint, supported by moni-
toring and testing. When new sprints are planned detailed design is evaluated with
respect to scalability. ScrumScale also adds a new role, the scalability expert, or
champion, that supports the team in making the right decisions.

We are developing these artefacts iteratively through trials on real pilots in three
partner companies. We will continue with more pilots, making the ScrumScale Method
a practical tool for agile scalability engineering.

Acknowledgements. The research leading to these results has received funding from the
Norwegian Research Council under grant #256669 (ScrumScale). Tor Erlend Feegri, then in
SINTEF Digital, contributed with early ideas for this paper. EVRY, Powel and Altinn con-
tributed with pilots.

References

1. Babar, M.A., Brown, A.W., Mistrik, I.: Agile Software Architecture: Aligning Agile
Processes and Software Architectures. Newnes, Oxford (2013)

2. Becker, S., Brataas, G., Lehrig, S.: Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications: The CloudScale Method. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-54286-7

3. Brataas, G., Fegri, T.E.: Agile scalability requirements. In: Proceedings of the S8th
ACM/SPEC on International Conference on Performance Engineering. ACM (2017)

4. Brataas, G., Herbst, N., Ivansek, S., Polutnik, J.: Scalability analysis of cloud software
services. In: 2017 IEEE International Conference on Autonomic Computing (ICAC). IEEE
(2017)

5. Davison, R.M., Martinsons, M.G., Kock, N.: Principles of canonical action research. Inf. Syst.
J. 14(1), 65-86 (2004)

6. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: what it is, and what
it is not. In: ICAC (2013)

7. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley, Boston (2001)

http://dx.doi.org/10.1007/978-3-319-54286-7
http://dx.doi.org/10.1007/978-3-319-54286-7

Towards Agile Scalability Engineering 255

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Towards Agile Scalability Engineering
	Abstract
	1 Introduction
	2 The ScrumScale Method
	2.1 Scalability Triage
	2.2 Extract Business-Related Requirements
	2.3 Derive Testable Scalability Requirements
	2.4 Expert Evaluation
	2.5 Scalability Testing

	3 Conclusion
	Acknowledgements
	References

