
This is the accepted manuscript version of the article

A Method for Developing Qualitative Security Risk Assessment Algorithms

Gencer Erdogan and Atle Refsdal

Citation:
Erdogan G., Refsdal A. (2018) A Method for Developing Qualitative Security Risk Assessment
Algorithms. In: Cuppens N., Cuppens F., Lanet JL., Legay A., Garcia-Alfaro J. (eds) Risks and
Security of Internet and Systems. CRiSIS 2017. Lecture Notes in Computer Science, vol 10694.
Springer, Cham

This is accepted manuscript version.
It may contain differences from the journal's pdf version.

This file was downloaded from SINTEFs Open Archive, the institutional repository at SINTEF
http://brage.bibsys.no/sintef

A Method for Developing Qualitative
Security Risk Assessment Algorithms

Gencer Erdogan and Atle Refsdal

SINTEF Digital, Oslo, Norway, {gencer.erdogan,atle.refsdal}@sintef.no

Abstract. We present a method for developing qualitative security risk
assessment algorithms where the input captures the dynamic state of the
target of analysis. This facilitates continuous monitoring. The intended
users of the method are security and risk practitioners interested in devel-
oping assessment algorithms for their own or their client’s organization.
Managers and decision makers will typically be end users of the assess-
ments provided by the algorithms. To promote stakeholder involvement,
the method is designed to ensure that the algorithm and the underlying
risk model are simple to understand. We have employed the method to
create assessment algorithms for 10 common cyber attacks, and use one
of these to demonstrate the approach.

Keywords: security risk assessment, risk assessment algorithms, quali-
tative risk assessment

1 Introduction

Decision makers need to understand security risks to determine how to deal
with them. Many managers, particularly at the business level, expect quantified
assessments of risks in terms of estimated likelihood and monetary loss. Unfor-
tunately, providing trustworthy numbers is very difficult. This requires not only
insight into the systems, threats, vulnerabilities and business processes of the
organization, but also access to good empirical data and statistics to serve as a
foundation for quantified estimates. Such data is often unavailable. Even if we
can obtain it, analyzing the data to understand its impact on the assessment is
a major challenge [15].

This means that providing good quantitative assessments is not always fea-
sible. In such cases, a qualitative approach can be a good alternative. By qual-
itative, we mean that we use ordinal scales, for which the standard arithmetic
operators are not defined, to provide assessments. Each step is usually described
by text, such as {Very low; Low; Medium; High; Very high}. More informative
descriptions of each step can of course be given. Ordinal scales allow us to order
values, thereby making it possible to monitor trends. Since security risk assess-
ment is costly when performed manually, we need to find ways to reduce the
effort required to update assessments.

The contribution of this paper is a method for creating executable algorithms
for qualitative security risk assessment. The input to the algorithms captures

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-76687-4_17

2 Gencer Erdogan, Atle Refsdal

the current state of the target of analysis, such as the presence of vulnerabilities,
suspicious events observed in the application or network layer, and the potential
consequence of security incidents for the business processes. The output from
the algorithms is an assignment of qualitative risk values to all identified risks.
Hence, an updated risk assessment can be obtained by rerunning the algorithms
with new input. This facilitates continuous monitoring of the risk level.

Our goal is to create a method that does not require programming skills or
extensive effort, ensures that the underlying risk models are documented in a
comprehensible format, and results in transparent algorithms that can be un-
derstood by all stakeholders. We combine a graphical risk modeling technique,
extended with a construct to capture dynamic factors, with a decision modeling
technique to define the algorithm. The novelty of our approach lies in the inte-
gration of these techniques in an overall method that exploits their strengths.
Both techniques are well-established, supported by freely available tools, and
designed to provide models that can be easily understood.

In Sect. 2, we give an overview of the method, which consists of three steps.
The next three sections explain each step. We then relate our method to other
approaches in Sect. 6. Finally, in Sect. 7, we discuss the approach and report on
initial experiences before concluding in Sect. 8.

2 Method Overview

Our method is illustrated in Fig. 1. In relation to the general security risk man-
agement process documented in ISO 27005 [10], the method starts at the risk
assessment phase. That is, we assume that the context has been established,
including purpose, scope, and target of analysis.

Step 3: Validate
security risk

assessment algorithm

Step 2: Develop
security risk

assessment algorithm

Step 1: Create
security risk model

Validated security risk

assessment algorithm

Security risk

assessment algorithm

Security risk model

with indicators

Description of

target of analysis

Fig. 1. Method overview.

Step 1 takes as input a description of the target of analysis, which may be
in the form of system diagrams, use case documentation, system manuals etc.
Based on the description, we create a risk model to identify and document the
assets, risks, threats and vulnerabilities of relevance for the target of analysis.
At this point, estimates of likelihood and consequence values are represented by
parameters. We also identify indicators that capture dynamic factors influencing
the risk level, such as the presence or absence of a certain vulnerability, or the
expected consequence for an asset if a given incident occurs. The indicators rep-
resent the input to the final security risk assessment algorithm, as each indicator

A Method for Developing Qualitative Security Risk Assessment Algorithms 3

will define one input variable. The output from Step 1 is a security risk model
with indicators, as well as parameters representing likelihood and consequence
estimates.

In Step 2, we develop the security risk assessment algorithm based on the
security risk model. This is done in a modular fashion. We exploit the structure
of the risk model developed in Step 1 and transform each part of the risk model
to a corresponding part of the algorithm. The output of this step is an initial
version of the security risk assessment algorithm.

In Step 3, we validate the risk assessment algorithm based on expert judgment
to check if it produces correct output, and adjust as necessary. The output of
this step is a validated security risk assessment algorithm.

3 Step 1: Create Security Risk Model

For creating security risk models, we have chosen to use CORAS [12], which is
a graphical risk modeling language that has been empirically shown to be intu-
itively simple for stakeholders with very different backgrounds [18]. Moreover,
CORAS comes with a method that builds on established approaches, in particu-
lar ISO 31000 [9]. The method includes detailed guidelines for creating CORAS
models, which can be applied to carry out Step 1.

Figure 2 illustrates a CORAS risk model, which we use as a running example
throughout the rest of this paper. This risk model is one of 10 risk models we
developed in the WISER project [20]. These models were primarily intended for
an arbitrary European SME. The risk model describes a Hacker carrying out an
HTTP Verb tampering attack or a reflection attack in the authentication proto-
col to gain access to restricted files/folders. The risk is that the server provides
access to restricted files/folders, which in turn has an impact on confidentiality.
The dashed arrows, which are not themselves part of the CORAS model, are used
to point out the different model elements. The unbroken arrows are relations in
CORAS. There are three kinds of relations used to connect different nodes. The
initiates relation goes from a threat to a threat scenario or an unwanted inci-
dent. The leads to relation goes from a threat scenario or an unwanted incident
to a threat scenario or an unwanted incident. The impacts relation goes from an
unwanted incident to an asset.

Notice that the risk model represents likelihoods, conditional likelihoods,
and consequences as parameters. For example, the likelihood l S2 represents
the likelihood of threat scenario S2. Our naming convention for parameters and
other risk model elements is provided in Appendix A. We use the parameters
later in the process to create the assessment algorithm.

Having created the risk model, next we identify indicators and attach them to
the relevant risk model element. An indicator may be assigned to any risk-model
element. We distinguish between four different types of indicators: business con-
figuration (represented by the color blue in Fig. 2), test (green), network-layer
monitoring (yellow, not included in the example), and application-layer monitor-
ing (red). Values for the business configuration indicators are obtained by asking

4 Gencer Erdogan, Atle Refsdal

S1: Initiate HTTP
Verb Tampering

[l_S1]

S2: Initiate reflection
attack in authentication

protocol
[l_S2]

U1: Server provides
access to restricted
files/folders
 [l_U1]Hacker A1: Confidentiality

[c_U1_A1]

Likelihood

Unwanted

incident

Conditional

likelihood

IN-C1: What is the
consequence of U1 on
the asset Confidentiality,
given that U1 occurs?

[cl_S1_to_U1]

[cl_S2_to_U1]

IN-8: Does the web server
provide access to otherwise
restricted data by changing
the HTTP verb variable?

IN-4: Does the application in
any situations authenticate a
user using HTTP Verbs (POST,
GET, TRACE, etc.)?

IN-19: Are there any
requests containing HTTP
Verbs other than GET/
POST in the web log?

IN-14: Is there a new connection
request to the web server and
almost immediately a new
connection with the same user?

IN-5: Does your
authentication protocol rely
on a challange-handshake
or similar mechanism?

IN-20: Does the
server use outdated
authentication
schemes?

Threat

Threat

scenario

Indicator

Vulnerability

Consequence

Asset

V1: Authentication bypass
by assumed-immutable data

V2: Incorrect implementation of
authentication algorithm (outdated

authentication schemes/mechanisms)

Initiates

relation

Leads to relation

Impacts

relation

Fig. 2. CORAS risk model.

business related questions. The indicator values are thus based on expert knowl-
edge. Values for the test indicators are obtained by carrying out vulnerability
tests. Values for the network-layer monitoring indicators and the application-
layer monitoring indicators are obtained by monitoring the network layer and
the application layer, respectively. However, all indicator types are treated the
same in the guidelines presented in the next section.

4 Step 2: Develop Security Risk Assessment Algorithm

In this section, we show how to build an assessment algorithm from a CORAS
model. But first we introduce the tool we use for algorithm definition and exe-
cution.

4.1 A brief introduction to DEXi

DEXi [7] is a computer program for development of multi-criteria decision models
and the evaluation of options. We use DEXi because it has been designed to
produce models that are comprehensible to end users [6]. The comprehensibility
of DEXi seems to be confirmed by the fact that it has been applied in several
different domains, involving a wide range of stakeholders [4–6]. For a detailed
description, we refer to the DEXi User Manual [3].

A multi-attribute model decomposes a decision problem into a tree (or graph)
structure where each node in the tree represents an attribute. The overall prob-
lem is represented by the top attribute. All other attributes in the tree represent
sub-problems, which are smaller and less complex than the overall problem. Each
attribute is assigned a value. The set of values that an attribute can take is called

A Method for Developing Qualitative Security Risk Assessment Algorithms 5

the scale of the attribute. DEXi supports definition of ordinal scales; typically,
each step consists of a textual description.

Every attribute is either a basic attribute or an aggregate attribute. Basic
attributes have no child attributes. This means that a basic attribute represents
an input to the DEXi model, as its value is assigned directly, rather than being
computed from child attributes. When using DEXi as a standalone tool, the user
manually selects values for all basic attributes.

Aggregate attributes are characterized by having child attributes. The value
of an aggregate attribute is a function of the values of its child attributes. This
function is called the utility function of the attribute. The utility function of
each aggregate attribute is defined by stating, for each possible combination
of its child attribute values, what is the corresponding value of the aggregate
attribute. The DEXi tool automatically computes the value of all aggregate
attributes as soon as values have been assigned to the basic attributes. Hence,
a DEXi model can be viewed as an algorithm where the basic attribute values
constitute the input and the values of the aggregate attributes constitute the
output. A java library and a command-line utility program for DEXi model
execution is also available [7], meaning that functionality for executing DEXi
algorithms can be easily integrated in software systems.

Figure 3 shows an example of a DEXi model which consists of three aggre-
gate attributes and three basic attributes; the latter are shown as triangles. The
top attribute, which is an aggregate attribute, is named Risk and has two child
attributes (Likelihood and Consequence) that are also aggregate attributes. The
Likelihood attribute has in turn two basic attributes as child attributes (Likeli-
hood indicator 1 and Likelihood indicator 2), while the Consequence attribute
has one basic attribute as child attribute (Consequence indicator 1).

Aggregate

attribute

Basic

attribute

Fig. 3. DEXi model.

In the remainder of Sect. 4, we show how to build a security risk assessment
algorithm, in the form of a DEXi model, based on a CORAS model. We use
the model in Fig. 2 as an example. This means that the decision problem repre-
sented by the top attribute in the DEXi model concerns deciding the risk level.
We start by explaining how each fragment of the CORAS model can be schemat-
ically translated to a corresponding fragment of the DEXi model in Sect. 4.2 to
Sect. 4.7. A summary of the schematic translation is provided in Appendix A.
Having thus shown how to build the DEXi model structure, we provide guidelines
for defining scales and utility functions in Sect. 4.8.

6 Gencer Erdogan, Atle Refsdal

4.2 Risk

CORAS representation For any risk, the risk level depends on the likelihood
of the unwanted incident and its consequence for the asset in question. A risk
corresponds to a pair of an unwanted incident and an asset, including the impacts
relation from the incident to the asset. In Fig. 2, this corresponds to the unwanted
incident U1 and the impacts relation to asset A1. The likelihood of U1 is denoted
by l U1, while the consequence of U1 for asset A1 is denoted by c U1 A1.

DEXi representation A risk is represented as a top (i.e. orphan) attribute that
has two child attributes, one representing the likelihood of the incident and one
representing the consequence for the asset in question. Figure 4(a) shows the
corresponding DEXi-representation of the CORAS fragment described above.
We use the variable/node names in the risk model to express the correspond-
ing DEXi fragment to make it easier to understand the connection between a
CORAS risk model and its corresponding representation in DEXi. Hence, the
top attribute R1 in Fig. 4(a), which represents the risk, has the two child nodes
l U1 and c U1 A1. Notice that R1 does not occur as a separate name in the
CORAS diagram, as a risk is represented by the combination of the incident,
the asset, and the relation between them, rather than by a separate node.

4.3 Node with incoming leads-to relations

CORAS representation Figure 2 shows that the unwanted incident U1 has
two incoming leads-to relations, one from S1 and one from S2. This means that
the likelihood of U1 depends on the likelihood contributions from S1 and S2.

DEXi representation The likelihood of a node with incoming leads-to rela-
tions1 is represented by an attribute with one child attribute for every incoming
leads-to relation. The attribute l U1 in Fig. 4(b), which represents the likelihood
of U1, therefore has two child attributes, l S1 to U1 and l S2 to U1, representing
the likelihood contributions from S1 and S2 via their outgoing leads-to relations.

4.4 Node with outgoing leads-to relation

CORAS representation The contribution from a leads-to relation to a target
node depends on the likelihood of the source node and the conditional likelihood
that an occurrence of the source node will lead to an occurrence of the target
node. The latter is assigned to the leads-to relation. Figure 2 includes two leads-to
relations, one from S1 to U1 and one from S2 to U1. The likelihood contribution
from the relation from S1 depends on the likelihood of S1 and the conditional
likelihood that S1 leads to U1, and similarly for S2.

1 Recall from Section 3 that threat scenarios and unwanted incidents are the only node
types that may have incoming leads-to relations.

A Method for Developing Qualitative Security Risk Assessment Algorithms 7

(e)(d)

(a)

(b)

(c)

Fig. 4. Screenshots from the DEXi tool.

DEXi representation The likelihood contribution from a leads-to relation
is represented by an attribute with two child attributes, one representing the
likelihood of the source node and one representing the conditional likelihood that
an occurrence of the source node will lead to the target node. As illustrated in
Fig. 4(c), the attribute l S1 to U1 representing the likelihood contribution from
S1 to U1 therefore has two child attributes, l S1 representing the likelihood of
S1 and cl S1 to U1 representing the conditional likelihood of S1 leading to U1
(and similarly for l S2 to U1).

4.5 Node with attached indicators

CORAS representation Indicators can be attached to a node to show that
the indicators are used as input for assessing the likelihood of the node. Figure 2

8 Gencer Erdogan, Atle Refsdal

shows that indicator IN-19 is attached to threat scenario S1, while indicators
IN-5 and IN-14 are attached to threat scenario S2.

DEXi representation Indicators attached to a node are represented as basic
attributes under the attribute representing the node. Figure 4(d) shows the
complete DEXi tree structure derived from the CORAS risk model in Fig. 2.
The basic attributes in Fig. 4(d) correspond to the indicators in Fig. 2. As
shown in Fig. 4(d), we add the indicator IN-19 as a child attribute of l S1 and
the indicators IN-5 and IN-14 as child attributes of l S2.

Notice that we may have cases where a node has incoming leads-to relations
in addition to attached indicators. In such cases, the attribute representing the
node can have child attributes representing the incoming branches, as explained
in Sect. 4.3, as well as the child attributes representing indicators.

4.6 Leads-to relation with attached indicators

CORAS representation Indicators can be attached to a leads-to relation from
one node to another to show that the indicators are used as input for assessing
the conditional likelihood of an occurrence of the source node leading to the
target node. This is typically done by attaching the indicators to a vulnerability
on the relation, as such indicators normally say something about the presence
or severity of the vulnerability.

Figure 2 shows that indicator IN-20 is attached to vulnerability V2 and thus
on the leads-to relation going from S2 to U1. Similarly, indicators IN-4 and IN-8
are attached to vulnerability V1.

DEXi representation Indicators attached to a leads-to relation are repre-
sented by basic attributes under the attribute representing the conditional like-
lihood assigned to the relation. For example, two basic attributes representing
IN-4 and IN-8 are children of cl S1 to U1. Hence, the conditional likelihood
cl S1 to U1 depends on the indicators IN-4 and IN-8.

4.7 Other CORAS model fragments

We have not provided separate guidelines for threats, initiates relations, and
indicators attached to impacts relations. For the latter, the reason is that a
CORAS model does not provide any support for consequence assessment beyond
the assignment of a consequence value to the impacts relation from an unwanted
incident to an asset. All indicators relevant for consequence assessments are
therefore represented as basic attributes directly under the attribute representing
the consequence, as illustrated by c U1 A1 in Fig. 4(d). In our example, the
single indicator attached to the impacts relation from U1 actually provides the
consequence value directly, which means that the IN-C1 attribute could have
been attached directly under R1, without the intermediate c U1 A1 attribute.
We chose to include c U1 A1 to illustrate the general structure.

A Method for Developing Qualitative Security Risk Assessment Algorithms 9

Concerning threats and initiates relations, we rarely assign likelihoods to
these CORAS elements in practice, as estimating threat behavior is very difficult.
Instead, we assign a likelihood directly to the target node of the initiates relation.
An indicator assigned to a threat or to an initiates relation can therefore be
handled as if it was assigned directly to the target node, following the guidelines
of Section 4.5.

4.8 Defining scales and utility functions

Before defining utility functions, we need to define scales for the attributes. We
strongly recommend using ordered scales consistently such that increasing the
value implies increasing the (contribution to) the risk level, as this simplifies the
definition of the utility functions. For all aggregate attributes in our running
example, we use the scale {Very low; Low; Medium; High; Very high}.

We also make sure to follow the same scale order for the basic attributes
representing the indicators. For example, consider the indicator IN-19: Are there
any requests containing HTTP Verbs other than GET/POST in the web log?
attached to S1. Since this is a yes/no question, the scale for the indicator only
has two steps: Yes and No. A positive answer may indicate that someone has
tried to prepare for an attack, and hence an increased likelihood. Therefore, for
this indicator scale, the order from lowest to highest value should be {No; Yes}.

Assuming we have ordered all scales in this manner, increasing the value of
a child attribute should never lead to a decrease in the value of its parent. The
following restriction therefore guides the definition of utility functions:

Utility function restriction 1. The value of an attribute should be monotoni-
cally increasing in all its child attributes. It does not have to be strictly increasing.

For example, the risk R1 should be monotonically increasing in the likelihood
l U1 and the consequence c U1 A1. Figure 5 illustrates an example of how a
utility function fulfilling this restriction might be defined.

For the likelihood contribution from a leads-to relation, we also need to con-
sider that the conditional likelihood of the source node leading to the target
node will only affect the target node to the extent that the source node actually
occurs. We therefore add the following restriction:

Utility function restriction 2. The value of the attribute representing the
likelihood contribution from a leads-to relation should not be higher than the
value of the attribute representing the likelihood of the source node.

For example, l S1 to U1 should never be higher than l S1. The screenshot
from the DEXi tool in Figure 4(e) shows a definition of the utility function of
l S1 to U1 that respects both utility function restrictions presented above.

For a threat scenario or unwanted incident with incoming leads-to relations,
the likelihood can clearly not be lower than the highest contribution from the
incoming relations. We therefore add the following restriction:

10 Gencer Erdogan, Atle Refsdal

Very low

Low

Medium

High

Very high

Risk level

Fig. 5. Example of risk level defined as a monotonically increasing function of likelihood
and consequence.

Utility function restriction 3. The value of an attribute representing the like-
lihood of a node with one or more incoming leads-to relations should be at least
as high as the highest value of the attributes representing the contributions from
the incoming leads-to relations.

For example, l U1 should be at least as high as the highest of l S1 to U1 and
l S2 to U1. Restrictions 2 and 3 apply under the assumption that the same scale
is used for the attributes representing likelihood of nodes.

If a node has several incoming leads-to relations and/or attached indicators,
combinatorial explosion can make it very hard to define the utility function for
the attribute representing the node, due to the number of child attributes. In
such cases, we recommend reducing the granularity of the scales of the child
attributes or restructuring the model, as further explained in [3].

5 Step 3: Validate Security Risk Assessment Algorithm

Before putting the algorithm produced in Step 2 in operation, it should be
validated to verify that its output correctly reflects reality. This can be done in
many ways, depending on the data and resources available. When dealing with
the kind of security risk assessment addressed in this paper, we typically need
to rely on expert judgment. We first select a set of validation scenarios and then
validate each of these with a team of experts.

A validation scenario is a set of indicator values representing one possible
snapshot of the dynamic factors that influence the risk level. Thus, the number
of possible scenarios is the product of the number of possible values for each in-
dicator. This often results in many possible scenarios, which may be infeasible to
validate. We therefore need to select a reasonable number of scenarios depending
on the available effort. As a minimum, we suggest selecting validation scenarios
based on the following two criteria: (1) cover the extreme scenarios (yielding the
minimum and maximum risk values), and (2) cover each path in the CORAS risk

A Method for Developing Qualitative Security Risk Assessment Algorithms 11

model, meaning that for each path p (from the threat to the unwanted incident)
in the risk model, there must be a scenario where one or more indicators along
the path is triggered and the indicators for all other paths are not triggered un-
less these indicators also affect path p. By triggered, we mean that the indicator
value contributes to the increase of likelihood. For the reasons given in Sect. 4.7
concerning consequence assessment, we focus on likelihood validation.

Our example in Fig. 2 includes six Boolean indicators affecting the likelihood
assessment (as well as one affecting the consequence). This gives 64 possible sce-
narios. Table 1 gives an example of four scenarios fulfilling the criteria mentioned
above. This represents the absolute minimum number to fulfill the coverage crite-
ria, and we recommend using more validation scenarios. The Scenarios SC1 and
SC4 satisfy the first coverage criterion. SC1 is the minimum risk scenario where
no indicators are triggered, and SC4 is the maximum risk scenario where all
indicators are triggered. The Scenarios SC2 and SC3 satisfy the second coverage
criterion, where SC2 covers the top path of the risk model (involving “Initiate
HTTP Verb Tampering”) and SC3 covers the bottom path of the risk model
(involving “Initiate reflection attack in authentication protocol”). The column
l U1 shows the resulting likelihood value of U1 for each scenario.

Table 1. Example of validation scenarios.

Scenario IN-19 IN-4 IN-8 IN-14 IN-5 IN-20 l U1

SC1 No No No No No No Very low

SC2 Yes Yes Yes No No No High

SC3 No No No Yes Yes Yes Medium

SC4 Yes Yes Yes Yes Yes Yes Very high

With respect to validating the selected scenarios, we recommend using a well-
established approach such as the Wide-band Delphi method [1]. The Wide-band
Delphi method is a forecasting technique used to collect expert opinion in an
objective way, and arrive at consensus conclusion based on that. Another similar
estimation approach is the Constructive Cost Model (COCOMO) [2].

6 Related Work

Most security risk approaches aim to provide assessments capturing the risk level
at a single point in time, rather than continuous monitoring. However, there are
also approaches that address dynamic aspects and offer support for updating
assessments based on new information, such as the ones proposed by Poolsapp-
asit et al. [14], Frigault et al. [8], Si-chao et al. [17], and Krautsevich et al. [11].
Common for all these is that they offer quantitative assessments based on vari-
ants of Bayesian Networks or Markov Chains. Building and understanding the
models therefore requires specialized expertise. Many security and risk practi-
tioners, and most managers and decision makers, do not possess this expertise.

12 Gencer Erdogan, Atle Refsdal

Our qualitative approach based on CORAS and DEXi is designed to be simple
and aimed at a broader user group.

DEXi is one of many approaches within the field of multi-criteria decision
making (on which there is huge literature [19]), and has been tried out in a wide
range of domains, such as health care, finance, construction, cropping systems,
waste treatment systems, medicine, tourism, banking, manufacturing of electric
motors, and energy [6, 7]. To the best of our knowledge, DEXi has not been
used for security risk assessment. However, it has been applied to assess safety
risks within highway traffic [13] and ski resorts [5]. Although they focus on
safety risks, the approaches provided by Omerčević et al. [13] and Bohanec et
al. [5] are similar to our approach in the sense that they use DEXi models as
the underlying algorithm to compute an advice based on relevant indicators.
Unlike our approach, they do not employ any dedicated risk modeling language
to provide a basis for developing the DEXi models.

CORAS is a comprehensive framework for model-driven risk analysis. In addi-
tion to the risk modeling language, the framework consists of a tool and a com-
prehensive method [12]. However, CORAS focuses on quantitative assessment
and does not address development of executable algorithms. Roughly speaking,
what we have done in the work presented here is to insert the DEXi approach
into the risk estimation step of the CORAS method and add indicators to cap-
ture dynamic aspects. The first use of measurable indicators as dynamic input to
provide risk level assessments based on CORAS was presented in [16]. This is a
quantitative approach aimed at developing mathematical formulas for assessing
risk levels, where indicators are represented by variables in the formulas.

7 Discussion of the Approach and Initial Experiences

Our experience from applying the presented method to develop CORAS models
and corresponding DEXi models for 10 common cyber attacks indicates that the
method is easy to use. Therefore, our hypothesis is that most security and risk
practitioners can adopt it without extensive additional training. In future work,
we hope to test this hypothesis empirically with practitioners who have not been
involved in developing the method.

This work was done in the context of the WISER project [20], which offers
a framework for real-time security risk assessment where values for the basic
attributes are automatically assigned from test tools, monitoring infrastructure
and user interfaces. The risk assessment results (i.e. the output of the algorithms)
are presented in a dashboard, which is part of the WISER framework. The
DEXi models constitute the qualitative assessment algorithms offered by the
framework, and will be tested on three pilots as part of the validation of the
WISER framework. Notice that the method presented here does not require
adoption of the WISER framework. It is possible to use only the DEXi tool to
run the algorithms and view the results, if one is willing to manually feed the
indicator values by assigning values to all basic attributes.

A Method for Developing Qualitative Security Risk Assessment Algorithms 13

The effort required to apply the method obviously depends on several factors,
including the complexity of the attack to be captured, the chosen abstraction
level for the risk model, the number of indicators, and the choice of validation
approach. As a rough rule of thumb, we estimate that applying the method
will typically take from 20 to 40 hours of work. This estimate is based on our
experience from the WISER models and applies for general attacks that are
already well understood, such as the one presented here. If a more complex
CORAS model needs to be developed from scratch in Step 1, the effort may be
significantly higher. Due to the guidelines provided for Step 2, we can reasonably
assume that the effort required to develop the DEXi model will grow more or
less in proportion to the number of elements in the CORAS model.

While the schematic translation to obtain the DEXi model structure is straight-
forward and could even be automated, the definition of scales and utility func-
tions is based on subjective judgment. Here we see a potential for more extensive
guidelines. These could, for example, provide guidance on the degree of impact
on parent nodes for different types of indicators.

An inherent limitation of the approach is that new threats and attack types
can only be addressed by creating new risk models and algorithms. The reason
is that the only dynamic aspects that can be captured by the algorithms are
those covered by the identified indicators. Periodic evaluations should therefore
be performed to decide whether new or updated models and algorithms are
required. This limitation applies for all approaches that rely on human experts.

8 Conclusion

We have presented a method for developing security risk assessment algorithms,
using ordinal scales with textual descriptions for risk level assessments. Indi-
cators constitute the input to the algorithms and capture the current state of
the target of analysis, such as the presence of vulnerabilities, suspicious events
observed in the infrastructure or the potential impact of security incidents on
business processes. By producing an algorithm, rather than an assessment cap-
turing the risk level at a single point in time, the method facilitates continuous
assessment and monitoring of trends.

The method is designed to provide risk models documented in a comprehen-
sible format and transparent assessment algorithms that can be understood by
all stakeholders, without requiring programming skills or extensive effort. This
promotes user involvement, critical scrutiny and improvement, and helps build
trust in the results. Based on our initial experiences, we believe our work can
contribute to enhanced security and better decision making by helping organi-
zations to obtain transparent and comprehensible security risk assessments.

Acknowledgments. This work has been conducted as part of the WISER
project (653321) funded by the European Commission within the Horizon 2020
research and innovation programme.

14 Gencer Erdogan, Atle Refsdal

References

1. B. W. Boehm. Software Engineering Economics. Prentice Hall, 1981.

2. B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz,
R. Madachy, D.J. Reifer, and B. Steece. Software Cost Estimation with COCOMO
II. Prentice Hall, 2000.

3. M. Bohanec. DEXi: Program for Multi-Attribute Decision Making. User’s Manual
v 5.00 IJS DP-11897, Institut ”Jožef Stefan”, Ljubljana, Slovenija, 2015.

4. M. Bohanec, G. Aprile, M. Costante, M. Foti, and N. Trdin. A Hierarchical Multi-
Attribute Model for Bank Reputational Risk Assessment. In DSS 2.0 – Supporting
Decision Making with New Technologies, pages 92–103. IOS Press, 2014.

5. M. Bohanec and B. Delibašić. Data-Mining and Expert Models for Predicting
Injury Risk in Ski Resorts. In Proc. 1st International Conference on Decision
Support System Technology (ICDSST’15), pages 46–60. Springer, 2015.

6. M. Bohanec, M. Žnidaršič, V. Rajkovič, I. Bratko, and B. Zupan. DEX Methodol-
ogy: Three Decades of Qualitative Multi-Attribute Modeling. Informatica (Slove-
nia), 37(1):49–54, 2013.

7. DEXi: A Program for Multi-Attribute Decision Making. http://kt.ijs.si/

MarkoBohanec/dexi.html. Accessed January 9, 2017.

8. M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring Network Security
Using Dynamic Bayesian Network. In Proc. 4th ACM Workshop on Quality of
Protection (QoP’08), pages 23–30. ACM, 2008.

9. International Organization for Standardization. ISO 31000:2009(E), Risk man-
agement – Principles and guidelines, 2009.

10. International Organization for Standardization. ISO/IEC 27005:2011(E), Infor-
mation technology – Security techniques – Information security risk management,
2011.

11. L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Risk-Aware Usage
Decision Making in Highly Dynamic Systems. In Proc. 5th International Confer-
ence on Internet Monitoring and Protection (ICIMP’10), pages 29–34. IEEE, 2010.

12. M. S. Lund, B. Solhaug, and K. Stølen. Model-Driven Risk Analysis: The CORAS
Approach. Springer, 2011.

13. D. Omerčević, M. Zupančič, M. Bohanec, and T. Kastelic. Intelligent response
to highway traffic situations and road incidents. Proc. Transport Research Arena
Europe 2008, pages 21–24, 2008.

14. N. Poolsappasit and I. Ray. Dynamic Security Risk Management Using Bayesian
Attack Graphs. International Journal On Advances in Intelligent Systems, 9(1):61–
74, 2012.

15. A. Refsdal, B. Solhaug, and K. Stølen. Cyber-Risk Management. Springer, 2015.

16. A. Refsdal and K. Stølen. Employing Key Indicators to Provide a Dynamic Risk
Picture with a Notion of Confidence. In Proc. 3rd IFIP International Conference
on Trust Management (TM’09), pages 215–233. Springer, 2009.

17. L. Si-chao and L. Yuan. Network Security Risk Assessment Method Based on HMM
And Attack Graph Model. In Proc. 17th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pages 517–522. IEEE, 2016.

18. B. Solhaug and K. Stølen. The CORAS Language – Why it is designed the way
it is. In Proc. 11th International Conference on Structural Safety & Reliability
(ICOSSAR’13), pages 3155–3162. Taylor and Francis, 2013.

A Method for Developing Qualitative Security Risk Assessment Algorithms 15

19. M. Velasquez and P.T. Hester. An analysis of multi-criteria decision making meth-
ods. International Journal of Operations Research, 10(2):56–66, 2013.

20. Wide-Impact cyber SEcurity Risk framework (WISER). https://www.

cyberwiser.eu/. Accessed February 8, 2017.

A Schematic Translation from CORAS to DEXi

Table 2 shows the naming convention for risk model elements including likelihood
and consequence parameters. The lower-case letters x and y in the table represent
integers.

Table 2. Naming convention.

Name Meaning

Ax Asset x

Rx Risk x

Sx Scenario x (threat scenario)

Ux Incident x (‘U’ stands for unwanted incident)

Vx Vulnerability x

l Ux Likelihood of Ux

l Sx Likelihood of Sx

c Ux Ay Consequence of Ux for Ay

cl Sx to Sy Conditional likelihood of Sx leading to Sy

cl Sx to Uy Conditional likelihood of Sx leading to Uy

cl Ux to Sy Conditional likelihood of Ux leading to Sy

cl Ux to Uy Conditional likelihood of Ux leading to Uy

l Sx to Sy Likelihood contribution from Sx to Sy

l Sx to Uy Likelihood contribution from Sx to Uy

l Ux to Sy Likelihood contribution from Ux to Sy

l Ux to Uy Likelihood contribution from Ux to Uy

IN-x Indicator x

IN-Cx Consequence indicator x

Figure 6 shows an overview of risk model fragments and their schematic
translation from CORAS to DEXi. In all except the “Risk” row, we have used
threat scenarios to illustrate nodes. However, these threat scenarios may also be
replaced by unwanted incidents. The lower-case letters x, y, z, u, v, and n in
Fig. 6 represent integers.

16 Gencer Erdogan, Atle Refsdal

CORAS representation DEXi representation
Fragment in
risk model

Ux
[l_Ux]

Ay

[c_Ux_Ay]

Sx
[l_Sx]

Sy
[l_Sy]

Sz
[l_Sz]

Sx
[l_Sx]

Sy
[l_Sy]

[cl_Sx_to_Sy]

IN-y

Sz
[l_Sz]

IN-x

Sx
[l_Sx]

Sy
[l_Sy]

[cl_Sx_to_Sy]

Vu

IN-z

Risk
(Section 4.2)

Node with incoming
leads-to relations

(Section 4.3)

Node with outgoing
leads-to relation

(Section 4.4)

Node with attached
indicators

(Section 4.5)

Leads-to relation
with attached

indicators
(Section 4.6)

IN-v

Fig. 6. Schematic translation from CORAS to DEXi

